Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-12T13:08:35.889Z Has data issue: false hasContentIssue false

The Neutral Hydrogen Cosmological Mass Density at z = 5

Published online by Cambridge University Press:  21 March 2017

Neil H. M. Crighton
Affiliation:
Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia. neilcrighton@gmail.com
Michael T. Murphy
Affiliation:
Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia. neilcrighton@gmail.com
J. Xavier Prochaska
Affiliation:
Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
Gábor Worseck
Affiliation:
Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany
Marc Rafelski
Affiliation:
Infrared Processing and Analysis Center, Caltech, Pasadena, CA 91125, USA
George D. Becker
Affiliation:
Space Telescope Science Institute, 3700 San Martin Dr, Baltimore, MD 21218, USA
Sara L. Ellison
Affiliation:
Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 1A1, Canada
Michele Fumagalli
Affiliation:
Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE, UK Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101, USA
Sebastian Lopez
Affiliation:
Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago, Chile
Avery Meiksin
Affiliation:
Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK
John M. O’Meara
Affiliation:
Department of Chemistry and Physics, Saint Michael’s College, One Winooski Park, Colchester, VT 05439, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present the largest homogeneous survey of redshift > 4.4 damped Lyα systems (DLAs) using the spectra of 163 quasars that comprise the Giant Gemini GMOS (GGG) survey. With this survey we make the most precise high-redshift measurement of the cosmological mass density of neutral hydrogen, ΩHI. After correcting for systematic effects using a combination of mock and higher-resolution spectra, we find ΩHI= 0.98+0.20-0.18 × 10−3 at 〈z〉 = 4.9, assuming a 20% contribution from lower column density systems below the DLA threshold. By comparing to literature measurements at lower redshifts, we show that ΩHI can be described by the functional form ΩHI(z) ∝ (1 + z)0.4. This gradual decrease from z = 5 to 0 suggests that in the galaxies which dominate the cosmic star formation rate, Hi is a transitory gas phase fuelling star formation which must be continually replenished by more highly-ionized gas from the intergalactic medium, and from recycled galactic winds.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Amari, S., Hoppe, P., Zinner, E., & Lewis, R. S. 1995, Meteoritics, 30, 490 CrossRefGoogle Scholar
Barkana, R. & Loeb, A. 2007, Reports on Progress in Physics, 70, 627 CrossRefGoogle Scholar
Bouwens, R. J. et al. 2012, ApJ, 752, L5 Google Scholar
Chang, T. C., Pen, U. L., Peterson, J. B., & McDonald, P. 2008, Physical Review Letters, 100, 091303 Google Scholar
Crighton, N. H. M., Murphy, M. T., Prochaska, J. X., Worseck, G., et al. 2015, MNRAS, 452, 217 CrossRefGoogle Scholar
Davé, R., Katz, N., Oppenheimer, B. D., Kollmeier, J. A., & Weinberg, D. H. 2013, MNRAS, 434, 2645 Google Scholar
Dekel, A., Birnboim, Y., Engel, G., Freundlich, J., Goerdt, T., Mumcuoglu, M., Neistein, E., Pichon, C., Teyssier, R., & Zinger, E 2009, Nature, 457, 451 Google Scholar
Fumagalli, M., Prochaska, J. X., Kasen, D., Dekel, A., Ceverino, D., & Primack, J. R. 2011, MNRAS, 418, 1796 Google Scholar
Fumagalli, M., O'Meara, J. M., Prochaska, J. X., & Worseck, G. 2013, ApJ, 775, 78 Google Scholar
Guimarães, R., Petitjean, P., de Carvalho, R. R., Djorgovski, S. G., Noterdaeme, P., Castro, S., Poppe, P. C. D. R., & Aghaee, A. 2009, A&A, 508, 133 Google Scholar
Jorgenson, R. A., Murphy, M. T., & Thompson, R. 2013, MNRAS, 435, 482 Google Scholar
Lagos, C. D. P., Baugh, C. M., Zwaan, M. A., Lacey, C. G., Gonzalez-Perez, V., Power, C., Swinbank, A. M., & van Kampen, E. 2014, MNRAS, 440, 920 Google Scholar
Madau, P. & Dickinson, M. 2014, ARA&A, 52, 415 Google Scholar
Martin, A. M., Papastergis, E., Giovanelli, R., Haynes, M. P., Springob, C. M., & Stierwalt, S. 2010, ApJ, 723, 1359 CrossRefGoogle Scholar
Neeleman, M., Prochaska, J. X., Ribaudo, J., Lehner, N., Howk, J. C., Rafelski, M., & Kanekar, N. 2016, ApJ, 818, 113 Google Scholar
Noterdaeme, P., Petitjean, P., Ledoux, C., & Srianand, R. 2009, A&A, 505, 1087 Google Scholar
Noterdaeme, P. et al. 2012, A&A, 547, L1 Google Scholar
O'Meara, J. M., Prochaska, J. X., Burles, S., Prochter, G., Bernstein, R. A., & Burgess, K. M. 2007, ApJ, 656, 666 Google Scholar
Oppenheimer, B. D., Davé, R., Kereš, D., Fardal, M., Katz, N., Kollmeier, J. A., & Weinberg, D. H. 2010, MNRAS, 406, 2325 Google Scholar
Padmanabhan, H., Choudhury, T. R., & Refregier, A. 2015, MNRAS, 447, 3745 CrossRefGoogle Scholar
Péroux, C., McMahon, R. G., Storrie-Lombardi, L. J., & Irwin, M. J. 2003, MNRAS, 346, 1103 Google Scholar
Pontzen, A. & Pettini, M. 2009, MNRAS, 393, 557 CrossRefGoogle Scholar
Prochaska, J. X. & Herbert-Fort, S. 2004, PASP, 116, 622 CrossRefGoogle Scholar
Prochaska, J. X. & Wolfe, A. M. 2009, ApJ, 696, 1543 CrossRefGoogle Scholar
Prochaska, J. X., Herbert-Fort, S., & Wolfe, A. M. 2005, ApJ, 635, 123 Google Scholar
Prochaska, J. X., Worseck, G., & O'Meara, J. M. 2009, ApJ, 705, L113 Google Scholar
Rafelski, M., Wolfe, A. M., Prochaska, J. X., Neeleman, M., & Mendez, A. J. 2012, ApJ, 755, 89 Google Scholar
Rafelski, M., Neeleman, M., Fumagalli, M., Wolfe, A. M., & Prochaska, J. X. 2014, ApJ, 782, L29 Google Scholar
Rahmati, A., Schaye, J., Bower, R. G., Crain, R. A., Furlong, M., Schaller, M., & Theuns, T. 2015, MNRAS, 452, 2034 CrossRefGoogle Scholar
Rao, S. M., Turnshek, D. A., & Nestor, D. B. 2006, ApJ, 636, 610 Google Scholar
Sánchez-Ramírez, R., Ellison, S. L., Prochaska, J. X., Berg, T. A. M., Lòpez, S., D'Odorico, V., Becker, G. D., Christensen, L., Cupani, G., Denney, K. D., Pâris, I., Worseck, G., & Gorosabel, J. 2016, MNRAS, 456, 4488 Google Scholar
Songaila, A. & Cowie, L. L. 2010, ApJ, 721, 1448 Google Scholar
Wolfe, A. M., Gawiser, E., & Prochaska, J. X. 2005, ARA&A, 43, 861 Google Scholar
Worseck, G. & Prochaska, J. X. 2011, ApJ, 728, 23 Google Scholar
Worseck, G. et al. 2014, MNRAS, 445, 1745 Google Scholar
Wyithe, J. S. B. & Loeb, A. 2008, MNRAS, 383, 606 CrossRefGoogle Scholar
Zafar, T., Péroux, C., Popping, A., Milliard, B., Deharveng, J. M., & Frank, S. 2013, A&A, 556, A141 Google Scholar
Zwaan, M. A., Meyer, M. J., Staveley-Smith, L., & Webster, R. L. 2005, MNRAS, 359, L30 Google Scholar