Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-29T01:57:21.363Z Has data issue: false hasContentIssue false

Interpreting galaxy properties with improved modelling

Published online by Cambridge University Press:  04 June 2020

E. R. Stanway
Affiliation:
Dept. of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV7 4AL, UK email: e.r.stanway@warwick.ac.uk
J. J. Eldridge
Affiliation:
Dept. of Physics, University of Auckland, Private Bag 92019, Auckland, New Zealand email: j.eldridge@auckland.ac.nz
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Observations of star-forming galaxies in the distant Universe have confirmed the importance of massive stars in shaping galaxy emission and evolution. Distant stellar populations are unresolved, and the limited data available must be interpreted in the context of stellar population models. Understanding these populations, and their evolution with age and heavy element content is key to interpreting processes such as supernovae, cosmic reionization and the chemical enrichment of the Universe. With the upcoming launch of JWST and observations of galaxies within a billion years of the Big Bang, the uncertainties in modelling massive stars - particularly their interactions with binary companions - are becoming increasingly important to our interpretation of the high redshift Universe. In turn, observations of distant stellar populations provide ever stronger tests against which to gauge the success of, and flaws in, current massive star models. Here we briefly review the current status binary stellar population synthesis.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Amorín, R., Pérez-Montero, E., Contini, T., et al. 2015, A&A, 578, A105Google Scholar
Basu-Zych, A. R., Lehmer, B. D., Hornschemeier, A. E., et al. 2013, ApJ, 774, 152CrossRefGoogle Scholar
Bayliss, M. B., Rigby, J. R., Sharon, K., et al. 2014, ApJ, 790, 14410.1088/0004-637X/790/2/144CrossRefGoogle Scholar
Belczynski, K., Kalogera, V., Rasio, F. A., et al. 2008, ApJS, 174, 22310.1086/521026CrossRefGoogle Scholar
Berg, D. A., Erb, D. K., Auger, M. W., et al. 2018, ApJ, 859, 16410.3847/1538-4357/aab7faCrossRefGoogle Scholar
Bruzual, G. & Charlot, S. 2003, MNRAS, 344, 1000CrossRefGoogle Scholar
Conroy, C. 2013, ARAA, 51, 39310.1146/annurev-astro-082812-141017CrossRefGoogle Scholar
da Cunha, E., Charlot, S., & Elbaz, D. 2008, MNRAS, 388, 159510.1111/j.1365-2966.2008.13535.xCrossRefGoogle Scholar
De Donder, E. & Vanbeveren, D. 2004, New Astronomy Review, 48, 861Google Scholar
de Mink, S. E., Langer, N., Izzard, R. G., et al. 2013, ApJ, 764, 166CrossRefGoogle Scholar
Du, X., Shapley, A. E., Reddy, N. A., et al. 2018, ApJ, 860, 7510.3847/1538-4357/aabfcfCrossRefGoogle Scholar
Dufton, P. L., Evans, C. J., Hunter, I., et al. 2019, A&A, 626, A50Google Scholar
Eggleton, P. P. 1971, MNRAS, 151, 351CrossRefGoogle Scholar
Eldridge, J. J., Izzard, R. G., & Tout, C. A. 2008, MNRAS, 384, 110910.1111/j.1365-2966.2007.12738.xCrossRefGoogle Scholar
Eldridge, J. J. & Stanway, E. R. 2009, MNRAS, 400, 1019CrossRefGoogle Scholar
Eldridge, J. J. & Stanway, E. R. 2012, MNRAS, 419, 47910.1111/j.1365-2966.2011.19713.xCrossRefGoogle Scholar
Eldridge, J. J., Fraser, M., Smartt, S. J., et al. 2013, MNRAS, 436, 77410.1093/mnras/stt1612CrossRefGoogle Scholar
Eldridge, J. J., Stanway, E. R., Xiao, L., et al. 2017, PASA, 34, e05810.1017/pasa.2017.51CrossRefGoogle Scholar
Eldridge, J. J., Stanway, E. R., & Tang, P. N. 2019, MNRAS, 482, 870CrossRefGoogle Scholar
Erb, D. K., Pettini, M., Shapley, A. E., et al. 2010, ApJ, 719, 116810.1088/0004-637X/719/2/1168CrossRefGoogle Scholar
Ferland, G. J., Korista, K. T., Verner, D. A., et al. 1998, PASP, 110, 761CrossRefGoogle Scholar
Götberg, Y., de Mink, S. E., Groh, J. H., et al. 2018, A&A, 615, A78Google Scholar
Gräfener, G., Owocki, S. P., & Vink, J. S. 2012, A&A, 538, A40Google Scholar
Greis, S. M. L., Stanway, E. R., Davies, L. J. M., et al. 2016, MNRAS, 459, 259110.1093/mnras/stw722CrossRefGoogle Scholar
Hamann, W.-R. & Gräfener, G. 2003, A&A, 410, 993Google Scholar
Hamann, W.-R., Gräfener, G., & Liermann, A. 2006, A&A, 457, 1015Google Scholar
Han, Z., Podsiadlowski, P., & Lynas-Gray, A. E. 2007, MNRAS, 380, 109810.1111/j.1365-2966.2007.12151.xCrossRefGoogle Scholar
Hashimoto, T., Laporte, N., Mawatari, K., et al. 2018, Nature, 557, 392CrossRefGoogle Scholar
Hashimoto, T., Inoue, A. K., Mawatari, K., et al. 2019, PASJ, 70Google Scholar
Heckman, T. M., Hoopes, C. G., Seibert, M., et al. 2005, ApJL, 619, L3510.1086/425979CrossRefGoogle Scholar
Hobbs, G., Lorimer, D. R., Lyne, A. G., et al. 2005, MNRAS, 360, 97410.1111/j.1365-2966.2005.09087.xCrossRefGoogle Scholar
Hopkins, A. M. 2018, PASA, 35, 39CrossRefGoogle Scholar
Hurley, J. R., Tout, C. A., & Pols, O. R. 2002, MNRAS, 329, 897CrossRefGoogle Scholar
Ivanova, N., Justham, S., Chen, X., et al. 2013, A&A Rev., 21, 59Google ScholarPubMed
Izotov, Y. I., Worseck, G., Schaerer, D., et al. 2018, MNRAS, 478, 485110.1093/mnras/sty1378CrossRefGoogle Scholar
Kehrig, C., Vlchez, J. M., Guerrero, M. A., et al. 2018, MNRAS, 480, 1081Google Scholar
Leitherer, C., Schaerer, D., Goldader, J. D., et al. 1999, ApJS, 123, 3CrossRefGoogle Scholar
Leitherer, C., Ekström, S., Meynet, G., et al. 2014, ApJS, 212, 14CrossRefGoogle Scholar
Ma, X., Kasen, D., Hopkins, P. F., et al. 2015, MNRAS, 453, 960CrossRefGoogle Scholar
Madau, P., Ferguson, H. C., Dickinson, M. E., et al. 1996, MNRAS, 283, 1388CrossRefGoogle Scholar
Maraston, C. 2005, MNRAS, 362, 799CrossRefGoogle Scholar
Maseda, M. V., Brinchmann, J., Franx, M., et al. 2017, A&A, 608, A4Google Scholar
Moe, M. & Di Stefano, R. 2017, ApJS, 230, 1510.3847/1538-4365/aa6fb6CrossRefGoogle Scholar
Moe, M., Kratter, K. M., & Badenes, C. 2019, ApJ, 875, 6110.3847/1538-4357/ab0d88CrossRefGoogle Scholar
Nhung, P. T., Hoai, D. T., Tuan-Anh, P., et al. 2019, arXiv e-prints, arXiv:1908.03311Google Scholar
Pols, O. R., Tout, C. A., Eggleton, P. P., et al. 1995, MNRAS, 274, 964CrossRefGoogle Scholar
Rosenfield, P., Marigo, P., Girardi, L., et al. 2014, ApJ, 790, 2210.1088/0004-637X/790/1/22CrossRefGoogle Scholar
Sana, H., de Mink, S. E., de Koter, A., et al. 2012, Science, 337, 44410.1126/science.1223344Google Scholar
Schaerer, D., Fragos, T., & Izotov, Y. I. 2019, A&A, 622, L10CrossRefGoogle Scholar
Schneider, F. R. N., Ramírez-Agudelo, O. H., Tramper, F., et al. 2018, A&A, 618, A73CrossRefGoogle Scholar
Schneider, F. R. N., Sana, H., Evans, C. J., et al. 2018, Science, 359, 69Google Scholar
Senchyna, P., Stark, D. P., Chevallard, J., et al. 2019, MNRAS, 488, 349210.1093/mnras/stz1907CrossRefGoogle Scholar
Shapley, A. E., Steidel, C. C., Pettini, M., et al. 2003, ApJ, 588, 65Google Scholar
Smit, R., Bouwens, R. J., Carniani, S., et al. 2018, Nature, 553, 178CrossRefGoogle Scholar
Stanway, E. R., Eldridge, J. J., & Becker, G. D. 2016, MNRAS, 456, 48510.1093/mnras/stv2661CrossRefGoogle Scholar
Stanway, E. R. & Eldridge, J. J. 2018, MNRAS, 479, 75CrossRefGoogle Scholar
Stanway, E. R. & Eldridge, J. J. 2019, A&A, 621, A105CrossRefGoogle Scholar
Steidel, C. C., Strom, A. L., Pettini, M., et al. 2016, ApJ, 826, 15910.3847/0004-637X/826/2/159CrossRefGoogle Scholar
Toonen, S. & Nelemans, G. 2013, A&A, 557, A8710.1051/0004-6361/201321753CrossRefGoogle Scholar
Topping, M. W. & Shull, J. M. 2015, ApJ, 800, 97CrossRefGoogle Scholar
van Bever, J. & Vanbeveren, D. 1998, A&A, 334, 21Google Scholar
Van Bever, J. & Vanbeveren, D. 2000, A&A, 358, 462Google Scholar
Willems, B. & Kolb, U. 2004, A&A, 419, 1057CrossRefGoogle Scholar
Wofford, A., Charlot, S., Bruzual, G., et al. 2016, MNRAS, 457, 4296CrossRefGoogle Scholar
Zhang, F., Li, L., & Han, Z. 2005, MNRAS, 364, 503CrossRefGoogle Scholar