Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-02T05:13:39.235Z Has data issue: false hasContentIssue false

Multiple shell ejections on a 100 yr timescale from a massive yellow hypergiant

Published online by Cambridge University Press:  30 November 2022

René D. Oudmaijer
Affiliation:
School of Physics & Astronomy, University of Leeds, Woodhouse Lane, LS2 9JT Leeds, UK
Evgenia Koumpia
Affiliation:
ESO Vitacura, Alonso de Córdova 3107 Vitacura, Casilla 19001 Santiago de Chile, Chile email: r.d.oudmaijer@leeds.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This contribution focuses on a rare example of the class of post-Red Supergiants, IRAS 17163-3907, the central star of the Fried Egg nebula. In particular, we discuss some of our recently published results in detail. The inner parts of the circumstellar environment of this evolved massive star are probed at milli-arcsec resolution using VLTI’s GRAVITY instrument operating in the K-band (2 µm), while larger, arcsecond, scales are probed by VISIR diffraction limited images around 10 µm, supplemented by a complete Spectral Energy Distribution. The spectro-interferometric data cover important diagnostic lines (Brγ, Na I), which we are able to constrain spatially. Both the presence and size of the Na i doublet in emission has been traditionally challenging to explain towards other objects of this class. In this study we show that a two-zone model in Local Thermal Equilibrium can reproduce both the observed sizes and strengths of the emission lines observed in the K-band, without the need of a pseudo-photosphere. In addition, we find evidence for the presence of a third hot inner shell, and demonstrate that the star has undergone at least three mass-loss episodes over roughly the past century. To explain the properties of the observed non-steady mass-loss we explore pulsation-driven and line-driven mass-loss and introduce the bi-stability jump as a possible underlying mechanism to explain mass-loss towards Yellow Hypergiants.

Type
Contributed Paper
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of International Astronomical Union

References

de Jager, C. 1998, A&AR, 8(3), 145180.Google Scholar
Eisenhauer, F., Perrin, G., Brandner, W., Straubmeier, C., Perraut, K., & Amorim, A. et al. 2011, The Messenger, 143, 1624.Google Scholar
Gordon, M. S. & Humphreys, R. M. 2019, Galaxies, 7(4), 92.CrossRefGoogle Scholar
Hamann, F. & Simon, M. 1986, ApJ, 311, 909920.CrossRefGoogle Scholar
Hanson, M. M., Conti, P. S., & Rieke, M. J. 1996, ApJS, 107, 281.Google Scholar
Hrivnak, B. J., Kwok, S., & Geballe, T. R. 1994, ApJ, 420, 783796.CrossRefGoogle Scholar
Hutsemékers, D., Cox, N. L. J., & Vamvatira-Nakou, C. 2013, A&A, 552, L6.Google Scholar
Koumpia, E., Oudmaijer, R. D., Graham, V., Banyard, G., Black, J. H., Wichittanakom, C., Ababakr, K. M., de Wit, W. J., Millour, F., Lagadec, E., Muller, S., Cox, N. L. J., Zijlstra, A., van Winckel, H., Hillen, M., Szczerba, R., Vink, J. S., & Wallström, S. H. J. 2020, A&A, 635, A183.Google Scholar
Lagadec, E., Zijlstra, A. A., Oudmaijer, R. D., Verhoelst, T., Cox, N. L. J., Szczerba, R., Mékarnia, D., & van Winckel, H. 2011, A&A, 534, L10.Google Scholar
Lambert, D. L., Hinkle, K. H., & Hall, D. N. B. 1981, ApJ, 248, 638650.CrossRefGoogle Scholar
Lamers, H. J. G. L. M., Snow, T. P., & Lindholm, D. M. 1995, ApJ, 455, 269.CrossRefGoogle Scholar
Lebertre, T., Epchtein, N., Gouiffes, C., Heydari-Malayeri, M., & Perrier, C. 1989, A&A, 225, 417431.Google Scholar
Lobel, A., de Jager, C., Nieuwenhuijzen, H., Smolinski, J., & Gesicki, K. 1994, A&A, 291, 226238.Google Scholar
McGregor, P. J., Hyland, A. R., & Hillier, D. J. 1988, ApJ, 334, 639656.CrossRefGoogle Scholar
Morris, P. W., Eenens, P. R. J., Hanson, M. M., Conti, P. S., & Blum, R. D. 1996, ApJ, 470, 597.CrossRefGoogle Scholar
Oudmaijer, R. D., Davies, B., de Wit, W.-J., & Patel, M. In Luttermoser, D. G., Smith, B. J. , & Stencel, R. E., editors, The Biggest, Baddest, Coolest Stars 2009, volume 412 of Astronomical Society of the Pacific Conference Series, 17.Google Scholar
Oudmaijer, R. D. & de Wit, W. J. 2013, A&A, 551, A69.Google Scholar
Oudmaijer, R. D., Groenewegen, M. A. T., Matthews, H. E., Blommaert, J. A. D. L., & Sahu, K. C. 1996, MNRAS, 280, 10621070.CrossRefGoogle Scholar
Petrov, B., Vink, J. S., & Gräfener, G. 2016, MNRAS, 458(2), 19992011.CrossRefGoogle Scholar
Ueta, T. & Meixner, M. 2003, ApJ, 586, 13381355.CrossRefGoogle Scholar
Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. 1999, A&A, 350, 181196.Google Scholar
Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. 2000, A&A, 362, 295309.Google Scholar
Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. 2001, A&A, 369, 574588.Google Scholar
Wallström, S. H. J., Lagadec, E., Muller, S., Black, J. H., Cox, N. L. J., Galván-Madrid, R., Justtanont, K., Longmore, S., Olofsson, H., Oudmaijer, R. D., Quintana-Lacaci, G., Szczerba, R., Vlemmings, W., van Winckel, H., & Zijlstra, A. 2017, A&A, 597, A99.Google Scholar