Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-01T21:41:16.869Z Has data issue: false hasContentIssue false

PROPOSING A SPECIFICATION STRUCTURE FOR COMPLEX PRODUCTS IN MODEL-BASED SYSTEMS ENGINEERING (MBSE)

Published online by Cambridge University Press:  27 July 2021

Joshua Fahl*
Affiliation:
Karlsruhe Institute of Technology (KIT) / IPEK - Institute for Product Engineering
Tobias Hirschter
Affiliation:
Karlsruhe Institute of Technology (KIT) / IPEK - Institute for Product Engineering
Gabriel Wöhrle
Affiliation:
Karlsruhe Institute of Technology (KIT) / IPEK - Institute for Product Engineering
Albert Albers
Affiliation:
Karlsruhe Institute of Technology (KIT) / IPEK - Institute for Product Engineering
*
Fahl, Joshua, Karlsruhe Institute of Technology, IPEK - Institute for Product Engineering, Germany, joshua.fahl@partner.kit.edu

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This research work presents a methodological support for the specification of complex products. This is achieved by developing a specification structure in a MBSE environment. The new method draws on success factors of complex product specification, principles of MBSE and the explanatory model of PGE – Product Generation Engineering. For evaluation, the method is applied within a student development project. A high applicability and the realization of novel synergies for coping with continuously increasing product complexity is demonstrated.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2021. Published by Cambridge University Press

References

Albers, A. (2010), “Five hypotheses about engineering processes and their consequences”, in Horváth, I., Mandorli, F. and Rusák, Z. (Eds.), Proceedings of the TMCE 2010 Symposium: Virtual Engineering for Competitiveness, 12.-16.04.2010, Ancona, Italien, Delft University of Technology, Delft, Netherlands, pp. 343356.Google Scholar
Albers, A., Behrendt, M., Klingler, S. and Matros, K. (2016), “Verifikation und Validierung im Produktentstehungsprozess”, in Lindemann, U. (Ed.), Handbuch Produktentwicklung, Carl Hanser Verlag, München, pp. 541569.10.3139/9783446445819.019CrossRefGoogle Scholar
Albers, A., Behrendt, M., Klingler, S., Reiss, N. and Bursac, N. (2017a), “Agile product engineering through continuous validation in PGE – Product Generation Engineering”, Design Science Journal, Vol. 3 No. E5, pp. 119.Google Scholar
Albers, A., Bursac, N. and Wintergerst, E. (2015), “Product Generation Development - Importance and Challenges from a Design Research Perspective”, New Developments in Mechanics and Mechanical Engineering, pp. 1621.Google Scholar
Albers, A., Hirschter, T., Fahl, J., Wöhrle, G., Reinemann, J. and Rapp, S. (2020a), “Generic reference product model for specifying complex products by the example of the automotive industry”, in Horváth, I. and Keenaghan, G.N. (Eds.), Digital Proceedings of TMCE 2020: Designing and engineering of smart systems, 11.-15.05.2020, Dublin, Ireland, Delft University of Technology, Delft, Netherlands, pp. 353370.Google Scholar
Albers, A., Klingler, S. and Ebel, B. (2013), “Modeling Systems of Objectives in Engineering Design Practice”, in Lindemann, U., Venkataraman, S., Kim, Y.S., Lee, S.W., Clarkson, J. and Cascini, G. (Eds.), DS 75: Proceedings of the 19th International Conference on Engineering Design (ICED13): Design Information and Knowledge, 19.-22.08.2013, Seoul, Korea, The Design Society, Glasgow, Scotland, UK, pp. 379388.Google Scholar
Albers, A., Rapp, S., Birk, C. and Bursac, N. (2017b), “Die Frühe Phase der PGE – Produktgenerationsentwicklung”, in Binz, H., Bertsche, B., Bauer, W., Spath, D. and Roth, D. (Eds.), Stuttgarter Symposium für Produktentwicklung (SSP) 2017: Produktentwicklung im disruptiven Umfeld, 28.-29.06.2017, Stuttgart, Fraunhofer Verlag, Stuttgart, pp. 345354.Google Scholar
Albers, A., Rapp, S., Fahl, J., Hirschter, T., Revfi, S., Schulz, M., Stürmlinger, T. and Spadinger, M. (2020b), “Proposing a Generalized Description of Variations in Different Types of Systems by the Model of PGE – Product Generation Engineering”, in Marjanović, D., Štorga, M., Škec, S., Bojčetić, N. and Pavković, N. (Eds.), DS 102: Proceedings of the DESIGN 2020: 16th International Design Conference, 26.-19.10.2020, Dubrovnik, Croatia, Cambridge University Press, Cambridge, UK, pp. 22352244.Google Scholar
Albers, A., Rapp, S., Spadinger, M., Richter, T., Birk, C., Marthaler, F., Heimicke, J., Kurtz, V. and Wessels, H. (2019), “The Reference System in the Model of PGE: Proposing a Generalized Description of Reference Products and their Interrelations”, in Wartzack, S. and Schleich, B. (Eds.), DS 94: Proceedings of the Design Society: 22nd International Conference on Engineering Design (ICED19): Responsible Design for Our Future, 05.-08.08.2019, Delft, Netherlands, Cambridge University Press, Cambridge, UK, pp. 16931702.Google Scholar
Albers, A., Walter, B., Wilmsen, M. and Bursac, N. (2018), “Live-Labs as real-world validation environments for design methods”, in Marjanović, D., Štorga, M., Škec, S., Bojčetić, N. and Pavković, N. (Eds.), DS 92: Proceedings of the DESIGN 2018: 15th International Design Conference, 21.-24.05.2018, Dubrovnik, Croatia, The Design Society, Glasgow, Scotland, UK, pp. 1324.Google Scholar
Alt, O. (2019), “Modellbasiertes Systems Engineering ohne Anlernaufwand mit den Fundamental Modeling Concepts”, in Schulze, S.-O., Tschirner, C., Kaffenberger, R. and Ackva, S. (Eds.), Tag des Systems Engineering (TdSE) 2019, 06.-08.11.2019, München, Gesellschaft für Systems Engineering (GfSE), Ottobrunn, pp. 205212.Google Scholar
Arslan, M., Haug, F., Heitger, N., Krämer, L. and Albers, A. (2016), “Don't get stuck in complexity. Coping with strategic complexity in the context of Product Generation Engineering”, in RADMA (Ed.), From Science to Society: Innovation and Value Creation, 03.-06.07.2016, Cambridge, UK, RADMA, Chester, UK, n. p.Google Scholar
D'Ambrosio, J. and Soremekun, G. (2017), “Systems engineering challenges and MBSE opportunities for automotive system design”, in IEEE (Ed.), Proceedings of IEEE International Conference on Systems, Man and Cybernetics (SMC), 05.-08.10.2017, Banff, AB, Canada, IEEE, Piscataway, NJ, USA, pp. 20752080.CrossRefGoogle Scholar
Darlington, M.J. and Culley, S.J. (2002), “Current Research in the Engineering Design Requirement. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 216 No. Issue 3, pp. 375388.Google Scholar
Delligatti, L. (2014), SysML distilled: A Brief Guide to the Systems Modeling Language, Addison-Wesley, Upper Saddle River, NJ, USA.Google Scholar
Deubzer, F. and Lindemann, U. (2009), “Networked Modelling. Use and interaction of product models and methods during analysis and synthesis”, in Bergendahl, Norell, Grimheden, M., Leifer, M., Skogstad, L., and Lindemann, P., U. (Eds.), DS 58: Proceedings of ICED 09: 17th International Conference on Engineering Design, 24.-27.08.2009, Palo Alto, CA, USA, The Design Society, Glasgow, Scotland, UK, 371380.Google Scholar
Ehrlenspiel, K. and Meerkamm, H. (2013), Integrierte Produktentwicklung: Denkabläufe, Methodeneinsatz, Zusammenarbeit, 5., überarbeitete und erweiterte Auflage, Carl Hanser Verlag, München.CrossRefGoogle Scholar
Eigner, M., Koch, W. and Muggeo, C. (2017), Modellbasierter Entwicklungsprozess cybertronischer Systeme: Der PLM-unterstützte Referenzentwicklungsprozess für Produkte und Produktionssysteme, Springer Vieweg, Berlin, Heidelberg.CrossRefGoogle Scholar
INCOSE Technical Operations (2007), Systems Engineering Vision 2020, INCOSE-TP-2004-004-02, http://www.incose.org/.Google Scholar
ISO - International Organization for Standardization (2011), Systems and software engineering: Architecture description No. 42010:2011(E), ISO, Genf, Schweiz.Google Scholar
Kleiner, S. and Kramer, C. (2013), “Model Based Design with Systems Engineering Based on RFLP Using V6”, in Abramovici, M. and Stark, R. (Eds.), Smart Product Engineering: Proceedings of the 23rd CIRP Design Conference, 11.-13.03.2013, Bochum, Springer, Berlin, Heidelberg, pp. 93102.10.1007/978-3-642-30817-8_10CrossRefGoogle Scholar
Morkevicius, A., Aleksandraviciene, A., Mazeika, D., Bisikirskiene, L. and Strolia, Z. (2017), “MBSE Grid. A Simplified SysML-Based Approach for Modeling Complex Systems”, in INCOSE (Ed.), Proceedings of INCOSE International Symposium 2017, 15.-20.07.2017, Adelaide, Australia, John Wiley & Sons, Hoboken, NJ, USA, pp. 136150.Google Scholar
Nellore, R. and Söderquist, K. (2000), “Strategic outsourcing through specifications”, Omega, Vol. 28 No. Issue 5, pp. 525540.10.1016/S0305-0483(99)00078-XCrossRefGoogle Scholar
Nellore, R., Söderquist, K. and Eriksson, K.-A. (1999), “A Specification Model for Product Development”, European Management Journal, No. Vol. 17, Nr. 1, pp. 5063.10.1016/S0263-2373(98)00058-9CrossRefGoogle Scholar
No Magic, I. (n.d.), “Cameo Systems Modeler”, available at: https://www.nomagic.com/products/cameo-systems-modeler (accessed 7 January 2021).Google Scholar
Object Management Group (OMG) (2017), “OMG Systems Modeling Language. Version 1.5”, available at: https://www.omg.org/spec/SysML/1.5 (accessed 7 January 2021).CrossRefGoogle Scholar
Patzak, G. (1982), Systemtechnik: Planung komplexer innovativer Systeme, Grundlagen, Methoden, Techniken, Springer-Verlag, Berlin, Heidelberg.CrossRefGoogle Scholar
Pohl, K., Broy, M., Daembkes, H. and Hönninger, H. (Eds.) (2016), Advanced Model-Based Engineering of Embedded Systems: Extensions of the SPES 2020 Methodology, Springer International Publishing, Cham, Schweiz.CrossRefGoogle Scholar
Pressman, R.S. and Maxim, B.R. (2015), Software Engineering: A Practitioner's Approach, 8.th ed., McGraw-Hill Education, New York, NY, USA.Google Scholar
Schuh, G. and Schwenk, U (2001), Produktkomplexität managen, Hanser-Verlag, München.Google Scholar
Simon, H.A. (1994), Die Wissenschaften vom Künstlichen, Springer, Wien.Google Scholar
Smith, P. and Reinartsen, D. (1991), Developing products in half the time, Van Nordstrand Reinold, New York.Google Scholar
VDI-Fachbereich Produktentwicklung und Mechatronik (2004), VDI 2206: Entwicklungsmethodik für mechatronische Systeme, 03.100.40; 31.220 No. 2206:2004-06, Beuth Verlag, Berlin.Google Scholar
Walden, D.D., Roedler, G.J., Forsberg, K., Hamelin, R.D., Shortell, T.M. and International Council on Systems Engineering (Eds.) (2015), Systems engineering handbook: a guide for system life cycle processes and activities ; INCOSE-TP-2003-002-04, 2015, Wiley, Hoboken, NJ.Google Scholar
Weilkiens, T. (2006), Systems Engineering mit SysML/UML: Modellierung, Analyse, Design, dpunkt.verlag, Heidelberg.Google Scholar