Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-10-30T08:47:33.035Z Has data issue: false hasContentIssue false

Feeding brown fat: dietary phytochemicals targeting non-shivering thermogenesis to control body weight

Published online by Cambridge University Press:  15 April 2020

Carla Horvath
Affiliation:
Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
Christian Wolfrum*
Affiliation:
Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
*
*Corresponding author: C. Wolfrum, email christian-wolfrum@ethz.ch
Rights & Permissions [Opens in a new window]

Abstract

Excessive adipose accumulation, which is the main driver for the development of secondary metabolic complications, has reached epidemic proportions and combined pharmaceutical, educational and nutritional approaches are required to reverse the current rise in global obesity prevalence rates. Brown adipose tissue (BAT) is a unique organ able to dissipate energy and thus a promising target to enhance BMR to counteract a positive energy balance. In addition, active BAT might support body weight maintenance after weight loss to prevent/reduce relapse. Natural products deliver valuable bioactive compounds that have historically helped to alleviate disease symptoms. Interest in recent years has focused on identifying nutritional constituents that are able to induce BAT activity and thereby enhance energy expenditure. This review provides a summary of selected dietary phytochemicals, including isoflavones, catechins, stilbenes, the flavonoids quercetin, luteolin and resveratrol as well as the alkaloids berberine and capsaicin. Most of the discussed phytochemicals act through distinct molecular pathways e.g. sympathetic nerve activation, AMP-kinase signalling, SIRT1 activity or stimulation of oestrogen receptors. Thus, it might be possible to utilise this multitude of pathways to co-activate BAT using a fine-tuned combination of foods or combined nutritional supplements.

Type
Conference on ‘Malnutrition in an obese world: European perspectives’
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © The Authors 2020

Obesity is a major public health threat of the 21st century, both from an individual as well as from an economic point of view. Epidemiological data from extreme cases such as the USA with more than 70 % of adults being overweight or obese propose that obesity has sadly become the common or wild-type phenotype in certain nations(Reference Wang, Beydoun and Liang1,2) . Apart from the cosmetic imperfections arising from an obese phenotype, obesity-related metabolic complications and secondary diseases (different cancers, CVD, osteoarthritis, to name but a few) severely affect life quality and thus drive ongoing research efforts to identify weight lowering or stabilising pharmaceuticals. Possible approaches for the treatment of obesity were expanded by the discovery of physiologically relevant amounts of active brown adipose tissue (BAT) in adult human subjects(Reference Cypess, Lehman and Williams3Reference Lean, James and Jennings5). Cold-induced BAT in human subjects negatively correlates with age and BMI(Reference Cypess, Lehman and Williams3), while RMR shows a positive correlation(Reference van Marken Lichtenbelt, Vanhommerig and Smulders4). The principal cell within BAT is the highly specialised brown adipocyte, which defends body temperature in a cold environment through non-shivering thermogenesis. This is enabled by uncoupling protein 1 (UCP1), localised to the inner mitochondrial membrane, which dissipates energy stored in the mitochondrial proton gradient generated by oxidative phosphorylation(Reference Nedergaard, Golozoubova and Matthias6). This catabolic process burns large amounts of fatty acids and glucose(Reference Chondronikola, Volpi and Børsheim7Reference Mercer and Trayhurn9) and therefore, active BAT likely serves as a nutrient sink to buffer excessive energetic intake or utilises energy reserves mobilised from white adipose tissue (WAT). In response to a cold stimulus, catecholamines are released from sympathetic nerve fibres that innervate BAT and function as inducers of the thermogenic programme. Other endogenous factors including fibroblast growth factor 21 (FGF21), natriuretic peptides, bone morphogenetic protein 8b, glucagon-like peptide 1, thyroid hormones or oestradiol are known modulators of BAT activity or recruitment(Reference Whittle, Relat-Pardo and Vidal-Puig10Reference Bordicchia, Liu and Amri12). In addition, the formation of brown-like adipocytes (beige/brite) within the WAT can be induced by cold acclimatisation or pharmacological means(Reference Young, Arch and Ashwell13,Reference Ohno, Shinoda and Spiegelman14) . These beige/brite adipocytes express UCP1 and thereby extend the pool of thermogenically active cells. In summary, different routes are conceivable of how active brown adipocytes can assist in regulating metabolism and ultimately body weight (BW): (1) activation of existing brown cells within BAT, (2) formation of new brown cells within BAT or (3) induction of WAT browning.

Throughout history, human subjects relied on natural products to counteract disease, due to their richness in bioactive substances. Furthermore, many leading drugs are derived or isolated from natural sources and indispensable for human pharmacotherapy (e.g. morphine, metformin, sodium-glucose co-transporter 2 inhibitors, artemisinin, glucagon-like peptide-1 receptor agonist exendin-4). In view of the extent of the overweight/obesity problem, dietary constituents (phytochemicals) capable of tuning BAT activity could be used to reinforce weight loss programmes or to stabilise BW. A prime example of such a phytochemical is ephedrine, the active principle found in plants of the Ephedra genus, whose leaves are traditionally consumed as a tea. Ephedrine is a natural sympathomimetic and an herbal preparation from Ma Huang (72 mg ephedrine daily) significantly reduced BW (−4 v. –0⋅8 kg) and fat mass (−2⋅1 v. 0⋅2 %) in overweight to obese (BMI >29 and <35 kg/m2) patients (male n 6, female n 29) within 8 weeks when compared to placebo (male n 5, female n 28)(Reference Boozer, Nasser and Heymsfield15).

Obesity is caused by gradual fat accumulation due to a chronic positive energy balance. An American adult gains about 0⋅5–1 kg BW annually. The critical gap between energy intake and expenditure that advances weight gain is thus estimated to be as little as 92–682 kJ daily(Reference Hill, Peters and Wyatt16). In turn, the total average human BAT mass is approximately 168 g and can burn 301 kJ within 2 h of cold-mediated activation(Reference Carpentier, Blondin and Virtanen17). This is exemplified by the synthetic β3-adrenergic receptor (AR) agonist mirabegron, which acutely activates BAT in fluorodeoxyglucose positron emission tomography–computed tomography scans and enhances RMR by approximately 837 kJ daily in men (200 mg) and by 10⋅7 % (628 kJ daily) in females(Reference Cypess, Weiner and Roberts-Toler18). Chronic mirabegron intake (100 mg daily for 4 weeks) elevates resting energy expenditure by 5⋅8 % (343 kJ daily) compared to baseline and increases BAT volume as well as BAT activity in women(Reference O'Mara, Johnson and Linderman19). These treatment effects were notably more pronounced in women who possessed little BAT at baseline(Reference O'Mara, Johnson and Linderman19). Thus, sustained β3-AR stimulation is potentially advantageous in subjects with elevated BW associated with lower BAT activity/volume.

It is pertinent to mention that sex-specific differences in human BAT activity, BAT mass and BAT detectability have been delineated in diverse studies, which likely modulate outcomes of pharmacological interventions. Female subjects are more frequently identified as BAT-positive in positron emission tomography–computed tomography scans (female:male ratio 2:1) and display higher BAT mass as well as BAT activity compared to men(Reference Cypess, Lehman and Williams3,Reference Pfannenberg, Werner and Ripkens20Reference Vijgen, Bouvy and Teule22) . Various, yet not entirely resolved factors, such as the expression pattern of sex hormone receptors, levels of sex hormones, body size or the increased sensitivity of females to cold with distinct thermogenic responses might contribute to this sexual dimorphism(Reference Valle, García-Palmer and Oliver23Reference Quarta, Mazza and Pasquali25). Interestingly, BMI does not negatively correlate anymore with BAT activity or BAT mass in elderly men (43–82 years), while this correlation persists in female subjects (43–82 years)(Reference Pfannenberg, Werner and Ripkens20). This suggests that older overweight/obese women might benefit more from BAT activation to regulate adiposity than men. Contrarily, Fletcher et al.(Reference Fletcher, Kim and Leitner26) could not confirm differences in cold-induced BAT activity or BAT distribution in healthy men v. women and the apparent higher BAT volume in men vanished after normalisation to body size(Reference Fletcher, Kim and Leitner26).

This review discusses a selection of phytochemicals present in food or drinks based on scientific evidence for their efficacy in human and animal models to affect weight or energy expenditure (EE). In particular, we provide an overview of how these substances modulate BAT activity or WAT browning at the molecular level.

Stilbenes

Pterostilbene (PTS) is the dimethylated derivative of resveratrol (RSV) and its potential weight-lowering capacity has only recently gained attention. Interest in PTS rose when Rimando et al.(Reference Rimando, Nagmani and Feller27) demonstrated that PTS strongly induced PPARα activity in a rat hepatocyte cell line overexpressing a PPRE-luciferase reporter gene(Reference Rimando, Nagmani and Feller27). PTS at 100 μm displayed 2-fold higher PPARα induction than the pharmacologic PPARα agonist ciprofibrate. The anti-hyperlipidaemic activity of PTS was verified in hamsters where PTS-fortification of high fat diet (HFD; 25 mg PTS/kg food) led to lower total and LDL-cholesterol levels(Reference Rimando, Nagmani and Feller27). PPARα is a nuclear transcription factor, which is highly enriched in the liver as well as BAT v. WAT where it controls a myriad of genes involved in fatty acid uptake as well as β- and peroxisomal lipid oxidation(Reference Kersten28,Reference Rakhshandehroo, Knoch and Müller29) . The group of Maria Portillo examined the effect of PTS on adipose tissue in rat models of genetic and dietary-induced obesity(Reference Etxeberria, Hijona and Aguirre30,Reference Gómez-Zorita, Fernández-Quintela and Lasa31) . In Zucker fatty rats, the daily oral application of 15 mg PTS/kg for 6 weeks resulted in significantly less total fat (10 % v. 13⋅2 %) compared to untreated animals(Reference Etxeberria, Hijona and Aguirre30). During the dietary intervention, Wistar rats were fed an adipogenic high fat–high sucrose (20 % each) diet enriched with PTS to ensure an estimated daily intake of either 15 mg/kg or 30 mg/kg BW. Although no effect on weight gain or BW was observed, total adipose tissue mass was dose-dependently reduced in comparison with control animals (40⋅3 g, 36⋅6 g, 47⋅5 g)(Reference Gómez-Zorita, Fernández-Quintela and Lasa31). Moreover, enzymatic carnitine palmitoyltransferase 1α activity was higher in the liver while fatty acid synthase activity was blunted in WAT(Reference Gómez-Zorita, Fernández-Quintela and Lasa31). The described phenotype might result from an interplay between increased fatty acid oxidation due to higher fatty acid import into mitochondria via carnitine palmitoyltransferase 1α and reduced adipocyte lipogenesis due to low fatty acid synthase activity. Unfortunately, the only published human clinical trial with PTS as investigatory compound could not reproduce these findings from rats. Instead, 8 weeks of daily PTS ingestion (0, 100 or 250 mg daily) increased LDL-cholesterol and consequently total cholesterol levels in a cohort of male and female hypercholesterolemic Caucasian and African Americans(Reference Riche, Riche and Blackshear32). Overall, a mild but significant effect of PTS on BMI was observed when participants were stratified for cholesterol medication. BAT possesses a tremendous oxidative capacity and relies heavily on substrate e.g. fatty acid oxidation to fulfil its thermogenic function. PPARα agonists are known to induce UCP1 expression in murine BAT(Reference Barbera, Schluter and Pedraza33) and β-AR signalling increases PPARα expression in brown adipocytes(Reference Mottillo, Bloch and Leff34). To date, three publications have addressed the impact of PTS-fortified diet on WAT browning or BAT functionality in rodent models. Aguirre et al.(Reference Aguirre, Milton-Laskibar and Hijona35) found that 15 or 30 mg PTS/kg BW upregulated various brown and mitochondrial marker genes in male Zucker fa/fa rats when administered daily for 6 weeks(Reference Aguirre, Milton-Laskibar and Hijona35). These changes were accompanied by increased PPARα and UCP1 protein abundance in the BAT. Additionally, higher carnitine palmitoyltransferase 1α activity was measured in the intrascapular BAT lysate of PTS-rats compared to controls(Reference Aguirre, Milton-Laskibar and Hijona35). These molecular alterations imply that PTS enhances the oxidative capacity of BAT in genetically obese rats that translated to a beneficial phenotype as total adipose tissue weight and BW were reduced in PTS-rats(Reference Aguirre, Milton-Laskibar and Hijona35). This conclusion is substantiated by data from Nagao and co-workers(Reference Nagao, Jinnouchi and Kai36) who applied a 10× higher PTS dose (300 mg/kg BW daily) as a food supplement to male, genetically hyperphagic rats, which again caused lower body fat accumulation(Reference Nagao, Jinnouchi and Kai36). Compared to control-fed animals, PTS stimulated oxygen consumption (3⋅91 v. 3⋅69 litre/100 g BW daily) and enhanced EE (80⋅4 v. 77⋅1 litre/100 g BW daily) after 4 weeks of feeding(Reference Nagao, Jinnouchi and Kai36). The observed reduction in the respiratory quotient (0⋅82 v. 0⋅85) of PTS-treated rats was in agreement with higher lipid oxidation during the metabolically active dark phase(Reference Nagao, Jinnouchi and Kai36). Interestingly, Nagao et al.(Reference Nagao, Jinnouchi and Kai36) not only confirmed that PTS is a PPARα agonist, but also discovered that PTS at 50–250 μm increased sirtuin 1 (SIRT1) activity(Reference Nagao, Jinnouchi and Kai36). SIRT1 is a NAD+-dependent protein deacetylase and modulates the functional activity of various enzymes and transcription factors. Deacetylation of PPARγ by SIRT1 is crucial for browning of WAT as it enables the recruitment of the PPARγ coactivator PRDM16, which functions as a master regulator of the thermogenic gene programme in WAT(Reference Seale, Conroe and Estall37,Reference Qiang, Wang and Kon38) . In turn, food deprivation or pharmacological SIRT1 activation have been shown to blunt the PPARγ-dependent expression of lipogenic genes in WAT through SIRT1-mediated blockade of the PPARγ-coactivator NCoR(Reference Picard, Kurtev and Chung39). This repressive effect on PPARγ promotes lipolysis and reduces fat storage in WAT(Reference Picard, Kurtev and Chung39). SIRT1 additionally affects mitochondrial biogenesis by two converging mechanisms. First, SIRT1 deacetylates and activates liver kinase B1, an upstream kinase and activator of AMPK, which in turn phosphorylates PPARγ co-activator 1α (PGC1α)(Reference Lan, Cacicedo and Ruderman40). Secondly, SIRT1 directly deacetylates PGC1α(Reference Rodgers, Lerin and Haas41). Consistent with the relevance of SIRT1 in WAT browning, chronic PTS administration to HFD-fed mice (90 mg/kg daily) caused lower weight gain and a trend towards browning of the inguinal WAT as measured by upregulation of browning-specific marker genes (CIDEA, PGC1α, EBF2, PPARγ and TBX1)(Reference La Spina, Galletta and Azzolini42). The transcriptional and morphological changes during WAT remodelling in response to cold exposure are independent of PPARα as PPARα knockout mice display equal browning when compared with wild-type animals(Reference Defour, Dijk and Ruppert43). Collectively, it seems that SIRT1 agonism by PTS is the dominant molecular trigger, which confers the physiological effects of long-term PTS consumption such as browning of WAT, enhanced oxidative capacity, lipid mobilisation and increased EE. The pharmacokinetic analysis of orally applied PTS (168 mg/kg BW) in rats revealed a high bioavailability of about 80 % with a peak plasma PTS concentration of approximately 30 μm(Reference Kapetanovic, Muzzio and Huang44). This dosage corresponds to an approximated human equivalent dose of 27 mg/kg(Reference Nair and Jacob45) and up to 250 mg/kg BW of PTS is evidentially safe for human use(Reference Riche, McEwen and Riche46).

RSV attracted the interest of scientific community after Howitz et al.(Reference Howitz, Bitterman and Cohen47) identified RSV as a powerful small molecule activator of SIRT1(Reference Howitz, Bitterman and Cohen47). SIRT1 operates as one of the molecular regulators essential for the beneficial physiological effects of energetic restriction(Reference Bordone and Guarente48). This discovery introduced the idea that RSV might be a natural substance able to ameliorate obesity by mimicking a low energy state. Lagouge et al.(Reference Lagouge, Argmann and Gerhart-Hines49) first demonstrated that a RSV-enriched (400 mg/kg BW daily) diet impairs weight gain in male HFD-fed mice(Reference Lagouge, Argmann and Gerhart-Hines49). RSV mice displayed enhanced oxygen consumption, improved cold tolerance during an acute cold challenge as well as increased mitochondrial content in BAT. A gene-enrichment analysis confirmed the induction of genes related to mitochondrial biogenesis and function after RSV therapy in muscle. The measured increase in EE was not attributable to spontaneous locomotor activity, suggesting that RSV modifies BAT functionality as a driver of adaptive thermogenesis. Another study explored the effects of lifelong RSV-containing HFD (0⋅04 % w/w) on metabolic health in middle-aged, male mice(Reference Baur, Pearson and Price50). Here, RSV intake did not affect BW, possibly due to the lower concentrations used, but significantly attenuated the signs of ageing such as elevated fasting blood glucose levels, insulin resistance and pathological organ changes(Reference Baur, Pearson and Price50). In a before–after study performed in six male, non-human primates, 4 weeks daily RSV ingestion (200 mg/kg BW) suppressed BW gain and enhanced RMR by 29 % compared to baseline(Reference Dal-Pan, Blanc and Aujard51). In addition, the body temperature difference between the active phase and the hypothermic light phase was reduced, suggesting a thermogenic activity(Reference Dal-Pan, Blanc and Aujard51). To date, direct, robust evidence for a contribution of BAT to the systemic effects of RSV is scarce. Two months of daily RSV feeding of male mice (400 mg/kg BW) on a standard diet led to lower epididymal and retroperitoneal adipose tissue weight, higher oxygen consumption and about 2-fold upregulation of UCP1 and SIRT1 mRNA expression in BAT of RSV mice(Reference Andrade, Frade and Guimarães52). The authors hypothesise that fat stores are mobilised to accommodate the increased fatty acid demand of more active BAT, which in turn lowers adiposity. However, no histological sections with UCP1-immunohistochemistry, UPC1 protein levels or mitochondrial parameters were presented to strengthen such a statement. The laboratory of Du(Reference Wang, Liang and Yang53) demonstrated the formation of brown-like adipocytes in the presence of 10 μm RSV, when stromal vascular cells isolated from WAT were differentiated with a brown adipogenic cocktail(Reference Wang, Liang and Yang53). These brown-like adipocytes upregulated an array of essential brown marker genes. This finding was affirmed in female CD-1 mice, where RSV (0⋅1 % in HFD) slowed weight gain and induced the same thermogenic gene set in the inguinal WAT when compared to controls(Reference Wang, Liang and Yang54). Consistent with the known morphological features of browning, the inguinal WAT of RSV-fed mice exhibited adipocytes with multilocular lipid droplets and a shift towards smaller cells. RSV-treated mice and cells further displayed increased metabolic rates and enhanced lipid oxidation. More intriguingly, all the specified molecular alterations and the consequent physiological outcomes were not observed when experiments were repeated in the absence of AMPK(Reference Wang, Liang and Yang54). Using the same experimental set-up, Wang et al.(Reference Wang, Liang and Yang54) counted more brown adipocytes in histological BAT sections, which implies that RSV might provoke the formation of brown adipocytes, in vivo. In parallel, RSV feeding resulted in higher UCP1 and PRDM16 protein content as well as the augmented levels of phosphoAMPK(Reference Wang, Liang and Yang54). Similar findings including reduced amounts of acetylated PGC1α were reported for the brown fat in male rats treated with 30 mg/kg BW(Reference Alberdi, Rodríguez and Miranda55).

Contrary to the overwhelming amount of literature addressing the benefits of RSV in animal models, no human clinical trials exist that specifically use EE, BAT activation or weight management as readouts. A plethora of studies (supplementary material) conducted in different target groups with daily RSV doses from 75 up to 2000 mg did not detect any effects of RSV on key metabolic parameters, anthropometric measures or molecular downstream markers of SIRT1 activation(Reference Poulsen, Vestergaard and Clasen56Reference Crandall, Oram and Trandafirescu58). In strong contrast stands a cross-over trial completed in obese, healthy men, where daily RSV (150 mg) intake for 30 d modestly mimicked the physiological effects resembling energetic restriction(Reference Timmers, Konings and Bilet59). The participants had lower resting and sleeping metabolic rates (2–4 % lower EE), higher daily respiratory quotient as indicator for improved metabolic flexibility, higher SIRT1 and phosphoAMPK protein abundance in muscle biopsies plus elevated carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone-uncoupled respiration. This striking discrepancy in study outcome might be due to such factors as the extent of obesity, degree of insulin resistance, age, sex, sample size, parallel v. crossover design (seasonal impact) and blood RSV concentrations(Reference Poulsen, Vestergaard and Clasen56Reference Timmers, Konings and Bilet59).

The structural similarity between PTS and RSV implies that they might share the same molecular mode of action, SIRT1 agonism. Nonetheless, the methoxy groups in PTS protect it from hepatic metabolisation and possibly cause the high oral bioavailability of PTS (80 %)(Reference Kapetanovic, Muzzio and Huang44). In contrast, the low oral bioavailability of RSV is one of its major drawbacks and might account for the poor reproducibility as well as comparability of human RSV trials. Although RSV is well absorbed in the intestine through passive diffusion (70 %), the phenolic groups are rapidly glucuronidated or sulphonated in the liver and leave only 1⋅5 % of RSV unmodified(Reference Springer and Moco60). Notably, inter-species differences exist in the formation of glucuronidated RSV (g-RSV) metabolites. In rats and mice, 90 % of an applied RSV dose is glucuronidated compared to 65 % in human subjects and dogs. Lastly, enzymatic stereoselectivity leads to distinct ratios of g-RSV types: the dominant type (RSV-4’G) in human subjects and dogs is undetectable in mice and rats(Reference Maier-Salamon, Böhmdorfer and Thalhammer61). Consequently, findings from rodent studies are difficult to translate to human subjects and other models might be required to assess the physiological bioactivity/efficacy of RSV metabolites. The accepted difficulty in producing reproducible and meaningful effects with RSV in human subjects makes it currently unlikely to be upgraded from an over the counter nutritional supplement to a pharmacological remedy.

Flavonoids

Quercetin is particularly abundant (16⋅5mg/g) in the onion peel extract (OPE; 16⋅5 mg/g), which is frequently used as a quercetin matrix in animal experiments(Reference Kim and Kim62). OPE reduced diet-induced obesity by 6 % and visceral fat in male rats when added to HFD (3⋅6 g/kg food) for 8 weeks(Reference Moon, Do and Kim63). Ting et al.(Reference Ting, Chang and Shiau64) described an even more pronounced weight phenotype (20 % difference in weight gain) for a quercetin-rich supplement in male HFD-fed rats (185, 270 or 925 mg/kg BW daily), demonstrating that quercetin likely is the active ingredient in the OPE(Reference Ting, Chang and Shiau64). In an extensive study with Zucker fatty rats, quercetin was provided daily via the food (10 mg/kg BW) and profoundly reduced weight gain when combined with either standard diet (12 v. 26 %) or HFD (26 v. 33 %) over a 10 week period(Reference Rivera, Morón and Sánchez65). Quercetin-treated rats showed improved insulin sensitivity, reduced endothelial nitric oxide synthase protein and inflammatory TNFα release in the visceral WAT. Unfortunately, the aforementioned studies did not evaluate EE or physical activity as potential contributors.

In male mice, HFD enriched with 5 g OPE/kg for 8 weeks did not attenuate weight or fat mass compared to plain HFD but upregulated markers of WAT browning(Reference Lee, Parks and Kang66). One possibility for the lack of a weight phenotype could be due to a stronger obese phenotype or different quercetin contents in the OPE (68 v. 276 mg/g dry weight). Browning of murine, male WAT following 12 weeks HFD feeding with pure quercetin (1 g/kg food) was confirmed by Kuipers et al.(Reference Kuipers, van Dam and Held67). Classical BAT was not affected by the treatment and browning was insufficient to modulate BW or EE, in accordance with the results from Stewart et al.(Reference Stewart, Soileau and Ribnicky68) at a relatively high quercetin dose of 8 g/kg HFD(Reference Stewart, Soileau and Ribnicky68). A recent report(Reference Choi, Kim and Yu69) describes browning of WAT alongside enhanced BAT-UCP1 content in male mice fed with HFD + 0⋅05 % quercetin(Reference Choi, Kim and Yu69). Plasma norepinephrine concentrations were about three times higher in quercetin-exposed animals, which suggests an intensified sympathetic nervous activity as the underlying effector. Furthermore, protein kinase A (PKA) protein levels were elevated in subcutaneous WAT of quercetin mice. However, cAMP levels or phosphoPKA substrates, which are surrogate markers of adrenergic stimulation, were not determined. It remains to be shown whether these molecular adaptations translate into a distinct phenotype as body weight or EE were not measured(Reference Choi, Kim and Yu69). Higher postprandial norepinephrine levels were also found in male calves fed quercetin (50 mg/kg BW) supplemented milk replacement for 1 week(Reference Gruse, Görs and Tuchscherer70). In human liver lysates, quercetin and its glycoside rutin showed catechol-O-methyltransferase (COMT) inhibitory activity at IC50 of 5⋅3 and 10⋅8 μm, respectively and could potentiate norepinephrine action(Reference Gugler and Dengler71). Furthermore, quercetin dose dependently (1–250 μm) reinforced norepinephrine and isoproterenol-induced lipolysis in isolated male rat adipocytes by increasing cAMP concentrations(Reference Kuppusamy and Das72). Even though the effects of quercetin on BW are inconclusive, quercetin might assist in improving metabolic homoeostasis. Notably, inter-species differences in quercetin efficacy are obvious as most studies in rats showed a weight-lowering effect after 8–12 weeks of intervention, which was mostly absent in mice. Surprisingly, an extended quercetin feeding diet regimen over 12 weeks (1 g/kg HFD) in male mice added up to reduced terminal BW because of a lower adipose tissue mass(Reference Dong, Zhang and Zhang73). In these mice, adipose tissue-resident macrophages and mast cells were significantly lowered, which caused attenuated visceral adipose tissue as well as systemic inflammation. Furthermore, UCP1 mRNA was upregulated in the BAT after quercetin treatment, suggesting a potential thermogenic effect(Reference Dong, Zhang and Zhang73). At a molecular level, quercetin led to higher SIRT1 protein amounts and phosphoAMPK levels in the visceral WAT(Reference Dong, Zhang and Zhang73). The anti-inflammatory property of activated SIRT1 is well established(Reference Cho and Lumeng74,Reference Yoshizaki, Milne and Imamura75) . Induction of the SIRT1–liver kinase B1–AMPK pathway as a mediator of quercetin's anti-inflammatory activity was confirmed in bone-derived macrophages stimulated with lipopolysaccharides to mimic obesity-associated inflammation(Reference Comalada, Ballester and Bailón76). Under this condition, quercetin (20 μm) increased SIRT1, phosphoAMPK and phospho liver kinase B1 protein levels in parallel to a heightened intracellular AMP:ATP ratio(Reference Comalada, Ballester and Bailón76).

Although promising effects regarding BW and inflammatory states are evident in rodent studies, the current available human clinical trials do not reproduce this picture. An up to date meta-analysis covering doses from 100 up to 1000 mg daily and intervention durations from 2 to 12 weeks did not find any beneficial clinical effects of OPE or quercetin intake on human BW(Reference Huang, Liao and Dong77). The absence of any human physiologically relevant effect is underlined by the studies summarised in the supplementary material, mainly performed in Korean subjects(Reference Kim, Cha and Lee78Reference Lee, Cha and Lee80).

It is striking that circulating quercetin concentrations reported in rodent studies appear much higher than in human subjects. In male mice, 5⋅3 g/kg BW daily quercetin related to 90 μm of fasting quercetin levels(Reference Zhang, Angst and Park81) and a lower dose (100 mg/kg BW) to 10 μm after 12 weeks feeding(Reference Dong, Zhang and Zhang73). In male and female human subjects, 150 mg daily over 5 weeks resulted in a mean fasting plasma quercetin concentration of 0⋅270 μm(Reference Egert, Bosy-Westphal and Seiberl82), 500 mg daily over 12 weeks in about 1⋅3 μm(Reference Jin, Nieman and Shanely83). Surprisingly, the mouse dose of 100 mg/kg BW translates to a human equivalent dose of 8 mg/kg BW and in human subjects, 500 mg daily reflects 6⋅5 mg/kg BW as calculated by the mean BW in this cohort. Consequently, although the doses lie in a comparable range, the circulating quercetin concentration in human subjects is roughly ten times lower. This comparison highlights potential inter-species differences in quercetin metabolism, absorption and excretion that affects final plasma concentrations and potentially the therapeutic outcome. Considering that human quercetin intake is safe up to 5 g daily(Reference Lu, Crespi and Liu84), clinical trials of extended duration (17 weeks) and at higher doses are required to conclude on the efficacy of quercetin in human subjects.

Luteolin has been extensively studied due to its anti-inflammatory activity and research focusing on weight loss following luteolin intake is in its early stages and limited to rodent studies. Distinct long-term dietary interventions with luteolin-enriched HFD (12 weeks, 0⋅01 % w/w or 16 weeks, 0⋅005 % w/w) significantly reduced BW gain in male mice(Reference Xu, Zhang and Dong85Reference Zhang, Han and Zhang87). This phenotype was due to reduced visceral and subcutaneous WAT accumulation with a lower proinflammatory state of the WAT (e.g. macrophage infiltration, lower M1:M2 ratio)(Reference Xu, Zhang and Dong85Reference Zhang, Han and Zhang87). Kwon et al.(Reference Kwon, Jung and Park86) measured enhanced faecal lipid output in the luteolin group and higher rates of lipolysis in the WAT, which likely influenced adiposity(Reference Kwon, Jung and Park86). Luteolin was shown to elevate PPARγ protein levels and transcriptional activity in 3T3-L1 adipocytes(Reference Ding, Jin and Chen88). Modulation of PPARγ might contribute to the healthier adipose tissue expansion but cannot explain the reduction in adipose tissue mass as established pharmacological PPARγ agonists (thiazolidinediones) tend to increase fat mass(Reference de Souza, Eckhardt and Gagen89). It is reasonable to assume that the effect of luteolin on BW is polymodal and due to many physiological changes such as attenuated inflammation, reduced intestinal lipid absorption and more lipolytic WAT that fuels activated BAT. The latter assumption comes from a study by Zhang et al.(Reference Zhang, Zhang and Wang90) who demonstrated higher EE in luteolin-HFD (0⋅01 % w/w) fed male mice compared to untreated mice(Reference Zhang, Zhang and Wang90). The histological examination of the BAT revealed an increased density of UCP1+ cells in the luteolin group combined with an induction of the thermogenic programme at the mRNA and protein levels. Moreover, browning of subcutaneous WAT was detected. Interestingly, this phenotype was preserved when HFD was replaced by standard diet and proves the inherent thermogenic activity of luteolin(Reference Zhang, Zhang and Wang90). At the molecular level, luteolin stimulated AMPK phosphorylation in vivo and the beneficial effects of luteolin on thermogenic genes was abolished in primary brown and white adipocytes when cells were pre-exposed to the AMPK inhibitor compound C. It appears that luteolin promotes an activated brown phenotype through the AMPK–SIRT1–PGC1α axis and human clinical studies are necessary for proof of concept/efficacy. Newest findings by Zhang et al.(Reference Zhang, Wang and Yin91) illustrate a significant role of mast cells in energy homoeostasis(Reference Zhang, Wang and Yin91). Genetic ablation or pharmacologic inactivation of mast cells in male mice amplified acute norepinephrine-triggered oxygen consumption and increased body temperature. In both conditions, massive browning occurred in the subcutaneous WAT together with higher UCP1 protein levels and the upregulation of thermogenic genes(Reference Zhang, Wang and Yin91). The authors claim that serotonin secretion from mast cells inhibits platelet derived growth factor receptor α + progenitor cell proliferation that can give rise to beige/brite adipocytes. In agreement with the anti-inflammatory features common to quercetin and luteolin as well as the attenuation of mast cells’ infiltration into WAT following the chronic consumption of these compounds, one can speculate that quercetin and/or luteolin enhance thermogenesis and systemic EE by WAT browning, due to lower mast cell-derived serotonin release.

Catechins

Catechins are named after the catechu, an aqueous extract obtained from the wood of the acacia tree (Senegalia catechu) and rich in these polyphenolic substances. (−)-Epigallocatechin gallate (EGCG) and (−)-epigallocatechin are the most prevalent catechins in green tea infusions(Reference Graham92Reference Arts, van de Putte and Hollman94). The first notion that green tea/catechin consumption might affect BW traces back to a study investigating the effect of a standardised green tea extract on 24-h EE in healthy men(Reference Dulloo, Duret and Rohrer95). Surprisingly, three times daily intake of a combined caffeine (50 mg) plus EGCG (90 mg) preparation increased total 24-h EE by 3⋅5 % whereas the caffeine (50 mg) only group did not show any effects(Reference Dulloo, Duret and Rohrer95). These findings were confirmed by Rudelle et al.(Reference Rudelle, Ferruzzi and Cristiani96), who measured a comparable 4⋅6 % elevation (444 kJ daily) in the 24-h EE in lean men and women after a 3 d treatment diet regimen consisting of 282 mg EGCG and 300 mg caffeine daily(Reference Rudelle, Ferruzzi and Cristiani96). Bérubé-Parent et al.(Reference Bérubé-Parent, Pelletier and Doré97) next aimed to identify the necessary EGCG content in green tea capsules at a fixed caffeine dose (200 mg) to maximise the mixture's impact on 24-h EE in men(Reference Bérubé-Parent, Pelletier and Doré97). Consistent with previous reports, three times daily ingestion of the mixture enhanced 24-h EE at any EGCG concentration (minimum 270 mg daily up to maximum 1200 mg daily); however, no significant dose–response was observed. It seems plausible that the thermogenic activity of the ingested green tea mimetic is mediated either solely by EGCG and/or by a synergistic action of caffeine and EGCG, whereas the effective amount of EGCG reaches a threshold beyond which no additional benefits on EE are to be expected. A 3 d trial focusing on the differential effects of EGCG or caffeine alone on EE in men (mean BMI 31) did not find any relevant impact at different EGCG concentrations (300 v. 600 mg) nor for caffeine (200 mg) or in combination(Reference Thielecke, Rahn and Böhnke98). Nevertheless, EGCG enhanced fat oxidation as determined by the respiratory quotient 2 h after an overnight fast by 7 % in the 300 mg EGCG group as well as in the postprandial phase, 2 h post-meal by 33 %. The contradictory results concerning EE may be due to the mode of administration e.g. capsules v. beverage, the ethnicity of the participants(Reference Hursel, Viechtbauer and Westerterp-Plantenga99), the degree of overweight/obese subjects and/or the utilised caffeine dose. Accordingly, EGCG-caffeine supplements seem to be more effective on weight loss or weight maintenance in subjects with low habitual caffeine intake(Reference Hursel, Viechtbauer and Westerterp-Plantenga99,Reference Westerterp-Plantenga, Lejeune and Kovacs100) . A meta-analysis evaluating the influence of short-term EGCG consumption on EE and fat oxidation concluded that EGCG moderately boosts metabolic rate as indicated by significantly lower respiratory quotient and higher EE(Reference Kapoor, Sugita and Fukuzawa101).

A large body of literature(Reference Yoneshiro, Matsushita and Hibi102Reference Chantre and Lairon107) (supplementary material) has examined whether the possible thermogenic activity of catechins translates to a weight loss phenotype during extended supplement interventions. Overall, the effect of catechins on weight maintenance or loss as measured by BW, BMI and waist circumference is significant when combined with caffeine whereas only a mild clinical impact can be implied based on the described effect sizes(Reference Hursel, Viechtbauer and Westerterp-Plantenga99,Reference Phung, Baker and Matthews108) .

The exact molecular events as well as the physiological targets, which trigger fat loss and elevated EE in response to catechin ingestion are still under discussion. However, the general consent supported by solid experimental evidence points at the activation and/or recruitment of BAT as likely effectors. In male rats, the supplementation of HFD with green tea extract (20 mg/g) over 2 weeks lowered body fat accumulation and boosted EE(Reference Choo109). This phenotype was accompanied by higher BAT weight with increased total protein content, which is indicative for enhanced thermogenic BAT capacity. In turn, the positive impact of the green tea extract was abolished when the food was spiked with the β-AR inhibitor, propranolol(Reference Choo109), suggesting that noradrenergic stimulation is required for the observed phenotype. In line with this, EGCG or tea catechins do not directly affect UCP1 mRNA expression levels in BAT. Imaizumi and coworkers(Reference Nomura, Ichinose and Jinde110) reported that in an 8 week dietary intervention a minor (70 %) increase in UCP1 mRNA only when the tea catechins (40 % EGCG, 0⋅1 % caffeine) were administered in low fat diet to male rats(Reference Nomura, Ichinose and Jinde110). Functionally relevant UCP1 protein abundance was not examined. In comparison, an EGCG (94 %) enriched green tea extract did not alter BAT-UCP1 mRNA levels in male mice after 4 weeks feeding with HFD although total body fat content was reduced(Reference Klaus, Pültz and Thöne-Reineke111). An initial hypothesis proposed that the thermogenic action of EGCG originates from its ability to inhibit the COMT, resulting in higher norepinephrine levels in the postsynaptic cleft and therefore higher adrenergic input to BAT. COMT methylates, inactivates and initiates the degradation of catecholamines and thereby controls the availability as well as activity of these neurotransmitters. Catechins were shown to exert COMT-inhibitory activity in human subjects, mouse and rat liver extracts, although the determined IC50 values range from 70 nm up to 1, 15 or 55 μm depending on the substrate, catechin type or enzyme preparation used(Reference Nagai, Conney and Zhu112Reference Zhu, Shim and Nagai114). Nevertheless, the oral bioavailability of catechins is very low in men and women and plasma concentrations account for approximately 0⋅18 % of ingested catechins (400 mg) from black tea(Reference Warden, Smith and Beecher115). A pharmacokinetic analysis of daily green tea consumption (615 mg daily) detected peak plasma catechin levels 2 h post-prandially reaching roughly 85 ng/ml whereas EGCG levels were about 50 nm(Reference Takahashi, Miyashita and Suzuki116). Additionally, catechins are estimated to be cleared from the body within 10–12 h after intake(Reference Yang, Chen and Lee117). Considering these pharmacokinetic parameters, circulating catechin concentrations are unlikely to reach the required IC50 to exert a meaningful inactivation of COMT. Lorenz et al.(Reference Lorenz, Paul and Moobed118) proved that even a high dose of EGCG (750 mg) does not inhibit COMT activity in vivo when measured in human erythrocytes(Reference Lorenz, Paul and Moobed118).

An elegant, placebo-controlled crossover study performed in men(Reference Yoneshiro, Matsushita and Hibi102) revealed the direct involvement of BAT in the acute thermogenic effect of a catechin-rich beverage (615 mg). The participants were allocated to either low- or high-BAT groups based on their BAT activity measured with fluorodeoxyglucose positron emission tomography–computed tomography after 2 h of cold acclimatisation. Only the high BAT group displayed a significant increase in EE after the consumption of the catechin drink while there was no difference between the other groups(Reference Yoneshiro, Matsushita and Hibi102). Using the same technique, the authors found that prolonged daily catechin supply can increase cold-induced thermogenesis in the low-BAT group, which is paralleled by enhanced fat oxidation(Reference Yoneshiro, Matsushita and Hibi102). Also, in healthy Japanese women a daily 540 mg dose of catechins increased BAT density in the supraclavicular region(Reference Nirengi, Amagasa and Homma103). These data indicate that catechins can recruit BAT to a physiologically relevant extent. Similar to capsinoids or capsaicinoids (described later), catechins might act through the transient receptor potential (TRP) vanilloid 1 (TRPV1) channels as first anticipated due to their astringent taste. TRPV1 are located on sensory neurons that signal to the central nervous system causing increased catecholamine release to stimulate BAT functionality. In vitro, EGCG has been shown to activate TRP channels in primary cultures of murine dorsal root ganglion neurons as well as in intestinal STC-1 cells(Reference Kurogi, Miyashita and Emoto119,Reference Kurogi, Kawai and Nagatomo120) . The possible excitation of sensory neurons by catechins provides a plausible explanation for the observed threshold-dose of effective EGCG. Chronic exposure of TRP to high levels of capsinoids can induce receptor desensitisation and a comparable phenomenon might happen with high catechin use(Reference Sanz-Salvador, Andrés-Borderia and Ferrer-Montiel121). In addition, intestinal catechin levels are not affected by the low systemic bioavailability and are likely sufficient to elicit TRP. Interestingly, there seems to be a significant interaction between EGCG (100 μm) and a priming dose of the β3-receptor agonist ephedrine (0⋅1 μm) on oxygen consumption in male rats' BAT explants. The effect of EGCG on BAT respiratory rates was higher in the presence of ephedrine and was more profound with increasing ephedrine levels(Reference Dulloo, Seydoux and Girardier122). TRP channels are multimodal sensors that integrate distinct signals to fine tune their activity and modulate cellular events. PKA is the downstream effector kinase of β-AR signalling and known to positively affect TRPV1 efficiency(Reference Ramsey, Delling and Clapham123). Thus, EGCG signalling via TRPV1 might be effectively enforced by the β3-AR–PKA axis. However, up to date corresponding human data are lacking to support the hypothesis concerning catechins and TRP.

Isoflavones: phytoestrogens

Soya represents the most dietary relevant isoflavone source with daidzein and genistein being the most prevalent forms and thus focus of this review. The positive nutritional profile of soya, specified by high protein, high isoflavone and low SFA contents, has long raised interest in weight management strategies, in particular due to favourable satiety and appetite control(Reference Leidy, Todd and Zino124). Genistein/daidzein share structural similarity to the female sex hormone 17β-oestradiol (E2), which not only masters female reproduction but also profoundly integrates into energy homoeostasis by controlling appetite as well as BAT and WAT functionality through central and peripheral action. Centrally, E2 acts on the ventromedial hypothalamus where it inhibits AMPK-signalling via estrogen receptor (ER) α and enhances sympathetic tone towards BAT and upregulates BAT UCP1 and PGC1α(Reference Martínez de Morentin, González-García and Martins125). Similar to postmenopausal women, loss of E2 signalling in ovariectomised rats stimulates hyperphagia with resultant weight gain. E2 administration reverses this phenotype by increasing EE through the ERα–sympathetic nervous system–BAT axis and decreasing food intake. E2 is a membrane permeable, hydrophobic molecule and able to tune brown adipocyte function directly by signalling through ERα, ERβ or g-protein coupled receptor 30(Reference Prossnitz and Barton126,Reference Suetsugi, Su and Karlsberg127) . In cultured brown adipocytes isolated from male mice, E2 increases β3-AR mRNA expression and exerts the opposite effect on inhibitory α2-levels, which could potentiate sympathetic inputs(Reference Monjo, Rodríguez and Palou128). E2 further promotes mitochondrial biogenesis by inhibiting phosphatase and tensin homolog, causing more active AKT-signalling and nuclear translocation of nuclear respiratory factor 1, the head of mitochondrial gene transcription(Reference Mattingly, Ivanova and Riggs129,Reference Rodríguez-Cuenca, Monjo and Gianotti130) . Therefore, the question arises whether the oestrogenic potency of dietary isoflavones is effective at shaping energy homoeostasis to a physiologically relevant extent such as weight loss or stabilisation.

In male mice, HFD supplementation with the isoflavone-rich fraction (9 g/kg) of the Kudzu flower lowered weight gain as well as WAT and BAT weight after 7 weeks. Histological analysis of BAT from treated mice revealed more UPC1+ cells, suggesting that isoflavones activate BAT to burn more fatty acids(Reference Kamiya, Nagamine and Sameshima-Kamiya131). Comparable findings were reported for male CD-1 mice fed with a soya-enriched (25 % w/w), high phytoestrogenic diet (HP; 150 ppm daidzein, 190 ppm genistein) when compared to a soya-free, low phytoestrogenic diet(Reference Cederroth, Vinciguerra and Kühne132). This dietary intervention resulted in a 7⋅6 % lower weight gain in HP mice compared to low phytoestrogenic controls with significantly reduced adipose tissue mass. The BAT of HP mice was denser, concomitant with higher EE and apparent cold resistance during an acute cold challenge(Reference Cederroth, Vinciguerra and Kühne132). As anticipated from the efficacy of exogenous oestradiol administration to ovariectomised rats, an isoflavone-rich diet (200 μg/g) prevented the severity of weight gain in these animals post-surgery(Reference Russell, Grimes and Cruthirds133). Similar findings, including the upregulation of UCP1 protein levels and higher plasma T3 concentrations, were reported by Lephart et al.(Reference Lephart, Porter and Lund134) using a diet with an isoflavone content of 600 ppm in male rats(Reference Lephart, Porter and Lund134). They showed that dietary isoflavone ingestion is effective in a model of low E2 and enhances metabolic rates at least partially due to brown fat activation. Several groups investigated the potency of the individual isoflavone types on weight development and EE in various models. In lean or obese rats, enrichment of high fat or standard diet with daidzein (50 mg/kg BW, 14 d) stabilised BW or induced weight loss compared to controls(Reference Crespillo, Alonso and Vida135). Dose-dependent weight loss after daidzein intake (30 d) was also observed in obese male mice at 50 mg/kg BW (42⋅9 to 33⋅7 g) and at 100 mg/kg BW (42⋅5 to 32⋅4 g) but not at 25 mg/kg BW when compared to vehicle controls(Reference Guo, Wu and Su136). Although EE was not measured, UCP1 immunofluorescence imaging showed higher UCP1 content in the BAT of the daidzein-exposed group(Reference Crespillo, Alonso and Vida135). In vitro, daidzein stimulated hormone sensitive lipase mediated glycerol release from primary adipocytes from male rats indicating that elevated adipocyte lipolysis supports daidzein-induced weight loss(Reference Guo, Wu and Su136,Reference Szkudelska, Szkudelski and Nogowski137) . Elevated fatty acid generation in brown adipocyte could enhance EE by directly activating UCP1. Additionally, daidzein was shown to inhibit phosphodiesterase activity at an IC50 of 50 μm(Reference Ko, Shih and Lai138), a critical enzyme which arrests β-AR signalling by inactivating cAMP.

The literature is more extensive for the efficacy of genistein, probably due to the higher oestrogenicity(Reference Chrzan and Bradford139,Reference An, Tzagarakis-Foster and Scharschmidt140) . In female mice, 8 weeks genistein treatment with HFD (0⋅25 % w/w) resulted in reduced weight gain and lower WAT expansion than in control HFD animals. Within the WAT, brite adipocyte marker genes were upregulated, which was probably centrally controlled(Reference Zhou, Xiao and Zhang141). Urocortin-3 (UCN3) was among the differentially regulated hypothalamic genes when HFD v. HFD + genistein and HFD v. control animals were compared. UCN3 is an anorexigenic peptide and a known player in energy homoeostasis. Male UCN3 transgenic mice are protected from HFD-induced weight gain(Reference Jamieson, Cleasby and Kuperman142) and intracerebroventricular UCN3 administration to male rats provoked thermogenesis(Reference Telegdy, Adamik and Tóth143) as well as higher BAT UCP1 expression levels(Reference Kotz, Wang and Levine144). In another recent study, genistein-exposed (0⋅2 % w/w) male mice displayed higher EE and the appearance of UCP1+ cells within the subcutaneous WAT compared to chow-fed controls, confirming the role of genistein in adipose browning(Reference Palacios-González, Vargas-Castillo and Velázquez-Villegas145). We confirmed a cell autonomous effect of both genistein and daidzein in mature immortalised brown adipocytes, which enhanced UPC1 promoter activity in a UPC1-driven luciferase assay and led to higher UCP1 activity as measured by UCP1-immunofluorescence intensity(Reference Buhlmann, Horváth and Houriet146). In 4-week old male and female mice, daily administration of genistein (200 mg/kg BW) for 15 d lowered body weight by 4 and 4⋅3 %, respectively due to reduced food intake as well as reduced adipogenic gene expression mediated by ERβ(Reference Penza, Montani and Romani147). In human fetal brown fat, ERα is the dominant oestrogen receptor type(Reference Velickovic, Cvoro and Srdic148) but the ratio is unknown in adulthood. Ligand assays unveiled higher affinity of genistein and daidzein for ERβ than ERα, demonstrating that isoflavones preferentially activate the oestrogen-response element via ERβ. The EC50s of ERα for genistein (15 μm) and daidzein (>300 μm) are supraphysiological and beyond circulating levels achievable(Reference Kostelac, Rechkemmer and Briviba149) with dietary isoflavone supplementation (100 mg isoflavone capsules daily; thereof 14 mg daidzein and 3–4 mg genistein)(Reference van der Velpen, Hollman and van Nielen150). Given these concentrations, it is unlikely that isoflavones exert their physiological impact through ERα, fitting to the overall impression that E2-treatment via sympathetic nervous system-ERα signalling elicits more pronounced alterations in energy homoeostasis. Nevertheless, an ERβ-agonist (β-LGND2) conferred anti-obesity effects in male HFD-fed mice(Reference Ponnusamy, Tran and Harvey151). Pharmacological ERβ activation (30 mg/kg BW daily, s.c.) elevated EE and acute cold tolerance by 14 %. The thermogenic β-LGND2-mediated response culminated in a fat mass loss of 50–60 % compared to control animals. These beneficial effects were dramatically blunted, although not absent, in ERβ-knockout mice. At the molecular level, β-LGND2 stimulated WAT browning and enhanced the mitochondrial respiratory capacity of white adipocytes.

No human clinical trial so far included EE or BAT activation as outcome measures. Most reports(Reference Liu, Ho and Chen152Reference Sites, Cooper and Toth158) (supplementary material) focus on anthropometric measures and body composition as surrogates for alterations in energy homoeostasis. The interpretation of human trials investigating the efficacy of isoflavone mixtures or individual compounds is complex as interactive factors such as sex, pre-/postmenopausal state, habitual isoflavone exposure/ethnicity and interindividual variation in metabolising enzymes (hepatic or intestinal, gut microflora) need to be taken into account. Within their food matrix, isoflavones exist usually as glycosides (genistin and daidzin)(Reference Barnes, Prasain and D'Alessandro159). However, they are rapidly hydrolysed to their aglycones after ingestion and undergo intestinal and hepatic metabolisation generating distinct metabolites, among others equol(Reference Barnes, Prasain and D'Alessandro159). Equol is built from daidzein by intestinal bacteria and is more bioactive than its precursor(Reference Atkinson, Frankenfeld and Lampe160). Surprisingly, all experimental animals are able to generate equol but not every human subject is an equol producer(Reference Muthyala, Ju and Sheng161). Subject to differences in the gut microbiome, only 20–35 % of Western individuals are equol-producers, whereas in the Asian region the rate is 50–60 %(Reference Arai, Uehara and Sato162Reference Liu, Qin and Liu164). There is also a sex and age bias towards postmenopausal women in the published trials. In this target group, dietary isoflavones might simply aid in minimising or compensating the effects of declining endogenous oestrogen levels and mitigate postmenopausal weight gain. Presently, two meta-analyses dissect in depth the efficacy of isoflavones on body composition and weight development. These studies provide a clearer view on the effects in different subpopulations or influencing factors such as dosing, weight status or trial duration. The meta-analysis from Zhang et al.(Reference Zhang, Chen and Guo165) concentrates specifically on postmenopausal non-Asian women and included nine trials for BW(Reference Zhang, Chen and Guo165). Soya isoflavone supplementation was associated with a significant lower BW and subgroup analyses revealed that the difference is more pronounced in normal weight than obese women as well as with lower doses (<100 mg daily)(Reference Zhang, Chen and Guo165). A second analysis performed by Akhlaghi et al.(Reference Akhlaghi, Zare and Nouripour166) includes both sexes, all ethnicities independent of age and comprised forty-seven trials with soya and seventeen trials with isoflavones as investigational subjects(Reference Akhlaghi, Zare and Nouripour166). BMI in response to isoflavone intake tended to be lower (P = 0⋅085), especially with lower doses and shorter trial length. The subgroup analysis suggests that postmenopausal and Caucasian women likely benefit more from isoflavone intake. Contrarily, soya intake does not affect BW, fat mass or waist circumference. The latter two are also not modified by isoflavone supplementation(Reference Akhlaghi, Zare and Nouripour166). Taken together, it seems that isoflavones have a mild beneficial effect on BW development and seem to be particularly beneficial in postmenopausal women to account for the reduced endogenous oestrogen levels. Although lower doses below 100 mg daily are more effective, they still exceed the amounts achievable through normal dietary sources, even in populations with high daily isoflavone intake (25–50 mg)(Reference Nagata167). Thus, isoflavone fortification or supplements would be required to fulfil a physiological relevant intake.

Alkaloids

Alkaloids exert a plethora of pharmacological activities crucial for human pharmacotherapy (e.g. morphine, quinine and vinblastine)(Reference Matsuura, Fett-Neto, Gopalakrishnakone, Carlini and Ligabue-Braun168) and the alkaloids capsaicin (CAP) and berberine (BBR) have been shown to affect BAT activity or induce browning of WAT.

Capsaicinoids, especially CAP, confer the pungent sensation of red chilli from the Capsicum genus(Reference Orellana-Escobedo, Garcia-Amezquita and Olivas169,170) . The thermogenic properties of CAP-rich food are reflected in a variety of physiological responses such as elevated body temperature, flushing, vasodilation and the concomitant onset of cooling mechanisms such as sweating. CAP stimulates afferent sensory neurons involved in thermo- and nociception by binding to TRPV1, which increases intracellular Ca2+ concentrations that trigger membrane depolarisation(Reference Bevan and Szolcsányi171). Many groups have examined the effect of acute or chronic capsaicinoids/capsinoids on EE, fat oxidation, weight management and the contribution of thermogenically active BAT, with diverging outcomes. Early studies investigating the influence of spicy foods using chilli sauce (3 g) or red pepper (30 mg CAP) on metabolic rates in men reported significant increases in postprandial EE by 25–32 % compared to control meals(Reference Henry and Emery172,Reference Yoshioka, Lim and Kikuzato173) . This metabolic effect was abolished when the participants were pre-treated with the β3-AR antagonist propranolol(Reference Yoshioka, Lim and Kikuzato173), indicating the involvement of sympathetic nerve activity. Higher sympathetic:parasympathetic nervous system activity was confirmed in Caucasian men after the ingestion of a red pepper-spiked (6 g) appetiser compared to a control snack(Reference Yoshioka, St-Pierre and Drapeau174). In contrast, Smeets et al.(Reference Smeets and Westerterp-Plantenga175) did not find elevated diet-induced thermogenesis after a CAP-containing lunch (approximately 5⋅15 mg) nor altered substrate oxidation in men and women(Reference Smeets and Westerterp-Plantenga175). However, the effect size might be too small, given a 6-fold lower CAP dose. Another placebo-controlled trial in men failed to identify a significant difference in the RMR of healthy subjects treated acutely with increasing amounts of dihydrocapsiate (0, 3 or 9 mg)(Reference Galgani and Ravussin176). In vitro, CAP agonises TRPV1 at an effective dose (EC50) of 50–100 nm. Contrarily, the EC50 of capsiate and dihydrocapsiate are 580 and 670 nm, respectively(Reference Iida, Moriyama and Kobata177,Reference Sasahara, Furuhata and Iwasaki178) . This discrepancy in potency between CAP and capsinoids combined with varying doses might resolve the absence of an effect in the dihydrocapsiate trial. A meta-analysis(Reference Ludy, Moore and Mattes179) covering the efficacy of capsiate and CAP intake on EE in human subjects reveals that capsiate enhances lipid utilisation and EE while CAP is only effective on fat oxidation. The effects of CAP on EE was only relevant in high dose trials (135–150 mg CAP), when CAP intake was stratified for dosage(Reference Ludy, Moore and Mattes179). For both substances, sympathetic nervous activity was stimulated where this outcome was recorded(Reference Ludy, Moore and Mattes179). Orally administrated CAP and capsiate (10 mg/kg BW) equally boosted oxygen consumption and serum catecholamine levels in mice (unknown sex) when compared to untreated animals(Reference Ohnuki, Haramizu and Oki180). Kawabata et al.(Reference Kawabata, Inoue and Masamoto181) identified that the acute intragastric administration of capsinoids or CAP (10 mg/kg BW, each) to male mice increased metabolic rate and stimulated fat oxidation in wild type, but not TRPV1 knockout mice, demonstrating the necessity of the vanilloid receptor as thermogenic mediator(Reference Kawabata, Inoue and Masamoto181). Adrenergic input is a potent activator of the thermogenic BAT programme as well as subcutaneous WAT browning and TRPV1 is expressed in both adipose types. Additionally, murine TRPV1 levels are upregulated in both BAT and WAT following a CAP-enriched diet(Reference Baskaran, Krishnan and Fettel182Reference Kang, Goto and Han184). Therefore, it was soon hypothesised that enforced BAT functionality or a bigger brown/brite adipocyte pool contributes to the physiologic effects of CAP. A direct effect of CAP on BAT activity was already implied in 1988, when Yoshida et al.(Reference Yoshida, Yoshioka and Wakabayashi185) demonstrated that the intramuscular injection of 3 mg/kg CAP to rats elevated intrascapular BAT temperature locally and increased mitochondrial oxygen consumption(Reference Yoshida, Yoshioka and Wakabayashi185). Similarly, 3 h intragastric CAP or capsinoid administration by Kawabata et al.(Reference Kawabata, Inoue and Masamoto181) (see earlier) heated up core and local BAT temperatures only in wild-type but not TRPV1 null mice(Reference Kawabata, Inoue and Masamoto181). A role of BAT in capsiate action is further supported by an acute capsiate exposure for 30 min that upregulated UCP1 mRNA levels in the BAT and evolved to higher UCP1 protein abundance in the BAT from male mice after 2 weeks of capsiate supplementation(Reference Masuda, Haramizu and Oki186). A detailed study by Baskaran et al.(Reference Baskaran, Krishnan and Fettel182) substantiates the interplay between CAP, active BAT and TRPV1 in male mice(Reference Baskaran, Krishnan and Fettel182). The addition of CAP to HFD (0⋅01 % w/w) over a 32 week intervention period prevented weight gain by almost 35 % compared to HFD controls and led to a final BW comparable to mice on standard diet. This impressive BW phenotype was not observed in TRPV1-knockout animals with the same diet regimen. Other rodent studies with males addressing obesity prevention by the supplementation of HFD (0⋅014 %, rat)(Reference Kawada, Hagihara and Iwai187) or standard diet (10 mg/kg, mouse)(Reference Ohnuki, Haramizu and Oki180) with CAP or capsiate up to 14 d equally reported lowered weight gain and stimulated fat loss from WAT compared to controls(Reference Ohnuki, Haramizu and Oki180,Reference Kawada, Hagihara and Iwai187) . Regarding obesity treatment, CAP feeding attenuated additional weight gain in already obese male mice during a 10 week follow-up period (36⋅5 v. 41 g), resulting in reduced adiposity(Reference Kang, Goto and Han184). Furthermore, CAP feeding lowered circulating TAG levels, which put forward the idea that CAP mobilises lipids from adipose depots and enhances lipid oxidation, likely in the BAT(Reference Ohnuki, Haramizu and Oki180,Reference Kawada, Hagihara and Iwai187) . Apart from elevated EE(Reference Ohnuki, Haramizu and Oki180,Reference Baskaran, Krishnan and Fettel182,Reference Baskaran, Krishnan and Ren183) , the RER of CAP-HFD male mice was significantly higher(Reference Baskaran, Krishnan and Fettel182,Reference Baskaran, Krishnan and Ren183) and points towards increased carbohydrate oxidation. Others found enhanced fat(Reference Kawabata, Inoue and Masamoto181,Reference Masuda, Haramizu and Oki186) and reduced carbohydrate(Reference Kawabata, Inoue and Masamoto181) oxidation after CAP-administration, which underlines a higher metabolic flexibility in these animals. Indications for metabolically more activated CAP-BAT were further evident in the heightened glycerol release from this tissue as surrogate for lipolysis in comparison with HFD-BAT(Reference Baskaran, Krishnan and Fettel182). The lipolytic principle of CAP is very likely mediated by augmented catecholamine secretion and signalling through the β-AR–PKA–hormone-sensitive lipase pathway. Acute stimulation of brown adipocytes from male CAP-HFD mice with 1 μm CAP dramatically increased intracellular calcium influx, which was blunted in TRPV1-lacking adipocytes(Reference Baskaran, Krishnan and Fettel182). A downstream analysis of the molecular events revealed that CAP activates TRPV1 leading to higher calcium levels and the activation of CaMKII, which in turn phosphorylates and activates AMPK. AMPK stimulates SIRT1 activity triggering the deacetylation of PGC1α and PPARγ as ultimate enhancers of BAT functionality. Baskaran and coworkers(Reference Baskaran, Krishnan and Ren183) demonstrated the browning of the inguinal WAT in response to CAP diet, based on the same molecular mechanism(Reference Baskaran, Krishnan and Ren183).

Human clinical trials evaluating the long-term effect of CAP/capsiate on weight development are rare (supplementary material). A study by Janssens et al.(Reference Janssens, Hursel and Martens188) implies a role of CAP supplementation (2⋅56 mg/meal) in weight maintenance after weight loss in male and female subjects. Accordingly, the acute thermogenic effect of CAP could be sufficient to compensate for the reduction in EE that goes along with weight loss and energetic restriction(Reference Janssens, Hursel and Martens188). In a US placebo controlled-trial with obese male and female participants (mean BMI 30 kg/m2) the daily ingestion of 6 mg capsinoids over a 12 weeks trended in a BW change (0⋅9 v. 0⋅5 kg) and significantly reduced visceral adiposity(Reference Snitker, Fujishima and Shen189). However, more of these long-term studies with higher doses or in relation to weight stabilisation after weight loss are required to delineate the pharmacological potential of capsinoids. A recent crossover study directly captured BAT-activity during an acute capsinoid (12 mg) trigger in men and women by luorodeoxyglucose positron emission tomography–magnetic resonance in comparison with cold-exposure using a cold vest (14⋅5°C). The mean standardised uptake value (SUV) for the capsinoid group did not reach the accepted threshold (SUV = 2) to classify a subject as BAT-positive, contrary to the cold-exposed group (mean SUV = 2⋅9). Only after an adjustment of the grey scale values, a mild uptake of glucose was notable in the capsinoid group. Nevertheless, the mean EE post-capsinoids administration was higher compared to baseline levels and this increase was significantly greater in subjects allocated as BAT-positive based on cold-exposed BAT detectability(Reference Sun, Camps and Goh190). Unfortunately, this study lacked a placebo control although the capsinoids were ingested as capsule containing additionally a mixture of rapeseed oil and medium chain TAG. A placebo-controlled, crossover trial with eighteen Japanese men verified an acute increase in EE after capsinoids intake (9 mg) in BAT-positive subjects when compared to placebo controls and BAT-negative individuals(Reference Yoneshiro, Aita and Kawai191).

In conclusion, it appears that the physiological outcomes associated with spicy food/CAP ingestion are the sum of four primary events: (1) enhanced sympathetic activity due to the stimulation of vagal afferent neurons and catecholamine levels, which (2) promote lipolysis in WAT and BAT and (3) activate non-thermogenesis in BAT; (4) the direct, cell autonomous trigger on adipocytes via TRPV1–AMPK–SIRT1 to enhance the thermogenic phenotype. The documented bioavailability (50–90 % absorption) of capsaicinoids is high(Reference Kawabata, Inoue and Masamoto181). In mice, circulating plasma CAP concentration 1 h after an oral dose of 10 mg/kg BW reaches approximately 3⋅8 μm(Reference Rollyson, Stover and Brown192). This value falls into a concentration range that induced browning in vitro in 3T3-L1 and indicates that circulating CAP levels are sufficient to elicit direct cellular effects(Reference Baboota, Singh and Sarma193).

BBR is arguably the most prominent known phytochemical capable of modulating BAT function and several preclinical studies have delivered interesting outcomes regarding the therapeutic impact of BBR on obesity-associated metabolic diseases. BBR has a long history of use in traditional medicines and interest in the metabolic side of BBR awoke only in 2004 when the blood cholesterol-lowering activity of BBR in hypercholesterolemic patients was published(Reference Kong, Wei and Abidi194). Another study underpinned the therapeutic potential of BBR in genetically and fat-induced obese rodents(Reference Lee, Kim and Kim195). In male db/db mice a daily dose of BBR (5 mg/kg BW, i.p.) caused a 13 % weight loss with a 10 % reduction in fat mass within 26 d of treatment alongside with improved whole body metabolic homoeostasis(Reference Lee, Kim and Kim195). The same physiological effects were observed in male HFD-fed rats treated with either vehicle or BBR (380 mg/kg BW, orally)(Reference Lee, Kim and Kim195). In WAT, BBR downregulated lipogenic genes while oxidative and genes regulating mitochondria formation/function were enhanced in muscle and BAT (PPARα and PGC1α)(Reference Lee, Kim and Kim195). In 3T3-L1 cells, they subsequently identify that BBR acts as an AMPK activator, stimulating the phosphorylation of AMPK and acetyl-CoA carboxylase(Reference Lee, Kim and Kim195), possibly by inhibiting complex I causing a rise in the cellular AMP:ATP ratio(Reference Turner, Li and Gosby196). These findings motivated further research exploiting the effects of BBR on BAT activity as AMPK plays an accepted role in BAT-mediated thermogenesis and EE(Reference Perdikari, Kulenkampff and Rudigier197Reference Wu, Zhang and Li199). Zhang et al.(Reference Zhang, Zhang and Li200) first reported a thermogenic effect by BBR(Reference Zhang, Zhang and Li200). Apart from the established metabolic and weight improvements, BBR-therapy to male db/db mice (5 mg/kg BW, i.p.) increased rectal temperature (about 1⋅5°C), consistently enhanced metabolic rate and defended body heat loss during cold exposure compared to vehicle treatment. Most strikingly, BBR dramatically enforced BAT thermogenesis directly as reflected by higher 18-FDG uptake monitored using micro-positron emission tomography–magnetic resonance. This activated BAT state was supported by reduced BAT mass, higher mitochondrial content and molecular evidence such as enhancement of the BAT-specific mRNA and protein signatures (PGC1α, UCP1, nuclear respiratory factor 1 and carnitine palmitoyltransferase) through activation of AMPK(Reference Zhang, Zhang and Li200). BBR likewise stimulated browning of the inguinal WAT. Interestingly, immunohistological analysis revealed higher tyrosine hydroxylase levels in the WAT and BAT, suggesting the contribution of augmented sympathetic output to the observed phenotype. When the animals were housed under thermoneutral conditions (30°C) to minimise BAT function, the beneficial effects of BBR administration were blunted, which strongly supports the necessity of active sympathetic activity as physiologic mediator of BBR activity(Reference Zhang, Zhang and Li200). WAT-browning and elevated EE were also noted in male mice on HFD treated for 5 weeks with BBR (5 mg/kg BW i.p.) or vehicle(Reference Sun, Xia and Yan201). Additionally, BBR upregulated hepatic FGF21 gene expression resulting in a concomitant elevation in plasma FGF21 levels, which was dependent on activated SIRT1, a known regulator of FGF21 transcription(Reference Li, Wong and Giles202). FGF21 was shown to promote WAT browning as well as the thermogenic BAT programme elsewhere and might depict an alternative mechanism of action of BBR(Reference Hondares, Iglesias and Giralt203,Reference Fisher, Kleiner and Douris204) . Wu et al.(Reference Wu, Xia and Duan205) clearly show the requirement of intact AMPK signalling in adipose tissues for an effective BBR treatment as the physiological responses to BBR administration were absent in adiponectin-Cre driven AMPK-floxed male mice(Reference Wu, Xia and Duan205).

In the same work(Reference Wu, Xia and Duan205), the effect of 1 month dietary BBR supplementation (3× 500 mg daily) on human BAT activity was examined in overweight individuals. Using cold-stimulated fluorodeoxyglucose positron emission tomography–computed tomography imaging, they prove that human BAT is activated by BBR as mean SUV (2⋅6–3⋅3), BAT mass (14⋅1–25⋅5 cm3) and activity (103⋅1–228⋅2 ml × SUVave × g/ml) were all significantly increased in a paired before–after analysis. Patients (n 2) with no detectable BAT before treatment were not BAT-positive after 1 month of BBR intake. Thus, BBR is not sufficient to stimulate BAT formation or induce dormant brown adipocytes. The percentage change of BAT activity before–after BBR negatively correlated with the measured changes in BW and highlight the potency of BBR to combat overweight by means of BAT activation. A future pharmacological application of BBR to tackle obesity and associated metabolic complications is supported by additional human clinical trials. An open-label study in China investigated the effect of a lifestyle intervention (LSI) with or without daily BBR (3× 500 mg) or pioglitazone (15 mg) treatment on BW and metabolic health in individuals suffering from non-alcoholic fatty liver disease with diabetes or impaired glucose tolerance(Reference Yan, Xia and Wang206). At the end of the intervention, the BBR group lost significantly more weight (−4⋅29 v. –1⋅44 kg) and waist circumference (−4⋅84 v. –2⋅14 cm) than LSI only, but also when compared to LSI plus pioglitazone. As there was no significant difference between LSI + pioglitazone and LSI + BBR on insulin sensitivity, glucose tolerance or glycated Hb levels, BBR improved glucose homoeostasis comparably to a known antidiabetic remedy with the additive effect of weight loss(Reference Yan, Xia and Wang206). BBR was equally effective in placebo-controlled trials with Chinese type 2 diabetic and dyslipidaemic patients (1 g daily)(Reference Zhang, Li and Zou207) or poor glycaemic control (1⋅5 g daily)(Reference Yin, Xing and Ye208). The BBR group displayed significant improvements in BW (66⋅4 v. 70⋅5 kg), BMI (24⋅3 v. 25⋅4 kg/m2) and glycaemic control (fasting blood glucose 5⋅6 v. 6⋅4 mm/, HbA1c 6⋅6 v. 7⋅3 %) compared to controls at the end(Reference Zhang, Li and Zou207). In a small pilot study (n 7) with obese Caucasian individuals over 13 weeks (1500 mg BBR daily) moderate changes in BW (2⋅3 %), BMI (2⋅9) and fat content (3⋅6 %) were determined compared to baselines values. Although these changes seem promising, they did not reach statistical significance likely due to the small sample size(Reference Hu, Ehli and Kittelsrud209). The available studies centring on BW control or weight loss are sparse and dominated by Asian subjects (supplementary material). Nevertheless, the reported outcomes are overly encouraging and underline the need for further efforts aiming at different ethnicities and larger sample sizes. Furthermore, it would be interesting to study whether BBR enhances EE in human subjects. One of the current drawbacks is the extremely poor bioavailability of BBR in human and animal studies. In human subjects, oral BBR intake (300 mg daily) resulted in a mean plasma BBR concentration of 0⋅3 ng/ml and an acute BBR (400 mg) challenge led to a maximal concentration of 0⋅4 ng/ml(Reference Hua, Ding and Chen210). BBR combined with polyethylene glycol enhanced intestinal BBR absorption in rats by a factor of 3, indicating that the pharmacokinetic properties of BBR are adjustable with appropriate encapsulation strategies(Reference Chen, Miao and Fan211). Improved BBR bioavailability is desirable as it affects the effective treatment dose and might reduce some of the mild side effects (e.g. constipation and intestinal discomfort) observed with the currently employed BBR dose of 1500 mg daily. Alternatively, the efficacy of the more absorbable analogue dihydroberberine with five times higher bioavailability than BBR in rats could be investigated for human use(Reference Feng, Shou and Zhao212).

Conclusions

BAT is a remarkable organ with the capacity to ignite its thermogenic programme to ‘waste’ energies in response to environmental or endogenous cues. From the afore-mentioned reviewed phytochemicals we can draw several conclusions. First, preclinical evidence of efficacy from animal studies is limited in human trials and the reported effect sizes in human subjects tend to be small. Differences in the gut microbiome and metabolising enzymes influence whether, how and to what extent a phytochemical is altered from its prodrug state to either a functionally more or less active metabolite that reaches the systemic circulation and target sites. Animal experiments are performed in inbred strains with near identical genetic background whereas in human subjects the interindividual variability is more pronounced. This is intensified by differential study designs (duration, dose, ethnicity, formulation, etc.) that might cause the large variability between human studies. Secondly, sex as biological variable adds extra complexity to the interpretation of results, which demands critical attention. Out of the thirty-nine human randomised controlled trials listed in the supplementary material, fifteen included male and female subjects, thirteen only males and nine only females. Females were notably overrepresented in trials with isoflavones due to their oestrogenic potential. No studies with ‘females only’ are listed for PTS, BBR and capsaicinoids and only one for catechins. The vast majority of the cited rodent studies were performed in male animals due to prevailing belief that females' hormonal cycle increase heterogeneity and results derived from male animals are translatable to females(Reference Beery and Zucker213). In contrast, the female gonadal WAT is more innervated by sympathetic nerves and responds more effectively (browning) to a β3-AR agonist compared to male gonadal WAT(Reference Kim, Jung and Kwon24). Similarly, the BAT of female rats displays a more multilocular morphology, a denser mitochondrial network with higher UCP1 protein content and reduced inhibitory α2-AR expression compared to males(Reference Rodriguez-Cuenca, Pujol and Justo214). These sex-specific BAT differences convey an enhanced thermogenic potential and increased epinephrine-sensitivity to female animals. Consequently, it is crucial to include both sexes in studies aiming at modulators of non-shivering thermogenesis. In addition, various hormonal cues such as sex hormones (see phytoestrogens) or leptin affect BAT-mediated EE(Reference Enriori, Sinnayah and Simonds215,Reference Siegrist-Kaiser, Pauli and Juge-Aubry216) . Surprisingly, circulating leptin levels are higher in male v. female rats, while this ratio is reciprocal in human subjects(Reference Hickey, Israel and Gardiner217,Reference Landt, Gingerich and Havel218) . These examples substantiate two statements. First, energy homoeostasis is inherently modulated by sexual dimorphism and secondly, the underlying regulatory system is inconsistent between males and females across species. Sex as biological variable further affects the pharmacokinetics and metabolism of phytochemicals, especially with regards to their metabolisation by the gut microflora or liver(Reference Org, Mehrabian and Parks219,Reference Waxman and Holloway220) . As such, a key hepatic cytochrome P540 enzyme (CYP3A4) is elevated in females over males(Reference Waxman and Holloway220) and CYP3A4 is predominantly metabolising BBR(Reference Li, Zhao and Qiu221), which could lead to sex-specific differences in the clearance of BBR. In the presented trials, the circulating metabolites are rarely determined and might not overlap between men and women causing differential study outcomes.

Finally, selected compounds clearly have a beneficial outcome in clinical trials and are accepted by meta-analyses. Regular catechin intake (300 mg) for example can result in about 418 kJ increase in EE. Spicy food hampers macronutrient intake by about 565 kJ and/or stabilises weight regain by compensating for the decrease in EE. This small contribution in itself might be sufficient to balance the energy gap to zero. Although these thermogenic effects are presently not sufficient to actively stimulate weight loss, they could be essential in preventing further fat accumulation and potentially stop the transition from overweight to obese states. As such, prevention of weight gain and weight maintenance are more easily achievable than a decrease in fat mass, as conserved mechanisms defend body weight rather than promote fat release(Reference Hill, Wyatt and Peters222). In conclusion, dietary phytochemicals in their food matrix or as a supplement alone play an important role in obesity prevention by activating BAT functionality, targeting a broad population base.

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1017/S0029665120006928.

Financial Support

None.

Conflict of Interest

None.

Authorship

The authors had joint responsibility for all aspects of preparation of this paper.

References

Wang, Y, Beydoun, MA, Liang, L et al. (2008) Will all Americans become overweight or obese? Estimating the progression and cost of the US obesity epidemic. Obesity (Silver Spring, MD) 16, 23232330.10.1038/oby.2008.351CrossRefGoogle ScholarPubMed
NCD Risk Factor Collaboration (NCD-RisC) (2017) Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128⋅9 million children, adolescents, and adults. Lancet (Lond, Engl) 390, 26272642.10.1016/S0140-6736(17)32129-3CrossRefGoogle Scholar
Cypess, AM, Lehman, S, Williams, G et al. (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360, 15091517.CrossRefGoogle ScholarPubMed
van Marken Lichtenbelt, WD, Vanhommerig, JW, Smulders, NM et al. (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360, 15001508.10.1056/NEJMoa0808718CrossRefGoogle ScholarPubMed
Lean, MEJ, James, WPT, Jennings, G et al. (1986) Brown adipose tissue uncoupling protein content in human infants, children and adults. Clin Sci 71, 291297.CrossRefGoogle ScholarPubMed
Nedergaard, J, Golozoubova, V, Matthias, A et al. (2001) UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency. Biochim Biophys Acta 1504, 82106.10.1016/S0005-2728(00)00247-4CrossRefGoogle ScholarPubMed
Chondronikola, M, Volpi, E, Børsheim, E et al. (2014) Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes 63, 40894099.CrossRefGoogle ScholarPubMed
Bartelt, A, Bruns, OT, Reimer, R et al. (2011) Brown adipose tissue activity controls triglyceride clearance. Nat Med 17, 200205.10.1038/nm.2297CrossRefGoogle ScholarPubMed
Mercer, SW & Trayhurn, P (1983) Developmental changes in fatty acid synthesis in interscapular brown adipose tissue of lean and genetically obese (oblob) mice. Biochem J 212, 393398.CrossRefGoogle Scholar
Whittle, A, Relat-Pardo, J & Vidal-Puig, A (2013) Pharmacological strategies for targeting BAT thermogenesis. Trends Pharmacol Sci 34, 347355.10.1016/j.tips.2013.04.004CrossRefGoogle ScholarPubMed
Beiroa, D, Imbernon, M, Gallego, R et al. (2014) GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes 63, 33463358.CrossRefGoogle ScholarPubMed
Bordicchia, M, Liu, D, Amri, E-Z et al. (2012) Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Invest 122, 10221036.10.1172/JCI59701CrossRefGoogle ScholarPubMed
Young, P, Arch, JR & Ashwell, M (1984) Brown adipose tissue in the parametrial fat pad of the mouse. FEBS Lett 167, 1014.10.1016/0014-5793(84)80822-4CrossRefGoogle ScholarPubMed
Ohno, H, Shinoda, K, Spiegelman, BM et al. (2012) PPARγ agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab 15, 395404.CrossRefGoogle ScholarPubMed
Boozer, CN, Nasser, JA, Heymsfield, SB et al. (2001) An herbal supplement containing Ma Huang-Guarana for weight loss: a randomized, double-blind trial. Int J Obes 25, 316324.CrossRefGoogle ScholarPubMed
Hill, JO, Peters, JC & Wyatt, HR (2009) Using the energy gap to address obesity: a commentary. J Am Diet Assoc 109, 18481853.CrossRefGoogle ScholarPubMed
Carpentier, AC, Blondin, DP, Virtanen, KA et al. (2018) Brown adipose tissue energy metabolism in humans. Front Endocrinol 9 [Epublication 7 August 2018].CrossRefGoogle ScholarPubMed
Cypess, AM, Weiner, LS, Roberts-Toler, C et al. (2015) Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab 21, 3338.10.1016/j.cmet.2014.12.009CrossRefGoogle ScholarPubMed
O'Mara, AE, Johnson, JW, Linderman, JD et al. (2020) Chronic mirabegron treatment increases human brown fat, HDL cholesterol, and insulin sensitivity. J Clin Invest [Epublication ahead of print version].CrossRefGoogle ScholarPubMed
Pfannenberg, C, Werner, MK, Ripkens, S et al. (2010) Impact of age on the relationships of brown adipose tissue with sex and adiposity in humans. Diabetes 59, 17891793.CrossRefGoogle ScholarPubMed
Lee, P, Zhao, JT, Swarbrick, MM et al. (2011) High prevalence of brown adipose tissue in adult humans. J Clin Endocrinol Metab 96, 24502455.CrossRefGoogle ScholarPubMed
Vijgen, GHEJ, Bouvy, ND, Teule, GJJ et al. (2011) Brown adipose tissue in morbidly obese subjects. PLoS ONE 6, e17247.CrossRefGoogle ScholarPubMed
Valle, A, García-Palmer, FJ, Oliver, J et al. (2007) Sex differences in brown adipose tissue thermogenic features during caloric restriction. Cell Physiol Biochem 19, 195204.10.1159/000099207CrossRefGoogle ScholarPubMed
Kim, S-N, Jung, Y-S, Kwon, H-J et al. (2016) Sex differences in sympathetic innervation and browning of white adipose tissue of mice. Biol Sex Differ 7 [Epublication 9 December 2016].10.1186/s13293-016-0121-7CrossRefGoogle ScholarPubMed
Quarta, C, Mazza, R, Pasquali, R et al. (2012) Role of sex hormones in modulation of brown adipose tissue activity. J Mol Endocrinol 49, R1R7.10.1530/JME-12-0043CrossRefGoogle ScholarPubMed
Fletcher, LA, Kim, K, Leitner, BP et al. (2020) Sexual dimorphisms in adult human brown adipose tissue. Obesity (Silver Spring, MD) 28, 241246.CrossRefGoogle ScholarPubMed
Rimando, AM, Nagmani, R, Feller, DR et al. (2005) Pterostilbene, a new agonist for the peroxisome proliferator-activated receptor alpha-isoform, lowers plasma lipoproteins and cholesterol in hypercholesterolemic hamsters. J Agric Food Chem 53, 34033407.CrossRefGoogle ScholarPubMed
Kersten, S (2014) Integrated physiology and systems biology of PPARα. Mol Metab 3, 354371.CrossRefGoogle ScholarPubMed
Rakhshandehroo, M, Knoch, B, Müller, M et al. (2010) Peroxisome proliferator-activated receptor alpha target genes. PPAR Res [Epublication 26 September 2010].CrossRefGoogle ScholarPubMed
Etxeberria, U, Hijona, E, Aguirre, L et al. (2017) Pterostilbene-induced changes in gut microbiota composition in relation to obesity. Mol Nutr Food Res 61 [Epublication 3 August 2016].CrossRefGoogle ScholarPubMed
Gómez-Zorita, S, Fernández-Quintela, A, Lasa, A et al. (2014) Pterostilbene, a dimethyl ether derivative of resveratrol, reduces fat accumulation in rats fed an obesogenic diet. J Agric Food Chem 62, 83718378.10.1021/jf501318bCrossRefGoogle ScholarPubMed
Riche, DM, Riche, KD, Blackshear, CT et al. (2014) Pterostilbene on metabolic parameters: a randomized, double-blind, and placebo-controlled trial. Evidence-Based Complementary Altern Med 2014, 459165.CrossRefGoogle ScholarPubMed
Barbera, MJ, Schluter, A, Pedraza, N et al. (2001) Peroxisome proliferator-activated receptor alpha activates transcription of the brown fat uncoupling protein-1 gene. A link between regulation of the thermogenic and lipid oxidation pathways in the brown fat cell. J Biol Chem 276, 14861493.CrossRefGoogle ScholarPubMed
Mottillo, EP, Bloch, AE, Leff, T et al. (2012) Lipolytic products activate peroxisome proliferator-activated receptor (PPAR) α and δ in brown adipocytes to match fatty acid oxidation with supply. J Biol Chem 287, 2503825048.CrossRefGoogle ScholarPubMed
Aguirre, L, Milton-Laskibar, I, Hijona, E et al. (2016) Effects of pterostilbene in brown adipose tissue from obese rats. J Physiol Biochem 73, 457464.10.1007/s13105-017-0556-2CrossRefGoogle ScholarPubMed
Nagao, K, Jinnouchi, T, Kai, S et al. (2017) Pterostilbene, a dimethylated analog of resveratrol, promotes energy metabolism in obese rats. J Nutr Biochem 43, 151155.CrossRefGoogle ScholarPubMed
Seale, P, Conroe, HM, Estall, J et al. (2011) Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Invest 121, 96105.CrossRefGoogle ScholarPubMed
Qiang, L, Wang, L, Kon, N et al. (2012) Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of PPARγ. Cell 150, 620632.CrossRefGoogle ScholarPubMed
Picard, F, Kurtev, M, Chung, N et al. (2004) Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429, 771776.CrossRefGoogle ScholarPubMed
Lan, F, Cacicedo, JM, Ruderman, N et al. (2008) SIRT1 Modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J Biol Chem 283, 2762827635.CrossRefGoogle ScholarPubMed
Rodgers, JT, Lerin, C, Haas, W et al. (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434, 113118.CrossRefGoogle ScholarPubMed
La Spina, M, Galletta, E, Azzolini, M et al. (2019) Browning effects of a chronic pterostilbene supplementation in mice fed a high-fat diet. Int J Mol Sci 20 [Epublication 29 October 2019].10.3390/ijms20215377CrossRefGoogle ScholarPubMed
Defour, M, Dijk, W, Ruppert, P et al. (2018) The peroxisome proliferator-activated receptor α is dispensable for cold-induced adipose tissue browning in mice. Mol Metab 10, 3954.CrossRefGoogle ScholarPubMed
Kapetanovic, IM, Muzzio, M, Huang, Z et al. (2011) Pharmacokinetics, oral bioavailability, and metabolic profile of resveratrol and its dimethylether analog, pterostilbene, in rats. Cancer Chemother Pharmacol 68, 593601.CrossRefGoogle ScholarPubMed
Nair, AB & Jacob, S (2016) A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 7, 2731.CrossRefGoogle ScholarPubMed
Riche, DM, McEwen, CL, Riche, KD et al. (2013) Analysis of safety from a human clinical trial with pterostilbene. J Toxicol 2013, 463595.CrossRefGoogle ScholarPubMed
Howitz, KT, Bitterman, KJ, Cohen, HY et al. (2003) Small molecule activators of sirtuins extend saccharomyces cerevisiae lifespan. Nature 425, 191196.CrossRefGoogle ScholarPubMed
Bordone, L & Guarente, L (2005) Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 6, 298305.10.1038/nrm1616CrossRefGoogle ScholarPubMed
Lagouge, M, Argmann, C, Gerhart-Hines, Z et al. (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127, 11091122.CrossRefGoogle ScholarPubMed
Baur, JA, Pearson, KJ, Price, NL et al. (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337342.CrossRefGoogle ScholarPubMed
Dal-Pan, A, Blanc, S & Aujard, F (2010) Resveratrol suppresses body mass gain in a seasonal non-human primate model of obesity. BMC Physiol 10, 11.CrossRefGoogle Scholar
Andrade, JMO, Frade, ACM, Guimarães, JB et al. (2014) Resveratrol increases brown adipose tissue thermogenesis markers by increasing SIRT1 and energy expenditure and decreasing fat accumulation in adipose tissue of mice fed a standard diet. Eur J Nutr 53, 15031510.10.1007/s00394-014-0655-6CrossRefGoogle ScholarPubMed
Wang, S, Liang, X, Yang, Q et al. (2015) Resveratrol induces brown-like adipocyte formation in white fat through activation of AMP-activated protein kinase (AMPK) α1. Int J Obes 2005 39, 967976.10.1038/ijo.2015.23CrossRefGoogle ScholarPubMed
Wang, S, Liang, X, Yang, Q et al. (2017) Resveratrol enhances brown adipocyte formation and function by activating AMP-activated protein kinase (AMPK) α1 in mice fed high-fat diet. Mol Nutr Food Res 61 [Epublication].CrossRefGoogle ScholarPubMed
Alberdi, G, Rodríguez, VM, Miranda, J et al. (2013) Thermogenesis is involved in the body-fat lowering effects of resveratrol in rats. Food Chem 141, 15301535.10.1016/j.foodchem.2013.03.085CrossRefGoogle ScholarPubMed
Poulsen, MM, Vestergaard, PF, Clasen, BF et al. (2013) High-dose resveratrol supplementation in obese men. Diabetes 62, 11861195.CrossRefGoogle ScholarPubMed
Yoshino, J, Conte, C, Fontana, L et al. (2012) Resveratrol supplementation does not improve metabolic function in nonobese women with normal glucose tolerance. Cell Metab 16, 658664.CrossRefGoogle Scholar
Crandall, JP, Oram, V, Trandafirescu, G et al. (2012) Pilot study of resveratrol in older adults with impaired glucose tolerance. J Gerontol A: Biol Sci Med Sci 67, 13071312.CrossRefGoogle ScholarPubMed
Timmers, S, Konings, E, Bilet, L et al. (2011) Calorie restriction-like effects of 30 days of resveratrol (resVida™) supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab 14, 612622.CrossRefGoogle Scholar
Springer, M & Moco, S (2019) Resveratrol and its human metabolites-effects on metabolic health and obesity. Nutrients 11 [Epublication].CrossRefGoogle ScholarPubMed
Maier-Salamon, A, Böhmdorfer, M, Thalhammer, T et al. (2011) Hepatic glucuronidation of resveratrol: interspecies comparison of enzyme kinetic profiles in human, mouse, rat, and dog. Drug Metab Pharmacokinet 26, 364373.CrossRefGoogle Scholar
Kim, SJ & Kim, GH (2006) Quantification of quercetin in different parts of onion and its DPPH radical scavenging and antibacterial activity. Food Sci Biotechnol 15, 3943.Google Scholar
Moon, J, Do, H-J, Kim, OY et al. (2013) Antiobesity effects of quercetin-rich onion peel extract on the differentiation of 3T3-L1 preadipocytes and the adipogenesis in high fat-fed rats. Food Chem Toxicol 58, 347354.CrossRefGoogle ScholarPubMed
Ting, Y, Chang, W-T, Shiau, D-K et al. (2018) Antiobesity efficacy of quercetin-rich supplement on diet-induced obese rats: effects on body composition, serum lipid profile, and gene expression. J Agric Food Chem 66, 7080.CrossRefGoogle ScholarPubMed
Rivera, L, Morón, R, Sánchez, M et al. (2008) Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats. Obesity (Silver Spring, MD) 16, 20812087.CrossRefGoogle ScholarPubMed
Lee, SG, Parks, JS & Kang, HW (2017) Quercetin, a functional compound of onion peel, remodels white adipocytes to brown-like adipocytes. J Nutr Biochem 42, 6271.CrossRefGoogle ScholarPubMed
Kuipers, EN, van Dam, AD, Held, NM et al. (2018) Quercetin lowers plasma triglycerides accompanied by white adipose tissue browning in diet-induced obese mice. Int J Mol Sci 19 [Epublication 16 Jun 2018].10.3390/ijms19061786CrossRefGoogle ScholarPubMed
Stewart, LK, Soileau, JL, Ribnicky, D et al. (2008) Quercetin transiently increases energy expenditure but persistently decreases circulating markers of inflammation in C57BL/6J mice fed a high-fat diet. Metabolism 57, S39S46.CrossRefGoogle Scholar
Choi, H, Kim, C-S & Yu, R (2018) Quercetin upregulates uncoupling protein 1 in white/brown adipose tissues through sympathetic stimulation. J Obes Metab Syndr 27, 102109.10.7570/jomes.2018.27.2.102CrossRefGoogle ScholarPubMed
Gruse, J, Görs, S, Tuchscherer, A et al. (2015) The effects of oral quercetin supplementation on splanchnic glucose metabolism in 1-week-old calves depend on diet after birth. J Nutr 145, 24862495.CrossRefGoogle ScholarPubMed
Gugler, R & Dengler, HJ (1973) Inhibition of human liver catechol-O-methyltransferase by flavonoids. Naunyn-Schmiedeberg's Arch Pharmacol 276, 223233.CrossRefGoogle ScholarPubMed
Kuppusamy, UR & Das, NP (1994) Potentiation of beta-adrenoceptor agonist-mediated lipolysis by quercetin and fisetin in isolated rat adipocytes. Biochem Pharmacol 47, 521529.CrossRefGoogle ScholarPubMed
Dong, J, Zhang, X, Zhang, L et al. (2014) Quercetin reduces obesity-associated ATM infiltration and inflammation in mice: a mechanism including AMPKα1/SIRT1. J Lipid Res 55, 363374.CrossRefGoogle ScholarPubMed
Cho, KW & Lumeng, CN (2011) Sirt1: a guardian at the gates of adipose tissue inflammation. Diabetes 60, 31003102.CrossRefGoogle ScholarPubMed
Yoshizaki, T, Milne, JC, Imamura, T et al. (2009) SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Mol Cell Biol 29, 13631374.CrossRefGoogle ScholarPubMed
Comalada, M, Ballester, I, Bailón, E et al. (2006) Inhibition of pro-inflammatory markers in primary bone marrow-derived mouse macrophages by naturally occurring flavonoids: analysis of the structure–activity relationship. Biochem Pharmacol 72, 10101021.CrossRefGoogle ScholarPubMed
Huang, H, Liao, D, Dong, Y et al. (2019) Clinical effectiveness of quercetin supplementation in the management of weight loss: a pooled analysis of randomized controlled trials. Diabetes Metab Syndr Obes: Targets Ther 12, 553563.CrossRefGoogle ScholarPubMed
Kim, J, Cha, Y-J, Lee, K-H et al. (2013) Effect of onion peel extract supplementation on the lipid profile and antioxidative status of healthy young women: a randomized, placebo-controlled, double-blind, crossover trial. Nutr Res Pract 7, 373379.CrossRefGoogle ScholarPubMed
Kim, K-A & Yim, J-E (2016) The effect of onion peel extract on inflammatory mediators in Korean overweight and obese women. Clin Nutr Res 5, 261269.10.7762/cnr.2016.5.4.261CrossRefGoogle ScholarPubMed
Lee, J-S, Cha, Y-J, Lee, K-H et al. (2016) Onion peel extract reduces the percentage of body fat in overweight and obese subjects: a 12-week, randomized, double-blind, placebo-controlled study. Nutr Res Pract 10, 175181.CrossRefGoogle ScholarPubMed
Zhang, L, Angst, E, Park, JL et al. (2010) Quercetin aglycone is bioavailable in murine pancreas and pancreatic xenografts. J Agric Food Chem 58, 72527257.CrossRefGoogle ScholarPubMed
Egert, S, Bosy-Westphal, A, Seiberl, J et al. (2009) Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: a double-blinded, placebo-controlled cross-over study. Br J Nutr 102, 10651074.CrossRefGoogle ScholarPubMed
Jin, F, Nieman, DC, Shanely, RA et al. (2010) The variable plasma quercetin response to 12-week quercetin supplementation in humans. Eur J Clin Nutr 64, 692697.CrossRefGoogle ScholarPubMed
Lu, NT, Crespi, CM, Liu, NM et al. (2016) A phase I dose escalation study demonstrates quercetin safety and explores potential for bioflavonoid antivirals in patients with chronic hepatitis C. Phytother Res 30, 160168.CrossRefGoogle ScholarPubMed
Xu, N, Zhang, L, Dong, J et al. (2014) Low-dose diet supplement of a natural flavonoid, luteolin, ameliorates diet-induced obesity and insulin resistance in mice. Mol Nutr Food Res 58, 12581268.CrossRefGoogle ScholarPubMed
Kwon, E-Y, Jung, UJ, Park, T et al. (2015) Luteolin attenuates hepatic steatosis and insulin resistance through the interplay between the liver and adipose tissue in mice with diet-induced obesity. Diabetes 64, 16581669.CrossRefGoogle ScholarPubMed
Zhang, L, Han, Y-J, Zhang, X et al. (2016) Luteolin reduces obesity-associated insulin resistance in mice by activating AMPKα1 signalling in adipose tissue macrophages. Diabetologia 59, 22192228.CrossRefGoogle ScholarPubMed
Ding, L, Jin, D & Chen, X (2010) Luteolin enhances insulin sensitivity via activation of PPARγ transcriptional activity in adipocytes. J Nutr Biochem 21, 941947.CrossRefGoogle ScholarPubMed
de Souza, CJ, Eckhardt, M, Gagen, K et al. (2001) Effects of pioglitazone on adipose tissue remodeling within the setting of obesity and insulin resistance. Diabetes 50, 18631871.CrossRefGoogle ScholarPubMed
Zhang, X, Zhang, Q-X, Wang, X et al. (2016) Dietary luteolin activates browning and thermogenesis in mice through an AMPK/PGC1α pathway-mediated mechanism. Int J Obes 2005 40, 18411849.CrossRefGoogle ScholarPubMed
Zhang, X, Wang, X, Yin, H et al. (2019) Functional inactivation of mast cells enhances subcutaneous adipose tissue browning in mice. Cell Rep 28, 792803. e4.CrossRefGoogle ScholarPubMed
Graham, HN (1992) Green tea composition, consumption, and polyphenol chemistry. Prev Med 21, 334350.CrossRefGoogle ScholarPubMed
Henning, SM, Fajardo-Lira, C, Lee, HW et al. (2003) Catechin content of 18 teas and a green tea extract supplement correlates with the antioxidant capacity. Nutr Cancer 45, 226235.10.1207/S15327914NC4502_13CrossRefGoogle Scholar
Arts, ICW, van de Putte, B & Hollman, PCH (2000) Catechin contents of foods commonly consumed in The Netherlands. 2. Tea, wine, fruit juices, and chocolate milk. J Agric Food Chem 48, 17521757.CrossRefGoogle ScholarPubMed
Dulloo, AG, Duret, C, Rohrer, D et al. (1999) Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am J Clin Nutr 70, 10401045.CrossRefGoogle Scholar
Rudelle, S, Ferruzzi, MG, Cristiani, I et al. (2007) Effect of a thermogenic beverage on 24-hour energy metabolism in humans. Obesity (Silver Spring, MD) 15, 349355.CrossRefGoogle ScholarPubMed
Bérubé-Parent, S, Pelletier, C, Doré, J et al. (2005) Effects of encapsulated green tea and Guarana extracts containing a mixture of epigallocatechin-3-gallate and caffeine on 24 h energy expenditure and fat oxidation in men. Br J Nutr 94, 432436.CrossRefGoogle ScholarPubMed
Thielecke, F, Rahn, G, Böhnke, J et al. (2010) Epigallocatechin-3-gallate and postprandial fat oxidation in overweight/obese male volunteers: a pilot study. Eur J Clin Nutr 64, 704713.CrossRefGoogle ScholarPubMed
Hursel, R, Viechtbauer, W & Westerterp-Plantenga, MS (2009) The effects of green tea on weight loss and weight maintenance: a meta-analysis. Int J Obes 2005 33, 956961.CrossRefGoogle ScholarPubMed
Westerterp-Plantenga, MS, Lejeune, MPGM & Kovacs, EMR (2005) Body weight loss and weight maintenance in relation to habitual caffeine intake and green tea supplementation. Obes Res 13, 11951204.CrossRefGoogle ScholarPubMed
Kapoor, MP, Sugita, M, Fukuzawa, Y et al. (2017) Physiological effects of epigallocatechin-3-gallate (EGCG) on energy expenditure for prospective fat oxidation in humans: a systematic review and meta-analysis.. Nutr Biochem 43, 110.CrossRefGoogle ScholarPubMed
Yoneshiro, T, Matsushita, M, Hibi, M et al. (2017) Tea catechin and caffeine activate brown adipose tissue and increase cold-induced thermogenic capacity in humans. Am J Clin Nutr 105, 873881.CrossRefGoogle ScholarPubMed
Nirengi, S, Amagasa, S, Homma, T et al. (2016) Daily ingestion of catechin-rich beverage increases brown adipose tissue density and decreases extramyocellular lipids in healthy young women. SpringerPlus 5, 1363.CrossRefGoogle ScholarPubMed
Matsuyama, T, Tanaka, Y, Kamimaki, I et al. (2008) Catechin safely improved higher levels of fatness, blood pressure, and cholesterol in children. Obesity (Silver Spring, MD) 16, 13381348.CrossRefGoogle ScholarPubMed
Nagao, T, Komine, Y, Soga, S et al. (2005) Ingestion of a tea rich in catechins leads to a reduction in body fat and malondialdehyde-modified LDL in men. Am J Clin Nutr. 81, 122129.CrossRefGoogle Scholar
Auvichayapat, P, Prapochanung, M, Tunkamnerdthai, O et al. (2008) Effectiveness of green tea on weight reduction in obese Thais: a randomized, controlled trial. Physiol Behav 93, 486491.CrossRefGoogle ScholarPubMed
Chantre, P & Lairon, D (2002) Recent findings of green tea extract AR25 (Exolise) and its activity for the treatment of obesity. Phytomedicine 9, 38.CrossRefGoogle ScholarPubMed
Phung, OJ, Baker, WL, Matthews, LJ et al. (2010) Effect of green tea catechins with or without caffeine on anthropometric measures: a systematic review and meta-analysis. Am J Clin Nutr 91, 7381.CrossRefGoogle ScholarPubMed
Choo, JJ (2003) Green tea reduces body fat accretion caused by high-fat diet in rats through beta-adrenoceptor activation of thermogenesis in brown adipose tissue. J Nutr Biochem 14, 671676.CrossRefGoogle ScholarPubMed
Nomura, S, Ichinose, T, Jinde, M et al. (2008) Tea catechins enhance the mRNA expression of uncoupling protein 1 in rat brown adipose tissue. J Nutr Biochem 19, 840847.CrossRefGoogle ScholarPubMed
Klaus, S, Pültz, S, Thöne-Reineke, C et al. (2005) Epigallocatechin gallate attenuates diet-induced obesity in mice by decreasing energy absorption and increasing fat oxidation. Int J Obes 2005 29, 615623.CrossRefGoogle ScholarPubMed
Nagai, M, Conney, AH & Zhu, BT (2004) Strong inhibitory effects of common tea catechins and bioflavonoids on the O-methylation of catechol estrogens catalyzed by human liver cytosolic catechol-O-methyltransferase. Drug Metab Dispos 32, 497504.CrossRefGoogle ScholarPubMed
Shixian, Q, VanCrey, B, Shi, J et al. (2006) Green tea extract thermogenesis-induced weight loss by epigallocatechin gallate inhibition of catechol-O-methyltransferase. J Med Food 9, 451458.CrossRefGoogle ScholarPubMed
Zhu, BT, Shim, J-Y, Nagai, M et al. (2008) Molecular modelling study of the mechanism of high-potency inhibition of human catechol-O-methyltransferase by (−)-epigallocatechin-3-O-gallate. Xenobiotica 38, 130146.CrossRefGoogle ScholarPubMed
Warden, BA, Smith, LS, Beecher, GR et al. (2001) Catechins are bioavailable in men and women drinking black tea throughout the day. J Nutr 131, 17311737.CrossRefGoogle ScholarPubMed
Takahashi, M, Miyashita, M, Suzuki, K et al. (2014) Acute ingestion of catechin-rich green tea improves postprandial glucose status and increases serum thioredoxin concentrations in postmenopausal women. Br J Nutr 112, 15421550.CrossRefGoogle ScholarPubMed
Yang, CS, Chen, L, Lee, MJ et al. (1998) Blood and urine levels of tea catechins after ingestion of different amounts of green tea by human volunteers. Cancer Epidemiol Biomarkers Prev 7, 351354.Google ScholarPubMed
Lorenz, M, Paul, F, Moobed, M et al. (2014) The activity of catechol-O-methyltransferase (COMT) is not impaired by high doses of epigallocatechin-3-gallate (EGCG) in vivo. Eur J Pharmacol 740, 645651.CrossRefGoogle Scholar
Kurogi, M, Miyashita, M, Emoto, Y et al. (2012) Green tea polyphenol epigallocatechin gallate activates TRPA1 in an intestinal enteroendocrine cell line, STC-1. Chem Senses 37, 167177.CrossRefGoogle Scholar
Kurogi, M, Kawai, Y, Nagatomo, K et al. (2015) Auto-oxidation products of epigallocatechin gallate activate TRPA1 and TRPV1 in sensory neurons. Chem Senses 40, 2746.CrossRefGoogle ScholarPubMed
Sanz-Salvador, L, Andrés-Borderia, A, Ferrer-Montiel, A et al. (2012) Agonist- and Ca2+-dependent desensitization of TRPV1 channel targets the receptor to lysosomes for degradation. J Biol Chem 287, 1946219471.CrossRefGoogle ScholarPubMed
Dulloo, AG, Seydoux, J, Girardier, L et al. (2000) Green tea and thermogenesis: interactions between catechin-polyphenols, caffeine and sympathetic activity. Int J Obes Relat Metab Disord 24, 252258.CrossRefGoogle ScholarPubMed
Ramsey, IS, Delling, M & Clapham, DE (2006) An introduction to TRP channels. Annu Rev Physiol 68, 619647.CrossRefGoogle ScholarPubMed
Leidy, HJ, Todd, CB, Zino, AZ et al. (2015) Consuming high-protein soy snacks affects appetite control, satiety, and diet quality in young people and influences select aspects of mood and cognition. J Nutr 145, 16141622.CrossRefGoogle ScholarPubMed
Martínez de Morentin, PB, González-García, I, Martins, L et al. (2014) Estradiol regulates brown adipose tissue thermogenesis via hypothalamic AMPK. Cell Metab 20, 4153.CrossRefGoogle ScholarPubMed
Prossnitz, ER & Barton, M (2011) The G-protein-coupled estrogen receptor GPER in health and disease. Nat Rev Endocrinol 7, 715726.CrossRefGoogle ScholarPubMed
Suetsugi, M, Su, L, Karlsberg, K et al. (2003) Flavone and isoflavone phytoestrogens are agonists of estrogen-related receptors. Mol Cancer Res 1, 981991.Google ScholarPubMed
Monjo, M, Rodríguez, AM, Palou, A et al. (2003) Direct effects of testosterone, 17 beta-estradiol, and progesterone on adrenergic regulation in cultured brown adipocytes: potential mechanism for gender-dependent thermogenesis. Endocrinology 144, 49234930.CrossRefGoogle ScholarPubMed
Mattingly, KA, Ivanova, MM, Riggs, KA et al. (2008) Estradiol stimulates transcription of nuclear respiratory factor-1 and increases mitochondrial biogenesis. Mol Endocrinol (Baltim, MD) 22, 609622.CrossRefGoogle ScholarPubMed
Rodríguez-Cuenca, S, Monjo, M, Gianotti, M et al. (2007) Expression of mitochondrial biogenesis-signaling factors in brown adipocytes is influenced specifically by 17beta-estradiol, testosterone, and progesterone. Am J Physiol Endocrinol Metab 292, E340E346.CrossRefGoogle ScholarPubMed
Kamiya, T, Nagamine, R, Sameshima-Kamiya, M et al. (2012) The isoflavone-rich fraction of the crude extract of the Puerariae flower increases oxygen consumption and BAT UCP1 expression in high-fat diet-fed mice. Glob J Health Sci. 4, 147155.CrossRefGoogle ScholarPubMed
Cederroth, CR, Vinciguerra, M, Kühne, F et al. (2007) A phytoestrogen-rich diet increases energy expenditure and decreases adiposity in mice. Environ Health Perspect 115, 14671473.CrossRefGoogle ScholarPubMed
Russell, AL, Grimes, JM, Cruthirds, DF et al. (2017) Dietary isoflavone-dependent and estradiol replacement effects on body weight in the ovariectomized (OVX) rat. Horm Metab Res/Horm Stoffwechselforsch/Horm Metab 49, 457465.Google ScholarPubMed
Lephart, ED, Porter, JP, Lund, TD et al. (2004) Dietary isoflavones alter regulatory behaviors, metabolic hormones and neuroendocrine function in long-Evans male rats. Nutr Metab 1, 16.CrossRefGoogle ScholarPubMed
Crespillo, A, Alonso, M, Vida, M et al. (2011) Reduction of body weight, liver steatosis and expression of stearoyl-CoA desaturase 1 by the isoflavone daidzein in diet-induced obesity. Br J Pharmacol 164, 18991915.CrossRefGoogle ScholarPubMed
Guo, Y, Wu, G, Su, X et al. (2009) Antiobesity action of a daidzein derivative on male obese mice induced by a high-fat diet. Nutr Res (New York, NY) 29, 656663.CrossRefGoogle ScholarPubMed
Szkudelska, K, Szkudelski, T & Nogowski, L (2002) Daidzein, coumestrol and zearalenone affect lipogenesis and lipolysis in rat adipocytes. Phytomedicine 9, 338345.10.1078/0944-7113-00148CrossRefGoogle ScholarPubMed
Ko, W-C, Shih, C-M, Lai, Y-H et al. (2004) Inhibitory effects of flavonoids on phosphodiesterase isozymes from Guinea pig and their structure-activity relationships. Biochem Pharmacol 68, 20872094.CrossRefGoogle ScholarPubMed
Chrzan, BG & Bradford, PG (2007) Phytoestrogens activate estrogen receptor beta1 and estrogenic responses in human breast and bone cancer cell lines. Mol Nutr Food Res 51, 171177.CrossRefGoogle ScholarPubMed
An, J, Tzagarakis-Foster, C, Scharschmidt, TC et al. (2001) Estrogen receptor beta-selective transcriptional activity and recruitment of coregulators by phytoestrogens. J Biol Chem 276, 1780817814.CrossRefGoogle ScholarPubMed
Zhou, L, Xiao, X, Zhang, Q et al. (2019) A possible mechanism: genistein improves metabolism and induces white fat browning through modulating hypothalamic expression of Ucn3, Depp, and Stc1. Front Endocrinol 10, 478.CrossRefGoogle ScholarPubMed
Jamieson, PM, Cleasby, ME, Kuperman, Y et al. (2011) Urocortin 3 transgenic mice exhibit a metabolically favourable phenotype resisting obesity and hyperglycaemia on a high-fat diet. Diabetologia 54. 23922403.CrossRefGoogle ScholarPubMed
Telegdy, G, Adamik, A & Tóth, G (2006) The action of urocortins on body temperature in rats. Peptides 27, 22892294.CrossRefGoogle ScholarPubMed
Kotz, CM, Wang, C, Levine, AS et al. (2002) Urocortin in the hypothalamic PVN increases leptin and affects uncoupling proteins-1 and -3 in rats. Am J Physiol: Regul Integr Comp Physiol 282, R546R551.Google ScholarPubMed
Palacios-González, B, Vargas-Castillo, A, Velázquez-Villegas, LA et al. (2019) Genistein increases the thermogenic program of subcutaneous WAT and increases energy expenditure in mice. J Nutr Biochem 68, 5968.CrossRefGoogle ScholarPubMed
Buhlmann, E, Horváth, C, Houriet, J et al. (2019) Puerariae lobatae root extracts and the regulation of brown fat activity. Phytomedicine 64, 153075.10.1016/j.phymed.2019.153075CrossRefGoogle ScholarPubMed
Penza, M, Montani, C, Romani, A et al. (2006) Genistein affects adipose tissue deposition in a dose-dependent and gender-specific manner. Endocrinology 147, 57405751.CrossRefGoogle Scholar
Velickovic, K, Cvoro, A, Srdic, B et al. (2014) Expression and subcellular localization of estrogen receptors α and β in human fetal brown adipose tissue. J Clin Endocrinol Metab 99, 151159.CrossRefGoogle ScholarPubMed
Kostelac, D, Rechkemmer, G & Briviba, K (2003) Phytoestrogens modulate binding response of estrogen receptors alpha and beta to the estrogen response element. J Agric Food Chem 51, 76327635.CrossRefGoogle ScholarPubMed
van der Velpen, V, Hollman, PC, van Nielen, M et al. (2014) Large inter-individual variation in isoflavone plasma concentration limits use of isoflavone intake data for risk assessment. Eur J Clin Nutr 68, 11411147.CrossRefGoogle ScholarPubMed
Ponnusamy, S, Tran, QT, Harvey, I et al. (2017) Pharmacologic activation of estrogen receptor β increases mitochondrial function, energy expenditure, and brown adipose tissue. FASEB 31, 266281.CrossRefGoogle ScholarPubMed
Liu, Z-M, Ho, SC, Chen, Y-M et al. (2013) A six-month randomized controlled trial of whole soy and isoflavones daidzein on body composition in equol-producing postmenopausal women with prehypertension. J Obes 2013, 359763.CrossRefGoogle ScholarPubMed
Jones, G, Dwyer, T, Hynes, K et al. (2003) A randomized controlled trial of phytoestrogen supplementation, growth and bone turnover in adolescent males. Eur J Clin Nutr 57, 324327.CrossRefGoogle ScholarPubMed
Anderson, JW, Fuller, J, Patterson, K et al. (2007) Soy compared to casein meal replacement shakes with energy-restricted diets for obese women: randomized controlled trial. Metabolism 56, 280288.CrossRefGoogle ScholarPubMed
Ye, Y-B, Chen, A-L, Lu, W et al. (2015) Daidzein and genistein fail to improve glycemic control and insulin sensitivity in Chinese women with impaired glucose regulation: a double-blind, randomized, placebo-controlled trial. Mol Nutr Food Res 59, 240249.CrossRefGoogle ScholarPubMed
Amanat, S, Eftekhari, MH, Fararouei, M et al. (2018) Genistein supplementation improves insulin resistance and inflammatory state in non-alcoholic fatty liver patients: a randomized, controlled trial. Clin Nutr 37, 12101215.CrossRefGoogle Scholar
Christie, DR, Grant, J, Darnell, BE et al. (2010) Metabolic effects of soy supplementation in postmenopausal Caucasian and African American women: a randomized, placebo-controlled trial. Am J Obstet Gynecol 203, 153.e1153.e9.CrossRefGoogle ScholarPubMed
Sites, CK, Cooper, BC, Toth, MJ et al. (2007) Effect of a daily supplement of soy protein on body composition and insulin secretion in postmenopausal women. Fertil Steril 88, 16091617.CrossRefGoogle ScholarPubMed
Barnes, S, Prasain, J, D'Alessandro, T et al. (2011) The metabolism and analysis of isoflavones and other dietary polyphenols in foods and biological systems. Food Funct 2, 235244.CrossRefGoogle Scholar
Atkinson, C, Frankenfeld, CL & Lampe, JW (2005) Gut bacterial metabolism of the soy isoflavone daidzein: exploring the relevance to human health. Exp Biol Med (Maywood, NJ) 230, 155170.10.1177/153537020523000302CrossRefGoogle ScholarPubMed
Muthyala, RS, Ju, YH, Sheng, S et al. (2004) Equol, a natural estrogenic metabolite from soy isoflavones: convenient preparation and resolution of R- and S-equols and their differing binding and biological activity through estrogen receptors alpha and beta. Bioorg Med Chem 12, 15591567.CrossRefGoogle ScholarPubMed
Arai, Y, Uehara, M, Sato, Y et al. (2000) Comparison of isoflavones among dietary intake, plasma concentration and urinary excretion for accurate estimation of phytoestrogen intake. J Epidemiol 10, 127135.CrossRefGoogle ScholarPubMed
Akaza, H, Miyanaga, N, Takashima, N et al. (2004) Comparisons of percent equol producers between prostate cancer patients and controls: case-controlled studies of isoflavones in Japanese, Korean and American residents. Jpn J Clin Oncol 34, 8689.CrossRefGoogle ScholarPubMed
Liu, B, Qin, L, Liu, A et al. (2010) Prevalence of the equol-producer phenotype and its relationship with dietary isoflavone and serum lipids in healthy Chinese adults. J Epidemiol 20, 377384.CrossRefGoogle ScholarPubMed
Zhang, Y-B, Chen, W-H, Guo, J-J et al. (2013) Soy isoflavone supplementation could reduce body weight and improve glucose metabolism in non-Asian postmenopausal women – a meta-analysis. Nutrition 29, 814.CrossRefGoogle ScholarPubMed
Akhlaghi, M, Zare, M & Nouripour, F (2017) Effect of soy and soy isoflavones on obesity-related anthropometric measures: a systematic review and meta-analysis of randomized controlled clinical trials. Adv Nutr 8, 705717.CrossRefGoogle ScholarPubMed
Nagata, C (2010) Factors to consider in the association between soy isoflavone intake and breast cancer risk. J Epidemiol 20, 8389.CrossRefGoogle ScholarPubMed
Matsuura, HN & Fett-Neto, AG (2017) Plant alkaloids: main features, toxicity, and mechanisms of action. In Plant Toxins, pp. 243261 [Gopalakrishnakone, P, Carlini, C and Ligabue-Braun, R, editors]. Dordrecht: Springer.CrossRefGoogle Scholar
Orellana-Escobedo, L, Garcia-Amezquita, LE, Olivas, GI et al. (2013) Capsaicinoids content and proximate composition of Mexican chili peppers (Capsicum spp.) cultivated in the State of Chihuahua. CyTA – J Food 11, 179184.CrossRefGoogle Scholar
Scientific Committee on Food (2002) Opinion of the Scientific Committee on Food on Capsaicin. 12. Belgium: European Commission Health & Consumer protection directorate-general.Google Scholar
Bevan, S & Szolcsányi, J (1990) Sensory neuron-specific actions of capsaicin: mechanisms and applications. Trends Pharmacol Sci 11, 330333.CrossRefGoogle ScholarPubMed
Henry, CJ & Emery, B (1986) Effect of spiced food on metabolic rate. Hum Nutr Clin Nutr 40, 165168.Google ScholarPubMed
Yoshioka, M, Lim, K, Kikuzato, S et al. (1995) Effects of red-pepper diet on the energy metabolism in men. J Nutr Sci Vitaminol (Tokyo) 41, 647656.CrossRefGoogle ScholarPubMed
Yoshioka, M, St-Pierre, S, Drapeau, V et al. (1999) Effects of red pepper on appetite and energy intake. Br J Nutr 82, 115123.CrossRefGoogle ScholarPubMed
Smeets, AJ & Westerterp-Plantenga, MS (2009) The acute effects of a lunch containing capsaicin on energy and substrate utilisation, hormones, and satiety. Eur J Nutr 48, 229234.CrossRefGoogle ScholarPubMed
Galgani, JE & Ravussin, E (2010) Effect of dihydrocapsiate on resting metabolic rate in humans. Am J Clin Nutr 92, 10891093.CrossRefGoogle ScholarPubMed
Iida, T, Moriyama, T, Kobata, K et al. (2003) TRPV1 activation and induction of nociceptive response by a non-pungent capsaicin-like compound, capsiate. Neuropharmacology 44, 958967.CrossRefGoogle ScholarPubMed
Sasahara, I, Furuhata, Y, Iwasaki, Y et al. (2010) Assessment of the biological similarity of three capsaicin analogs (capsinoids) found in non-pungent chili pepper (CH-19 sweet) fruits. Biosci Biotechnol Biochem 74, 274278.CrossRefGoogle ScholarPubMed
Ludy, M-J, Moore, GE & Mattes, RD (2012) The effects of capsaicin and capsiate on energy balance: critical review and meta-analyses of studies in humans. Chem Senses 37, 103121.CrossRefGoogle ScholarPubMed
Ohnuki, K, Haramizu, S, Oki, K et al. (2001) Administration of capsiate, a non-pungent capsaicin analog, promotes energy metabolism and suppresses body fat accumulation in mice. Biosci Biotechnol Biochem 65, 27352740.CrossRefGoogle ScholarPubMed
Kawabata, F, Inoue, N, Masamoto, Y et al. (2009) Non-pungent capsaicin analogs (capsinoids) increase metabolic rate and enhance thermogenesis via gastrointestinal TRPV1 in mice. Biosci Biotechnol Biochem 73, 26902697.CrossRefGoogle ScholarPubMed
Baskaran, P, Krishnan, V, Fettel, K et al. (2017) TRPV1 Activation counters diet-induced obesity through sirtuin-1 activation and PRDM-16 deacetylation in brown adipose tissue. Int J Obes 2005 41, 739749.CrossRefGoogle ScholarPubMed
Baskaran, P, Krishnan, V, Ren, J et al. (2016) Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel-dependent mechanisms. Br J Pharmacol 173, 23692389.CrossRefGoogle ScholarPubMed
Kang, J-H, Goto, T, Han, I-S et al. (2010) Dietary capsaicin reduces obesity-induced insulin resistance and hepatic steatosis in obese mice fed a high-fat diet. Obesity (Silver Spring, MD) 18, 780787.CrossRefGoogle ScholarPubMed
Yoshida, T, Yoshioka, K, Wakabayashi, Y et al. (1988) Effects of capsaicin and isothiocyanate on thermogenesis of interscapular brown adipose tissue in rats. J Nutr Sci Vitaminol (Tokyo) 34, 587594.10.3177/jnsv.34.587CrossRefGoogle ScholarPubMed
Masuda, Y, Haramizu, S, Oki, K et al. (2003) Upregulation of uncoupling proteins by oral administration of capsiate, a nonpungent capsaicin analog. J Appl Physiol (Bethesda, MD) 1985 95, 24082415.Google ScholarPubMed
Kawada, T, Hagihara, K & Iwai, K (1986) Effects of capsaicin on lipid metabolism in rats fed a high fat diet. J Nutr 116, 12721278.CrossRefGoogle ScholarPubMed
Janssens, PLHR, Hursel, R, Martens, EAP et al. (2013) Acute effects of capsaicin on energy expenditure and fat oxidation in negative energy balance. PLoS ONE 8, e67786.CrossRefGoogle ScholarPubMed
Snitker, S, Fujishima, Y, Shen, H et al. (2009) Effects of novel capsinoid treatment on fatness and energy metabolism in humans: possible pharmacogenetic implications. Am J Clin Nutr 89, 4550.CrossRefGoogle ScholarPubMed
Sun, L, Camps, SG, Goh, HJ et al. (2018) Capsinoids activate brown adipose tissue (BAT) with increased energy expenditure associated with subthreshold 18-fluorine fluorodeoxyglucose uptake in BAT-positive humans confirmed by positron emission tomography scan. Am J Clin Nutr 107, 6270.CrossRefGoogle ScholarPubMed
Yoneshiro, T, Aita, S, Kawai, Y et al. (2012) Nonpungent capsaicin analogs (capsinoids) increase energy expenditure through the activation of brown adipose tissue in humans. Am J Clin Nutr 95, 845850.CrossRefGoogle ScholarPubMed
Rollyson, WD, Stover, CA, Brown, KC et al. (2014) Bioavailability of capsaicin and its implications for drug delivery. J Controlled Release 196, 96105.CrossRefGoogle ScholarPubMed
Baboota, RK, Singh, DP, Sarma, SM et al. (2014) Capsaicin induces ‘brite’ phenotype in differentiating 3T3-L1 preadipocytes. PLoS ONE 9, e103093.CrossRefGoogle ScholarPubMed
Kong, W, Wei, J, Abidi, P et al. (2004) Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat Med 10, 13441351.CrossRefGoogle ScholarPubMed
Lee, YS, Kim, WS, Kim, KH et al. (2006) Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 55, 22562264.CrossRefGoogle ScholarPubMed
Turner, N, Li, J-Y, Gosby, A et al. (2008) Berberine and its more biologically available derivative, dihydroberberine, inhibit mitochondrial respiratory complex I: a mechanism for the action of berberine to activate AMP-activated protein kinase and improve insulin action. Diabetes 57, 14141418.CrossRefGoogle ScholarPubMed
Perdikari, A, Kulenkampff, E, Rudigier, C et al. (2017) A high-throughput, image-based screen to identify kinases involved in brown adipocyte development. Sci Signal 10 [Epublication].CrossRefGoogle ScholarPubMed
Ahmadian, M, Abbott, MJ, Tang, T et al. (2011) Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype. Cell Metab 13, 739748.CrossRefGoogle ScholarPubMed
Wu, L, Zhang, L, Li, B et al. (2018) AMP-Activated protein kinase (AMPK) regulates energy metabolism through modulating thermogenesis in adipose tissue. Front Physiol 9, 122.CrossRefGoogle ScholarPubMed
Zhang, Z, Zhang, H, Li, B et al. (2014) Berberine activates thermogenesis in white and brown adipose tissue. Nat Commun 5, 5493.CrossRefGoogle ScholarPubMed
Sun, Y, Xia, M, Yan, H et al. (2018) Berberine attenuates hepatic steatosis and enhances energy expenditure in mice by inducing autophagy and fibroblast growth factor 21. Br J Pharmacol 175, 374387.CrossRefGoogle ScholarPubMed
Li, Y, Wong, K, Giles, A et al. (2014) Hepatic SIRT1 attenuates hepatic steatosis and controls energy balance in mice by inducing fibroblast growth factor 21. Gastroenterology 146, 539549.CrossRefGoogle ScholarPubMed
Hondares, E, Iglesias, R, Giralt, A et al. (2011) Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem 286, 1298312990.CrossRefGoogle ScholarPubMed
Fisher, FM, Kleiner, S, Douris, N et al. (2012) FGF21 Regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 26, 271281.CrossRefGoogle ScholarPubMed
Wu, L, Xia, M, Duan, Y et al. (2019) Berberine promotes the recruitment and activation of brown adipose tissue in mice and humans. Cell Death Dis 10, 468.CrossRefGoogle ScholarPubMed
Yan, H-M, Xia, M-F, Wang, Y et al. (2015) Efficacy of berberine in patients with non-alcoholic fatty liver disease. PLoS ONE 10, e0134172.Google ScholarPubMed
Zhang, Y, Li, X, Zou, D et al. (2008) Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine. J Clin Endocrinol Metab 93, 25592565.CrossRefGoogle ScholarPubMed
Yin, J, Xing, H & Ye, J (2008) Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism 57, 712717.CrossRefGoogle ScholarPubMed
Hu, Y, Ehli, EA, Kittelsrud, J et al. (2012) Lipid-lowering effect of berberine in human subjects and rats. Phytomedicine 19, 861867.Google ScholarPubMed
Hua, W, Ding, L, Chen, Y et al. (2007) Determination of berberine in human plasma by liquid chromatography-electrospray ionization-mass spectrometry. J Pharm Biomed Anal 44, 931937.CrossRefGoogle ScholarPubMed
Chen, W, Miao, Y-Q, Fan, D-J et al. (2011) Bioavailability study of berberine and the enhancing effects of TPGS on intestinal absorption in rats. AAPS PharmSciTech 12, 705711.Google ScholarPubMed
Feng, R, Shou, J-W, Zhao, Z-X et al. (2015) Transforming berberine into its intestine-absorbable form by the gut microbiota. Sci Rep 5, 115.Google ScholarPubMed
Beery, AK & Zucker, I (2011) Sex bias in neuroscience and biomedical research. Neurosci Biobehav Rev 35, 565572.CrossRefGoogle ScholarPubMed
Rodriguez-Cuenca, S, Pujol, E, Justo, R et al. (2002) Sex-dependent thermogenesis, differences in mitochondrial morphology and function, and adrenergic response in brown adipose tissue. J Biol Chem 277, 4295842963.CrossRefGoogle ScholarPubMed
Enriori, PJ, Sinnayah, P, Simonds, SE et al. (2011) Leptin action in the dorsomedial hypothalamus increases sympathetic tone to brown adipose tissue in spite of systemic leptin resistance. J Neurosci 31, 1218912197.CrossRefGoogle ScholarPubMed
Siegrist-Kaiser, CA, Pauli, V, Juge-Aubry, CE et al. (1997) Direct effects of leptin on brown and white adipose tissue. J Clin Invest 100, 28582864.CrossRefGoogle Scholar
Hickey, MS, Israel, RG, Gardiner, SN et al. (1996) Gender differences in serum leptin levels in humans. Biochem Mol Med 59, 16.CrossRefGoogle ScholarPubMed
Landt, M, Gingerich, RL, Havel, PJ et al. (1998) Radioimmunoassay of rat leptin: sexual dimorphism reversed from humans. Clin Chem 44, 565570.Google ScholarPubMed
Org, E, Mehrabian, M, Parks, BW et al. (2016) Sex differences and hormonal effects on gut microbiota composition in mice. Gut Microbes 7, 313322.CrossRefGoogle ScholarPubMed
Waxman, DJ & Holloway, MG (2009) Sex differences in the expression of hepatic drug metabolizing enzymes. Mol Pharmacol 76, 215228.CrossRefGoogle ScholarPubMed
Li, G, Zhao, M, Qiu, F et al. (2018) Pharmacokinetic interactions and tolerability of berberine chloride with simvastatin and fenofibrate: an open-label, randomized, parallel study in healthy Chinese subjects. Drug Des Devel Ther 13, 129139.CrossRefGoogle ScholarPubMed
Hill, JO, Wyatt, HR & Peters, JC (2012) Energy balance and obesity. Circulation 126, 126132.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Horvath and Wolfrum supplementary material

Horvath and Wolfrum supplementary material 1

Download Horvath and Wolfrum supplementary material(PDF)
PDF 375.5 KB
Supplementary material: File

Horvath and Wolfrum supplementary material

Horvath and Wolfrum supplementary material 2

Download Horvath and Wolfrum supplementary material(File)
File 79.6 KB