Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-10-31T23:21:07.738Z Has data issue: false hasContentIssue false

Sparse Spatio-Temporal Imaging of Radio Transients

Poster on-line

Published online by Cambridge University Press:  29 August 2019

J. Girard
Affiliation:
AIM/CEA, Université Paris Saclay, France email: julien.girard@cea.fr
M. Jiang
Affiliation:
AIM/CEA, Université Paris Saclay, France email: julien.girard@cea.fr
J-L. Starck
Affiliation:
AIM/CEA, Université Paris Saclay, France email: julien.girard@cea.fr
S. Corbel
Affiliation:
AIM/CEA, Université Paris Saclay, France email: julien.girard@cea.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The next-generation radio telescopes such as LOFAR and SKA will give access to high time-resolution and high instantaneous sensitivity that can be exploited to study slow and fast transients over the whole radio window. The search for radio transients in large datasets also represents a new signal-processing challenge requiring efficient and robust signal reconstruction algorithms. Using sparse representations and the general ‘compressed sensing’ framework, we developed a 2D–1D algorithm based on the primal-dual splitting method. We have performed our sparse 2D–1D reconstruction on three-dimensional data sets containing either simulated or real radio transients, at various levels of SNR and integration times. This report presents a summary of the current level of performance of our method.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

Footnotes

References

Candès, E., Romberg, J., & Tao, T. 2006, IEEE Transactions on Information Theory, 52, 48910.1109/TIT.2005.862083CrossRefGoogle Scholar
Candes, E. J., Wakin, M. B., & Boyd, S. P. 2007, arXiv:0711.1612Google Scholar
Condat, L. 2013, J. Optimization Theory and Applications, 158, 46010.1007/s10957-012-0245-9CrossRefGoogle Scholar
Dewdney, P., Hall, P., Schilizzi, R., & Lazio, T. 2009, Proc. IEEE, 97, 148210.1109/JPROC.2009.2021005CrossRefGoogle Scholar
Donoho, D. 2006, IEEE Transactions on Information Theory, 52, 128910.1109/TIT.2006.871582CrossRefGoogle Scholar
Fender, R. P. & Bell, M. E. 2011, BASI, 39, 315Google Scholar
Garsden, H., Girard, J. N., Starck, J-L., et al. 2015, A&A, 575, A90Google Scholar
Högbom, J. A. 1974, A&AS, 15, 417Google Scholar
Jiang, M., Girard, J. N., Starck, J-L., Corbel, S. & Tasse, C. 2015, SF2A: arXiv:1512.06548Google Scholar
Lorimer, D. R., Bailes, M., McLaughlin, , et al. 2007, Science, 318, 77710.1126/science.1147532CrossRefGoogle Scholar
Lorimer, D. R., Karastergiou, A., McLaughlin, M. A., & Johnston, S. 2013, MNRAS, 436, L510.1093/mnrasl/slt098CrossRefGoogle Scholar
Petroff, E., Bailes, M., Barr, E. D., et al. 2015, MNRAS, 447, 24610.1093/mnras/stu2419CrossRefGoogle Scholar
Spitler, L. G., Cordes, J. M., Hessels, J. W. T., et al. 2014, ApJ, 790, 10110.1088/0004-637X/790/2/101CrossRefGoogle Scholar
Starck, J-L., Fadili, J. M., Digel, S., Zhang, B., & Chiang, J. 2009, A&A, 504, 641Google Scholar
Starck, J-L., Murtagh, M. J., & Bertero, M. 2011, Astronomical Data Processing (Springer), 14891531Google Scholar
Swinbank, J. D., Staley, T. D., Molenaar, G. J., et al. 2015, Astr. Computing, 11, 2510.1016/j.ascom.2015.03.002CrossRefGoogle Scholar
Thornton, D., Stappers, B., Bailes, M., et al. 2013, Science, 341, 5310.1126/science.1236789CrossRefGoogle Scholar
van Haarlem, M. P., Wise, M. W., Gunst, A. W., et al. 2013, A&A, 556, A2Google Scholar
, B. C. 2013, Advances in Computational Mathematics, 38, 66710.1007/s10444-011-9254-8CrossRefGoogle Scholar
Supplementary material: PDF

Girard et al. supplementary material

Girard et al. supplementary material

Download Girard et al. supplementary material(PDF)
PDF 6.6 MB