Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-18T17:31:49.050Z Has data issue: false hasContentIssue false

Establishing the impact of powerful AGN on their host galaxies

Published online by Cambridge University Press:  29 March 2021

C. M. Harrison
Affiliation:
School of Mathematics, Statistics and Physics, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kindgom email: christopher.harrison@newcastle.ac.uk
S. J. Molyneux
Affiliation:
Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF, UK
J. Scholtz
Affiliation:
Department of Space, Earth and Environment, Chalmers University of Technology, Onsala Space Observatory, SE-43992 Onsala, Sweden
M. E. Jarvis
Affiliation:
Max-Planck Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching, Germany European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching, Germany Ludwig Maximilian Universität, Professor-Huber-Platz 2, 80539 Munich, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Establishing the role of active galactic nuclei (AGN) during the formation of galaxies remains one of the greatest challenges of galaxy formation theory. Towards addressing this, we summarise our recent work investigating: (1) the physical drivers of ionised outflows and (2) observational signatures of the impact by jets/outflows on star formation and molecular gas content in AGN host galaxies. We confirm a connection between radio emission and extreme ionised gas kinematics in AGN hosts. Emission-line selected AGN are significantly more likely to exhibit ionised outflows (as traced by the [O iii] emission line) if the projected linear extent of the radio emission is confined within the spectroscopic aperture. Follow-up high resolution radio observations and integral field spectroscopy of 10 luminous Type 2 AGN reveal moderate power, young (or frustrated) jets interacting with the interstellar medium. We find that these sources live in highly star forming and gas rich galaxies. Additionally, by combining ALMA-derived dust maps with integral field spectroscopy for eight host galaxies of z ≈ 2 X-ray AGN, we show that Hα emission is an unreliable tracer of star formation. For the five targets with ionised outflows we find no dramatic in-situ shut down of the star formation. Across both of these studies we find that if these AGN do have a negative impact upon their host galaxies, it must be happening on small (unresolved) spatial scales and/or an observable galaxy-wide impact has yet to occur.

Type
Contributed Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

References

Alexander, D. M. & Hickox, R. C. 2012, New Astron. Reviews, 56, 93 CrossRefGoogle Scholar
Alhassan, W., Taylor, A. R., Vaccari, M., et al. 2018, MNRAS, 480, 2085 CrossRefGoogle Scholar
Arrigoni Battaia, F., Obreja, A., Prochaska, J. X., et al. 2019, A&A, 631, 18 Google Scholar
Bower, R. G., Benson, A. J., Malbon, R., et al. 2006, Mnras, 370, 645 CrossRefGoogle Scholar
Carniani, S., Marconi, A., Maiolino, R., et al. 2016, A&A, 591, A28 Google Scholar
Cano-Daz, M., Maiolino, R., Marconi, A., et al. 2012, A&A, 537, L8 Google Scholar
Cicone, C., Brusa, M., Ramos Almeida, C., et al. 2018, Nature Astronomy, 2, 176 10.1038/s41550-018-0406-3CrossRefGoogle Scholar
Condon, J. J., Kellermann, K. I., Kimball, A. E., et al. 2013, ApJ, 768, 37 CrossRefGoogle Scholar
Cresci, G., Mainieri, V., Brusa, M., et al. 2015, ApJ, 799, 1 10.1088/0004-637X/799/1/82CrossRefGoogle Scholar
Cresci, G. & Maiolino, R. 2018, Nature Astronomy, 2, 179 10.1038/s41550-018-0404-5CrossRefGoogle Scholar
Harrison, C. M., Alexander, D. M., Mullaney, J. R., et al. 2016, MNRAS, 1, 165 Google Scholar
Harrison, C. M. 2017, Nature Astronomy, 1, 165 CrossRefGoogle Scholar
Holt, J., Tadhunter, C. N., & Morganti, R. 2008, MNRAS, 387, 639 10.1111/j.1365-2966.2008.13089.xCrossRefGoogle Scholar
Jarvis, M. E., Harrison, C. M., Thomson, A. P. et al. 2019, MNRAS, 485, 2710 10.1093/mnras/stz556CrossRefGoogle Scholar
Kauffmann, G. & Maraston, C. 2019, MNRAS, 489, 1973 CrossRefGoogle Scholar
Kimball, A. E. & Ivezić, Ž. 2008, AJ, 136, 684 CrossRefGoogle Scholar
King, A. & Pounds, K. 2015, ARA&A, 53, 115 Google Scholar
McNamara, B. R. & Nulsen, P. E. J. 2012, New Journal of Physics, 14, 055023 CrossRefGoogle Scholar
Molyneux, S. J., Harrison, C. M., Jarvis, M. E., et al. 2019, A&A, 631, A132 Google Scholar
Mukherjee, D., Bicknell, G. V., Wagner, A. Y., et al. 2018, MNRAS, 479, 5544 CrossRefGoogle Scholar
Mullaney, J. R., Alexander, D. M., Fine, S., et al. 2013, Mnras, 433, 622 CrossRefGoogle Scholar
Pierce, J. C. S., Tadhunter, C. N., Morganti, R., et al. 2020, MNRAS, 492 2053 CrossRefGoogle Scholar
Pillepich, A., Nelson, D., Springer, V., et al. 2019, MNRAS, 490, 3196 10.1093/mnras/stz2338CrossRefGoogle Scholar
Rosario, D. J., Shields, G. A., Taylor, G. B., et al. 2010, ApJ, 716, 131 CrossRefGoogle Scholar
Sargent, M. T., Daddi, E., Béthermin, M., et al. 2014, ApJ, 793, 19 CrossRefGoogle Scholar
Schaye, J., Crain, R., Bower, R. G., et al. 2015, MNRAS, 446, 521 CrossRefGoogle Scholar
Scholtz, J., Alexander, D. M., Harrison, C. M., et al. 2018, MNRAS, 475, 1288 CrossRefGoogle Scholar
Scholtz, J., Harrison, C. M., Rosario, D. J., et al. 2020, MNRAS, 492, 3194 10.1093/mnras/staa030CrossRefGoogle Scholar
Tacconi, L. J., Genzel, R., Saintonge, A., et al. 2018, ApJ, 853, 179 CrossRefGoogle Scholar
Villar Martn, M., Emonts, B., Humphrey, A., et al. 2014, MNRAS, 440, 3202 10.1093/mnras/stu448CrossRefGoogle Scholar
Woo, J.-H., Bae, H.-J., Son, D., & Karouzos, M. 2016, ApJ, 817, 108 CrossRefGoogle Scholar
Wylezalek, D. & Morganti, R. 2018, Nature Astronomy, 2, 181 CrossRefGoogle Scholar
Zakamska, N. L. & Greene, J. E. 2014, MNRAS, 442, 784 10.1093/mnras/stu842CrossRefGoogle Scholar
Zakamska, N. L., Lampayan, K., Petric, A., et al. 2016, MNRAS, 455, 4191 CrossRefGoogle Scholar