Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-03T06:11:30.757Z Has data issue: false hasContentIssue false

Magnetised gas nebulae of evolved massive stars

Published online by Cambridge University Press:  30 November 2022

Dominique M.-A. Meyer*
Affiliation:
Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24/25, D-14476 Potsdam, Germany email: dmameyer.astro@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Massive stars are amongst the rarest but also most intriguing stars. Their extreme, magnetised stellar winds induce, by wind-ISM interaction, famous multi-wavelengths circumstellar gas nebulae of various morphologies, spanning from large-scale wind bubbles to stellar wind bow shocks, rings and bipolar shapes. We present two- and three-dimensional magneto-hydrodynamical (MHD) simulations of the circumstellar medium of such massive stars at different phase of their evolution. Particularly, we investigate the stability properties of 3D MHD bow shock nebulae around the runaway red supergiant stars IRC-10414 and Betelgeuse. Our results show that their astrospheres are stabilised by an organised, non-parallel ambient magnetic field. These findings suggest that Betelgeuse’s bar is of interstellar origin. Last, we explore the circular aspect of the young nebula around the Wolf-Rayet stars. It is found that Wolf-Rayet nebulae are not affected by the ISM gas distribution in which the stellar objects lie, even in the case of fast stellar motion: as testifies the ring-like surroundings of the Milky Way’s fastest Wolf-Rayet star, WR124. The morphology of these nebulae is tightly related to their pre-Wolf-Rayet wind geometry and to their phase evolution transition properties, which can generate bipolar shapes. We will further discuss their diffuse projected emission by means of radiative transfer calculations and show that the projected diffuse emission can appear as bipolar structures as in NGC6888.

Type
Contributed Paper
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of International Astronomical Union

References

Blondin, J. M., Koerwer, J. F., 1998, New Astron., 3, 571 CrossRefGoogle Scholar
Chu, Y.-H., 1982a, ApJ, 254, 578 CrossRefGoogle Scholar
Dullemond, C. P., 2012, RADMC-3D: A Multi-Purpose Radiative Transfer Tool, Astrophysics Source Code Library. preprint (ascl:1202.015)Google Scholar
Hamann, W. R., Gräfener, G., Liermann, A., 2006, A&A, 457, 1015 Google Scholar
Gvaramadze, V. V., Menten, K. M., Kniazev, A. Y., Langer, N., Mackey, J., Kraus, A., Meyer, D. M.-A., Kamnski, T., 2014, MNRAS, 437, 843 CrossRefGoogle Scholar
Groh, J. H., Meynet, G., Ekstroem, S., Georgy, C., 2014, A&A, 564, A30 Google Scholar
Gvaramadze, V. V., Kniazev, A. Y., Fabrika, S., 2010, MNRAS, 405, 1047 Google Scholar
Langer, N., 2012, ARA&A, 50, 107 Google Scholar
Mackey, J., Mohamed, S., Neilson, H. R., Langer, N., Meyer, D. M.-A., 2012, ApJ, 751, L10 CrossRefGoogle Scholar
Mesa-Delgado, A., Esteban, C., Garca-Rojas, J., Reyes-Pérez, J., Morisset, C., Bresolin, F., 2014, ApJ, 785, 100 CrossRefGoogle Scholar
Meyer, D. M.-A., Mackey, J., Langer, N., Gvaramadze, V. V., Mignone, A., Izzard, R. G., Kaper, L., 2014b, MNRAS, 444, 2754 CrossRefGoogle Scholar
Meyer, D. M.-A., Petrov, M., Pohl, M., 2020, MNRAS, 493, 3548 CrossRefGoogle Scholar
Meyer, D. M.-A., Oskinova, L. M., Pohl, M., Petrov, M., 2020, MNRAS, 496, 3906 CrossRefGoogle Scholar
Meyer, D. M.-A., Pohl, M., Petrov, M., Oskinova, L. MNRAS, Vol. 502, Issue 4, pp.53405355, 2021 CrossRefGoogle Scholar
Meyer, D. M.-A., Mignone, A., Petrov, M., Scherer, K., Velazquez, P. F., MNRAS, Boumis P., Vol. 506, 4, 2021 CrossRefGoogle Scholar
Meyer, D. M-A., MNRAS, Volume 507, Issue 4, pp.46974714 CrossRefGoogle Scholar
Mignone, A., Zanni, C., Tzeferacos, P., van Straalen, B., Colella, P., Bodo, G., 2012, ApJS, 198, 7 CrossRefGoogle Scholar
Mohamed, S., Mackey, J., Langer, N., 2012, A&A, 541, A1 Google Scholar
Raga, A. C., Cantó, J., De Colle, F., Esquivel, A., Kajdic, P., Rodrguez-González, A., Velázquez, P. F., 2008, ApJ, 680, L45 CrossRefGoogle Scholar
Treffers, R. R., Chu, Y.-H., 1982, ApJ, 254, 569 CrossRefGoogle Scholar
van Buren, D., McCray, R., 1988, ApJ, 329, L93 CrossRefGoogle Scholar
Weaver, R., McCray, R., Castor, J., Shapiro, P., Moore, R., 1977, ApJ, 218, 377 CrossRefGoogle Scholar
van Marle, A. J., Meliani, Z., Marcowith, A., 2012, A&A, 541, L8 Google Scholar
van Marle, A. J., Decin, L., Meliani, Z., 2014, A&A, 561, A152 Google Scholar
van Marle, A. J., Meliani, Z., Marcowith, A., 2015, A&A, 584, A49 Google Scholar