Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-01T19:38:58.760Z Has data issue: false hasContentIssue false

Role of ISM/IGM Energy Balance in Structure Formation and Evolution of Galaxies

Published online by Cambridge University Press:  13 February 2024

F. Tabatabaei*
Affiliation:
School of Astronomy, Institute for Research in Fundamental Sciences, 19395-5531, Tehran, Iran. Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife, Spain Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany Max-Planck Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
M. Ghasemi-Nodehi
Affiliation:
School of Astronomy, Institute for Research in Fundamental Sciences, 19395-5531, Tehran, Iran.
M. Sargent
Affiliation:
International Space Science Institute (ISSI), Hallerstrasse 6, CH-3012 Bern, Switzerland
E. J. Murphy
Affiliation:
National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA
E. Schinnerer
Affiliation:
Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany
A. Bonaldi
Affiliation:
SKA Organisation, Jodrell Bank, Lower Withington, Macclesfield, Cheshire SK11 9FT, UK
*

Abstract

Investigating the thermal and non-thermal processes in galaxies is vital to understand their evolution over cosmic time. This can best be studied by combining the radio and optical/near-infrared observations of galaxies. The JWST can resolve the evolution of the thermal processes by mapping ionized gas and dust in distant galaxies. This information combined with the upcoming surveys with the Square Kilometer Array (SKA) will make a major breakthrough in mapping the non-thermal processes and understanding their role in the evolution of galaxies. Our simulations show that SKA surveys will be able to trace the evolution history of spiral galaxies such as M 51 and NGC 6946 back to a redshift of 3 already in its first phase of construction. This study indicates the important role of the non-thermal pressure inserted by cosmic rays and magnetic fields in deriving winds and outflows at cosmic noon as deduced by a flat synchrotron spectrum in star forming galaxies.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beck, R., 2007, A&A, 470, 539 CrossRefGoogle Scholar
Colombo, D., Sanchez, S. F., Bolatto, A. D., et al. 2020, A&A, 644, 97 Google Scholar
Condon, J. J., Huang, Z. P., Yin, Q., F., & Thuan, T. X., 1991, ApJ,378, 65CrossRefGoogle Scholar
Faber, S. M., Willmer, C. N. A., Wolf, C., et al. 2007, ApJ, 665, 265 CrossRefGoogle Scholar
Ghasemi-Nodehi, M., Tabatabaei, F. S., Sargent, et al. 2022, MNRAS, 515, 1158 CrossRefGoogle Scholar
Hassani, H., Tabatabaei, F., Hughes, A., et al. 2022, MNRAS, 510, 11 CrossRefGoogle Scholar
Jakobsen, P., Ferruit, P., Alves de Oliveira, C., et al. 2022, A&A, 661, 80 Google Scholar
Murphy, E. J., Momjian, E., Condon, J. J., et al. 2017, ApJ, 839, 35 CrossRefGoogle Scholar
Owen, E. R., Wu, K., Jin, X. et al. 2019, A&A, 626, 85 Google Scholar
Peng, Y., Maiolino, R., Cochrane, R., et al. 2015, Nature, 521, 192 CrossRefGoogle Scholar
Pillai, T., Kauffmann, J., Tan, J. C., et al. 2015, ApJ, 799, 74 CrossRefGoogle Scholar
Prandoni, I. & Seymour, N., 2015, ’Advancing Astrophysics with the SKA’ (AASKA14) - Continuum Science Chapters, p67, arXiv:1412.6942Google Scholar
Schaye, J., Crain, R. A., Bower, R. G., et al. 2015, MNRAS, 446, 52 Google Scholar
Schinnerer, E., Hughes, A., Leroy, A., et al. 2019, ApJ, 887, 49 CrossRefGoogle Scholar
Schreiber, C., Pannella, M., Elbaz, D. et al. 2015, A&A, 575, 74 Google Scholar
Tabatabaei, F. S., Cotton, W., Schinnerer, E. et al. 2022, MNRAS, 517, 2990 CrossRefGoogle Scholar
Tabatabaei, F. S., Minguez, P., Prieto, M. A., et al. 2018, NatAs, 2, 83 Google Scholar
Tabatabaei, F. S., Schinnerer, E., Krause, M. et al. 2017, ApJ, 836, 185 CrossRefGoogle Scholar
Tabatabaei, F. S., Schinnerer, E., Murphy, E. J. et al. 2013, A&A, 552, 19 Google Scholar
Tisanić, K., Smolčić, V., Delhaize, et al. 2019, A&A, 621,139CrossRefGoogle Scholar
Tacconi, L. J., Genzel, R., Saintonge, A., et al. 2018, ApJ, 853, 179 CrossRefGoogle Scholar
van der Wel, A., Franx, M., van Dokkum, P. G., et al. 2014, ApJ, 788, 28 CrossRefGoogle Scholar