Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-01T05:17:20.929Z Has data issue: false hasContentIssue false

Deviations from a typical development of the cerebellum in youth are associated with psychopathology, executive functions and educational outcomes

Published online by Cambridge University Press:  13 October 2022

Marina S. Borges*
Affiliation:
Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil
Maurício S. Hoffmann
Affiliation:
Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil Department of Neuropsychiatry, Universidade Federal de Santa Maria, Avenida Roraima 1000, Santa Maria, 97105-900, Brazil
André Simioni
Affiliation:
Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
Luiza K. Axelrud
Affiliation:
Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
Danielle S. Teixeira
Affiliation:
Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
André Zugman
Affiliation:
National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA Laboratório Interdisciplinar de Neurociências Integrativas (LiNC), Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
Andrea Jackowski
Affiliation:
Laboratório Interdisciplinar de Neurociências Integrativas (LiNC), Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
Pedro M. Pan
Affiliation:
Laboratório Interdisciplinar de Neurociências Integrativas (LiNC), Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
Rodrigo A. Bressan
Affiliation:
Laboratório Interdisciplinar de Neurociências Integrativas (LiNC), Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
Nadine Parker
Affiliation:
Institute of Medical Science, University of Toronto, Toronto, ON, Canada
Jurgen Germann
Affiliation:
University Health Network, Toronto, ON, Canada Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
Patrícia P. Bado
Affiliation:
Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
Theodore D. Satterthwaite
Affiliation:
Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
Michael P. Milham
Affiliation:
Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA Center for the Developing Brain, Child Mind Institute, New York, NY 10022, USA
M. Mallar Chakravarty
Affiliation:
Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada Department of Psychiatry, McGill University, Montreal, Quebec, Canada Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada
Luis Augusto Paim Rohde
Affiliation:
Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
Eurípedes Constantino Miguel
Affiliation:
National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil Universidade de São Paulo (USP), São Paulo, Brazil
Tomas Paus
Affiliation:
Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada Department of Psychiatry, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada Centre hospitalier universitaire Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
Giovanni A. Salum
Affiliation:
Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil Department of Psychiatry and Legal Medicine, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil
*
Author for correspondence: Marina S. Borges, E-mail: marinaspierborges@gmail.com

Abstract

Background

Understanding deviations from typical brain development is a promising approach to comprehend pathophysiology in childhood and adolescence. We investigated if cerebellar volumes different than expected for age and sex could predict psychopathology, executive functions and academic achievement.

Methods

Children and adolescents aged 6–17 years from the Brazilian High-Risk Cohort Study for Mental Conditions had their cerebellar volume estimated using Multiple Automatically Generated Templates from T1-weighted images at baseline (n = 677) and at 3-year follow-up (n = 447). Outcomes were assessed using the Child Behavior Checklist and standardized measures of executive functions and school achievement. Models of typically developing cerebellum were based on a subsample not exposed to risk factors and without mental-health conditions (n = 216). Deviations from this model were constructed for the remaining individuals (n = 461) and standardized variation from age and sex trajectory model was used to predict outcomes in cross-sectional, longitudinal and mediation analyses.

Results

Cerebellar volumes higher than expected for age and sex were associated with lower externalizing specific factor and higher executive functions. In a longitudinal analysis, deviations from typical development at baseline predicted inhibitory control at follow-up, and cerebellar deviation changes from baseline to follow-up predicted changes in reading and writing abilities. The association between deviations in cerebellar volume and academic achievement was mediated by inhibitory control.

Conclusions

Deviations in the cerebellar typical development are associated with outcomes in youth that have long-lasting consequences. This study highlights both the potential of typical developing models and the important role of the cerebellum in mental health, cognition and education.

Type
Original Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

equally contributed.

References

ABEP. (2010). Critério de Classificação Econômica Brasil. Associação Brasiliera de Empresas de Pesquisa. (São Paulo).Google Scholar
Achenbach, T. M., & Rescorla, L. A. (2001). Manual for the ASEBA school-age forms & profiles. Burlington, VT: University of Vermont, Research Center for Children, Youth & Families: Library of Congress.Google Scholar
Amorim, P. (2000). Mini international neuropsychiatric interview (MINI): Validação de entrevista breve para diagnóstico de transtornos mentais. Revista Brasileira de Psiquiatria, 22(3), 106115. https://doi.org/10.1590/S1516-44462000000300003.CrossRefGoogle Scholar
Biederman, J., Monuteaux, M. C., Doyle, A. E., Seidman, L. J., Wilens, T. E., Ferrero, F., … Faraone, S. V. (2004). Impact of executive function deficits and attention-deficit/hyperactivity disorder (ADHD) on academic outcomes in children. Journal of Consulting and Clinical Psychology, 72(5), 757766. https://doi.org/10.1037/0022-006X.72.5.757.CrossRefGoogle ScholarPubMed
Bitsakou, P., Psychogiou, L., Thompson, M., & Sonuga-Barke, E. J. S. (2008). Inhibitory deficits in attention-deficit/hyperactivity disorder are independent of basic processing efficiency and IQ. Journal of Neural Transmission (Vienna, Austria: 1996), 115(2), 261268. https://doi.org/10.1007/s00702-007-0828-z.CrossRefGoogle ScholarPubMed
Boller, B., Mellah, S., Ducharme-Laliberté, G., & Belleville, S. (2017). Relationships between years of education, regional grey matter volumes, and working memory-related brain activity in healthy older adults. Brain Imaging and Behavior, 11(2), 304317. https://doi.org/10.1007/s11682-016-9621-7.CrossRefGoogle ScholarPubMed
Buckner, R. L., Head, D., Parker, J., Fotenos, A. F., Marcus, D., Morris, J. C., & Snyder, A. Z. (2004). A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: Reliability and validation against manual measurement of total intracranial volume. NeuroImage, 23(2), 724738. https://doi.org/10.1016/j.neuroimage.2004.06.018.CrossRefGoogle ScholarPubMed
Caspi, A., Houts, R. M., Belsky, D. W., Goldman-Mellor, S. J., Harrington, H., Israel, S., … Moffitt, T. E. (2014). The p factor one general psychopathology factor in the structure of psychiatric disorders? Clinical Psychological Science, 2(2), 119137. https://doi.org/10.1177/2167702613497473.CrossRefGoogle Scholar
Castellanos, F. X. (2002). Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. JAMA, 288(14), 1740. https://doi.org/10.1001/jama.288.14.1740.CrossRefGoogle ScholarPubMed
Chakravarty, M. M., Steadman, P., van Eede, M. C., Calcott, R. D., Gu, V., Shaw, P., … Lerch, J. P. (2013). Performing label-fusion-based segmentation using multiple automatically generated templates: MAGeT brain: Label fusion segmentation using automatically generated templates. Human Brain Mapping, 34(10), 26352654. https://doi.org/10.1002/hbm.22092.CrossRefGoogle ScholarPubMed
Ding, H., Qin, W., Jiang, T., Zhang, Y., & Yu, C. (2012). Volumetric variation in subregions of the cerebellum correlates with working memory performance. Neuroscience Letters, 508(1), 4751. https://doi.org/10.1016/j.neulet.2011.12.016.CrossRefGoogle ScholarPubMed
do Nascimento, E., & de Figueiredo, V. L. M. (2002). WISC-III and WAIS-III: Alterations in the current American original versions of the adaptations for use in Brazil. Psicologia: Reflexão e Crítica, 15(3), 603612. https://doi.org/10.1590/S0102-79722002000300014.Google Scholar
Fleitlich-Bilyk, B., & Goodman, R. (2004). Prevalence of child and adolescent psychiatric disorders in southeast Brazil. Journal of the American Academy of Child & Adolescent Psychiatry, 43(6), 727734. https://doi.org/10.1097/01.chi.0000120021.14101.ca.CrossRefGoogle ScholarPubMed
Goodman, R., Ford, T., Richards, H., Gatward, R., & Meltzer, H. (2000). The development and well-being assessment: Description and initial validation of an integrated assessment of child and adolescent psychopathology. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 41(5), 645655.CrossRefGoogle ScholarPubMed
Guo, X., Duan, X., Suckling, J., Wang, J., Kang, X., Chen, H., … Chen, H. (2021). Mapping progressive gray matter alterations in early childhood autistic brain. Cerebral Cortex, 31(3), 15001510. https://doi.org/10.1093/cercor/bhaa304.CrossRefGoogle ScholarPubMed
Hallquist, M. N., & Wiley, J. F. (2018). MplusAutomation: An R package for facilitating large-scale latent variable analyses in mplus. Structural Equation Modeling: A Multidisciplinary Journal, 25(4), 621638. https://doi.org/10.1080/10705511.2017.1402334.CrossRefGoogle Scholar
Hoffmann, M. S., Moore, T. M., Axelrud, L. K., Tottenham, N., Zuo, X.-N., Rohde, L. A., … Salum, G. A. (2022). Reliability and validity of bifactor models of dimensional psychopathology in youth. Journal of Psychopathology and Clinical Science, 131(4), 407421. https://doi.org/10.1037/abn0000749.CrossRefGoogle Scholar
Hogan, A. M., Vargha-Khadem, F., Kirkham, F. J., & Baldeweg, T. (2005). Maturation of action monitoring from adolescence to adulthood: An ERP study. Developmental Science, 8(6), 525534. https://doi.org/10.1111/j.1467-7687.2005.00444.x.CrossRefGoogle ScholarPubMed
Ito, M. (2008). Control of mental activities by internal models in the cerebellum. Nature Reviews Neuroscience, 9(4), 304313. https://doi.org/10.1038/nrn2332.CrossRefGoogle ScholarPubMed
Kaczkurkin, A. N., Moore, T. M., Sotiras, A., Xia, C. H., Shinohara, R. T., & Satterthwaite, T. D. (2020). Approaches to defining common and dissociable neurobiological deficits associated with psychopathology in Youth. Biological Psychiatry, 88(1), 5162. https://doi.org/10.1016/j.biopsych.2019.12.015.CrossRefGoogle ScholarPubMed
Lucio, P. S., de Kida, A. S. B., de Carvalho, C. A. F., Cogo-Moreira, H., & de Ávila, C. R. B. (2015). Construção de uma prova para avaliação da compreensão leitora no ensino fundamental: Estudo piloto. Temas psicol. 23, 10351050.CrossRefGoogle Scholar
Mackie, S., Shaw, P., Lenroot, R., Pierson, R., Greenstein, D. K., Nugent, T. F., … Rapoport, J. L. (2007). Cerebellar development and clinical outcome in attention deficit hyperactivity disorder. American Journal of Psychiatry, 164(4), 647655. https://doi.org/10.1176/ajp.2007.164.4.647.CrossRefGoogle ScholarPubMed
Malone, I. B., Leung, K. K., Clegg, S., Barnes, J., Whitwell, J. L., Ashburner, J., … Ridgway, G. R. (2015). Accurate automatic estimation of total intracranial volume: A nuisance variable with less nuisance. NeuroImage, 104, 366372. https://doi.org/10.1016/j.neuroimage.2014.09.034.CrossRefGoogle ScholarPubMed
Marquand, A. F., Kia, S. M., Zabihi, M., Wolfers, T., Buitelaar, J. K., & Beckmann, C. F. (2019). Conceptualizing mental disorders as deviations from normative functioning. Molecular Psychiatry, 24(10), 14151424. https://doi.org/10.1038/s41380-019-0441-1.CrossRefGoogle ScholarPubMed
Martel, M. M., Pan, P. M., Hoffmann, M. S., Gadelha, A., do Rosário, M. C., Mari, J. J., … Salum, G. A. (2017). A general psychopathology factor (p factor) in children: Structural model analysis and external validation through familial risk and child global executive function. Journal of Abnormal Psychology, 126(1), 137148. https://doi.org/10.1037/abn0000205.CrossRefGoogle ScholarPubMed
Minichino, A., Bersani, F. S., Trabucchi, G., Albano, G., Primavera, M., Chiaie, R. D., & Biondi, M. (2014). The role of cerebellum in unipolar and bipolar depression: A review of the main neurobiological findings. Rivista di Psichiatria, 49(3), 124131. https://doi.org/10.1708/1551.16907.Google ScholarPubMed
Moberget, T., Alnæs, D., Kaufmann, T., Doan, N. T., Córdova-Palomera, A., Norbom, L. B., … Westlye, L. T. (2019). Cerebellar gray matter volume Is associated with cognitive function and psychopathology in adolescence. Biological Psychiatry, 86(1), 6575. https://doi.org/10.1016/j.biopsych.2019.01.019.CrossRefGoogle ScholarPubMed
Moberget, T., Doan, N. T., Alnæs, D., Kaufmann, T., Córdova-Palomera, A., Lagerberg, T. V., … Westlye, L. T. (2018). Cerebellar volume and cerebellocerebral structural covariance in schizophrenia: A multisite mega-analysis of 983 patients and 1349 healthy controls. Molecular Psychiatry, 23(6), 15121520. https://doi.org/10.1038/mp.2017.106.CrossRefGoogle ScholarPubMed
Moore, D. M., D'Mello, A. M., McGrath, L. M., & Stoodley, C. J. (2017). The developmental relationship between specific cognitive domains and grey matter in the cerebellum. Developmental Cognitive Neuroscience, 24, 111. https://doi.org/10.1016/j.dcn.2016.12.001.CrossRefGoogle ScholarPubMed
Muthén, L. K., & Muthén, B. O. (2017). Mplus user's guide (8th ed.). Los Angeles: Muthén & Muthén. Retrieved from www.StatModel.com.Google Scholar
Nigg, J. T. (2016). Annual research review: On the relations among self-regulation, self-control, executive functioning, effortful control, cognitive control, impulsivity, risk-taking, and inhibition for developmental psychopathology. Journal of Child Psychology and Psychiatry, n/a-n/a. https://doi.org/10.1111/jcpp.12675.Google ScholarPubMed
Park, M. T. M., Pipitone, J., Baer, L. H., Winterburn, J. L., Shah, Y., Chavez, S., … Chakravarty, M. M. (2014). Derivation of high-resolution MRI atlases of the human cerebellum at 3 T and segmentation using multiple automatically generated templates. NeuroImage, 95, 217231. https://doi.org/10.1016/j.neuroimage.2014.03.037.CrossRefGoogle Scholar
Parkes, L., Moore, T. M., Calkins, M. E., Cook, P. A., Cieslak, M., Roalf, D. R., … Bassett, D. S. (2021). Transdiagnostic dimensions of psychopathology explain individuals’ unique deviations from normative neurodevelopment in brain structure. Translational Psychiatry, 11(1), 232. https://doi.org/10.1038/s41398-021-01342-6.CrossRefGoogle ScholarPubMed
Romer, A. L., Elliott, M. L., Knodt, A. R., Sison, M. L., Ireland, D., Houts, R., … Hariri, A. R. (2020). Pervasively thinner neocortex as a transdiagnostic feature of general psychopathology. American Journal of Psychiatry, 178(2), 174182. https://doi.org/10.1176/appi.ajp.2020.19090934.CrossRefGoogle ScholarPubMed
Romer, A. L., Knodt, A. R., Houts, R., Brigidi, B. D., Moffitt, T. E., Caspi, A., & Hariri, A. R. (2018). Structural alterations within cerebellar circuitry are associated with general liability for common mental disorders. Molecular Psychiatry, 23(4), 10841090. https://doi.org/10.1038/mp.2017.57.CrossRefGoogle ScholarPubMed
Romer, A. L., Knodt, A. R., Sison, M. L., Ireland, D., Houts, R., Ramrakha, S., … Hariri, A. R. (2021). Replicability of structural brain alterations associated with general psychopathology: Evidence from a population-representative birth cohort. Molecular Psychiatry, 26(8), 38393846. https://doi.org/10.1038/s41380-019-0621-z.CrossRefGoogle ScholarPubMed
Rosseel, Y., Oberski, D., Byrnes, J., Vanbrabant, L., Savalei, V., Merkle, E., … Jorgensen, T. D. (2018). lavaan: Latent Variable Analysis (Version 0.6-3). Retrieved from https://CRAN.R-project.org/package=lavaan.Google Scholar
Salum, G. A., DeSousa, D. A., Manfro, G. G., Pan, P. M., Gadelha, A., Brietzke, E., … Grassi-Oliveira, R. (2016). Measuring child maltreatment using multi-informant survey data: A higher-order confirmatory factor analysis. Trends in Psychiatry and Psychotherapy, 38(1), 2332. https://doi.org/10.1590/2237-6089-2015-0036.CrossRefGoogle Scholar
Salum, G. A., Gadelha, A., Pan, P. M., Moriyama, T. S., Graeff-Martins, A. S., Tamanaha, A. C., … Rohde, L. A. (2015). High risk cohort study for psychiatric disorders in childhood: Rationale, design, methods and preliminary results. International Journal of Methods in Psychiatric Research, 24(1), 5873. https://doi.org/10.1002/mpr.1459.CrossRefGoogle ScholarPubMed
Schmahmann, J. D. (1998). Dysmetria of thought: Clinical consequences of cerebellar dysfunction on cognition and affect. Trends in Cognitive Sciences, 2(9), 362371. https://doi.org/10.1016/S1364-6613(98)01218-2.CrossRefGoogle ScholarPubMed
Seaman, S. R., & White, I. R. (2013). Review of inverse probability weighting for dealing with missing data. Statistical Methods in Medical Research, 22(3), 278295. https://doi.org/10.1177/0962280210395740.CrossRefGoogle ScholarPubMed
Shaw, P., Ishii-Takahashi, A., Park, M. T., Devenyi, G. A., Zibman, C., Kasparek, S., … White, T. (2018). A multicohort, longitudinal study of cerebellar development in attention deficit hyperactivity disorder. Journal of Child Psychology and Psychiatry, 59(10), 11141123. https://doi.org/10.1111/jcpp.12920.CrossRefGoogle Scholar
Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., … Dunbar, G. C. (1998). The Mini-international neuropsychiatric interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. The Journal of Clinical Psychiatry, 59 (Suppl. 20), 22-33;quiz 34-57.Google ScholarPubMed
Simioni, A. R., Pine, D. S., Sato, J. R., Pan, P. M., Fonseca, R. P., Schafer, J., … Salum, G. A. (2019). A cognitive development chart for school-age children and adolescents. MedRxiv, 19012963. https://doi.org/10.1101/19012963.Google Scholar
Sokolov, A. A., Miall, R. C., & Ivry, R. B. (2017). The cerebellum: Adaptive prediction for movement and cognition. Trends in Cognitive Sciences, 21(5), 313332. https://doi.org/10.1016/j.tics.2017.02.005.CrossRefGoogle ScholarPubMed
Stein, L. M. (1998). TDE Teste de Desempenho Escolar. São Paulo: Casa do Psicólogo.Google Scholar
Tellegen, A., & Briggs, P. F. (1967). Old wine in new skins: Grouping Wechsler subtests into new scales. Journal of Consulting Psychology, 31(5), 499506.CrossRefGoogle ScholarPubMed
Tiemeier, H., Lenroot, R. K., Greenstein, D. K., Tran, L., Pierson, R., & Giedd, J. N. (2010). Cerebellum development during childhood and adolescence: A longitudinal morphometric MRI study. NeuroImage, 49(1), 6370. https://doi.org/10.1016/j.neuroimage.2009.08.016.CrossRefGoogle ScholarPubMed
Toplak, M. E., & Tannock, R. (2005). Tapping and anticipation performance in attention deficit hyperactivity disorder. Perceptual and Motor Skills, 100(3 Pt 1), 659675. https://doi.org/10.2466/pms.100.3.659-675.CrossRefGoogle ScholarPubMed
Valera, E. M., Faraone, S. V., Murray, K. E., & Seidman, L. J. (2007). Meta-analysis of structural imaging findings in attention-deficit/hyperactivity disorder. Biological Psychiatry, 61(12), 13611369. https://doi.org/10.1016/j.biopsych.2006.06.011.CrossRefGoogle ScholarPubMed
Vandierendonck, A., Kemps, E., Fastame, M. C., & Szmalec, A. (2004). Working memory components of the corsi blocks task. British Journal of Psychology (London, England: 1953), 95(Pt 1), 5779. https://doi.org/10.1348/000712604322779460.CrossRefGoogle ScholarPubMed
Van Overwalle, F., D'aes, T., & Mariën, P. (2015). Social cognition and the cerebellum: A meta-analytic connectivity analysis. Human Brain Mapping, 36(12), 51375154. https://doi.org/10.1002/hbm.23002.CrossRefGoogle ScholarPubMed
Walsh, N. D., Dalgleish, T., Lombardo, M. V., Dunn, V. J., Van Harmelen, A.-L., Ban, M., & Goodyer, I. M. (2014). General and specific effects of early-life psychosocial adversities on adolescent grey matter volume. NeuroImage: Clinical, 4, 308318. https://doi.org/10.1016/j.nicl.2014.01.001.CrossRefGoogle ScholarPubMed
Wechsler, D. (2002). WISC-III: Escala de Inteligência Wechsler para Crianças (3rd ed.). São Paulo: Casa do Psicólogo.Google Scholar
Weissman, M. M., Wickramaratne, P., Adams, P., Wolk, S., Verdeli, H., & Olfson, M. (2000). Brief screening for family psychiatric history: The family history screen. Archives of General Psychiatry, 57(7), 675682.CrossRefGoogle ScholarPubMed
Wu, K.-H., Chen, C.-Y., & Shen, E.-Y. (2011). The cerebellar development in Chinese children – A study by voxel-based volume measurement of reconstructed 3D MRI scan. Pediatric Research, 69(1), 8083. https://doi.org/10.1203/PDR.0b013e3181ff2f6c.CrossRefGoogle ScholarPubMed
Supplementary material: File

Borges et al. supplementary material

Borges et al. supplementary material

Download Borges et al. supplementary material(File)
File 87.6 KB