Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-14T07:42:34.106Z Has data issue: false hasContentIssue false

Breaking the dichotomy between typical and anomalous globular clusters: the case of NGC 3201

Published online by Cambridge University Press:  11 March 2020

Bruno Dias
Affiliation:
European Southern Observatory, Alonso de Córdova 3107, Vitacura19001, Chile Departamento de Fsica, Facultad de Ciencias Exactas, Universidad Andrés Bello, Av. Fernandez Concha 700, Las Condes, Santiago, Chile
Ignacio Araya
Affiliation:
Núcleo Matemáticas, Física y Estadística, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Manuel Montt 318, Providencia, Santiago, Chile
João Paulo Nogueira-Cavalcante
Affiliation:
Observatório Nacional, Rua General José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil
Leila Saker
Affiliation:
Observatorio Astronómico de Córdoba, Laprida 854, 5000, Córdoba, Argentina
Ahmed Shokry
Affiliation:
National Research Institute of Astronomy and Geophysics (NRIAG), 11421, Helwan, Cairo, Egypt
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We recently discovered that NGC 3201 has characteristics that set it outside the current twofold classification scheme for Galactic globular clusters (GCs). Most GCs are mono-metallic and show light-element abundance variations (e.g., Na-O and C-N anti-correlations); but a minority of clusters also present variations in Fe correlating with s-process element and C+N+O abundances, and they possess multiple C-N sequences. These anomalous GCs also have a broad sub-giant branch (SGB) and follow the same mass-size relation as dwarf galaxies possibly evolving into GCs. We now revealed that NGC 3201 belongs to neither group. It has multiple C-N sequences, but no broad SGB, no strong evidence of a Fe-spread, and it does not follow the mass-size relation.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bastian, N. & Lardo, C. 2018, ARA&A, 56, 83CrossRefGoogle Scholar
Bekki, K. & Freeman, K. C. 2003, MNRAS, 346, L11CrossRefGoogle Scholar
Briley, M. M., Hesser, J. E., Bell, R. A., et al. 1994, AJ, 108, 2183CrossRefGoogle Scholar
Briley, M. M., Cohen, J. G., & Stetson, P. B. 2004, AJ, 127, 1579CrossRefGoogle Scholar
Da Costa, G. S. 2016, The General Assembly of Galaxy Halos: Structure, Origin and Evolution, 110Google Scholar
Dias, B., Araya, I., Nogueira-Cavalcante, J. P., et al. 2018, A&A, 614, A146Google Scholar
Gratton, R., Sneden, C., & Carretta, E. 2004, ARA&A, 42, 385CrossRefGoogle Scholar
Harbeck, D., Smith, G. H., & Grebel, E. K. 2003, AJ, 125, 197CrossRefGoogle Scholar
Kravtsov, V., Alcano, G., Marconi, G., et al. 2009, A&A, 497, 371Google Scholar
Lim, D., Hong, S., & Lee, Y.-W. 2017, ApJ, 844, 14CrossRefGoogle Scholar
Marino, A. F., Sneden, C., Kraft, R. P., et al. 2011, A&A, 532, A8Google Scholar
Marino, A. F., Milone, A. P., Karakas, A. I., et al. 2015, MNRAS, 450, 815CrossRefGoogle Scholar
Marino, A. F., Yong, D., Milone, A. P., et al. 2018, ApJ, 859, 81CrossRefGoogle Scholar
Marino, A. F., Milone, A. P., Renzini, A., et al. 2019, MNRAS, 487, 3815CrossRefGoogle Scholar
Milone, A. P., Piotto, G., Renzini, A., et al. 2017, MNRAS, 464, 3636CrossRefGoogle Scholar
Mucciarelli, A., Lapenna, E., Massari, D., et al. 2015, ApJ, 801, 69CrossRefGoogle Scholar
Muñoz, C., Geisler, D., & Villanova, S. 2013, MNRAS, 433, 2006CrossRefGoogle Scholar
Pickles, A. J. 1985, ApJSS, 59, 33CrossRefGoogle Scholar
Simmerer, J., Ivans, I. I., Filler, D., et al. 2013, ApJL, 764, L7CrossRefGoogle Scholar