Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-13T16:55:58.992Z Has data issue: false hasContentIssue false

Reduced anhedonia following internet-based cognitive-behavioral therapy for depression is mediated by enhanced reward circuit activation

Published online by Cambridge University Press:  17 June 2022

Shir Hanuka
Affiliation:
School of Psychological Sciences, University of Haifa, Haifa, Israel
Elizabeth A. Olson
Affiliation:
Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA Department of Psychiatry, Harvard Medical School, Boston, MA, USA
Roee Admon
Affiliation:
School of Psychological Sciences, University of Haifa, Haifa, Israel The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
Christian A. Webb
Affiliation:
Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA Department of Psychiatry, Harvard Medical School, Boston, MA, USA
William D. S. Killgore
Affiliation:
Department of Psychiatry, University of Arizona, Tucson, AZ, USA
Scott L. Rauch
Affiliation:
Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA Department of Psychiatry, Harvard Medical School, Boston, MA, USA
Isabelle M. Rosso
Affiliation:
Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA Department of Psychiatry, Harvard Medical School, Boston, MA, USA
Diego A. Pizzagalli*
Affiliation:
Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA Department of Psychiatry, Harvard Medical School, Boston, MA, USA
*
Author for correspondence: Diego A. Pizzagalli, E-mail: dap@mclean.harvard.edu

Abstract

Background

Major depressive disorder (MDD) is a highly prevalent psychiatric condition, yet many patients do not receive adequate treatment. Novel and highly scalable interventions such as internet-based cognitive-behavioral-therapy (iCBT) may help to address this treatment gap. Anhedonia, a hallmark symptom of MDD that refers to diminished interest and ability to experience pleasure, has been associated with reduced reactivity in a neural reward circuit that includes medial prefrontal and striatal brain regions. Whether iCBT can reduce anhedonia severity in MDD patients, and whether these therapeutic effects are accompanied by enhanced reward circuit reactivity has yet to be examined.

Methods

Fifty-two MDD patients were randomly assigned to either 10-week iCBT (n = 26) or monitored attention control (MAC, n = 26) programs. All patients completed pre- and post-treatment assessments of anhedonia (Snaith–Hamilton Pleasure Scale; SHAPS) and reward circuit reactivity [monetary incentive delay (MID) task during functional magnetic resonance imaging (fMRI)]. Healthy control participants (n = 42) also underwent two fMRI scans while completing the MID task 10 weeks apart.

Results

Both iCBT and MAC groups exhibited a reduction in anhedonia severity post-treatment. Nevertheless, only the iCBT group exhibited enhanced nucleus accumbens (Nacc) and subgenual anterior cingulate cortex (sgACC) activation and functional connectivity from pre- to post-treatment in response to reward feedback. Enhanced Nacc and sgACC activations were associated with reduced anhedonia severity following iCBT treatment, with enhanced Nacc activation also mediating the reduction in anhedonia severity post-treatment.

Conclusions

These findings suggest that increased reward circuit reactivity may contribute to a reduction in anhedonia severity following iCBT treatment for depression.

Type
Original Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Denotes equal first author contribution

Denotes equal last author contribution

References

Admon, R., Holsen, L. M., Aizley, H., Remington, A., Whitfield-Gabrieli, S., Goldstein, J. M., & Pizzagalli, D. A. (2015a). Striatal hypersensitivity during stress in remitted individuals with recurrent depression. Biological Psychiatry, 78(1), 6776. https://doi.org/10.1016/j.biopsych.2014.09.019.CrossRefGoogle ScholarPubMed
Admon, R., Kaiser, R. H., Dillon, D. G., Beltzer, M., Goer, F., Olson, D. P., … Pizzagalli, D. A. (2017). Dopaminergic enhancement of striatal response to reward in major depression. American Journal of Psychiatry, 174(4), 378386. https://doi.org/10.1176/appi.ajp.2016.16010111.CrossRefGoogle ScholarPubMed
Admon, R., Nickerson, L. D., Dillon, D. G., Holmes, A. J., Bogdan, R., Kumar, P., … Pizzagalli, D. A. (2015b). Dissociable cortico-striatal connectivity abnormalities in major depression in response to monetary gains and penalties. Psychological Medicine, 45(1), 121131. https://doi.org/10.1017/S0033291714001123.CrossRefGoogle ScholarPubMed
Admon, R., & Pizzagalli, D. A. (2015). Corticostriatal pathways contribute to the natural time course of positive mood. Nature Communications, 6(May), 111. https://doi.org/10.1038/ncomms10065.CrossRefGoogle Scholar
Alexander, L., Gaskin, P. L. R., Sawiak, S. J., Fryer, T. D., Hong, Y. T., Cockcroft, G. J., … Roberts, A. C. (2019). Fractionating blunted reward processing characteristic of anhedonia by over-activating primate subgenual anterior cingulate cortex. Neuron, 101(2), 307320.e6. https://doi.org/10.1016/j.neuron.2018.11.021.CrossRefGoogle ScholarPubMed
American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4th Text Revision ed.). Washington, DC: American Psychiatric Association.Google Scholar
Auerbach, R. P., Admon, R., & Pizzagalli, D. A. (2014). Adolescent depression: Stress and reward dysfunction. Harvard Review of Psychiatry, 22(3), 139148. https://doi.org/10.1097/HRP.0000000000000034.CrossRefGoogle ScholarPubMed
Azab, H., & Hayden, B. Y. (2018). Correlates of economic decisions in the dorsal and subgenual anterior cingulate cortices. The European Journal of Neuroscience, 47(8), 979993. https://doi.org/10.1111/ejn.13865.CrossRefGoogle ScholarPubMed
Batterham, P. J., Calear, A. L., Farrer, L., Gulliver, A., & Kurz, E. (2021). Efficacy of a transdiagnostic self-help internet intervention for reducing depression, anxiety, and suicidal ideation in adults: Randomized controlled trial. Journal of Medical Internet Research, 23(1), e22698.10.2196/22698CrossRefGoogle ScholarPubMed
Borsini, A., Wallis, A. S. J., Zunszain, P., Pariante, C. M., & Kempton, M. J. (2020). Characterizing anhedonia: A systematic review of neuroimaging across the subtypes of reward processing deficits in depression. Cognitive, Affective & Behavioral Neuroscience, 20(4), 816841. https://doi.org/10.3758/s13415-020-00804-6.CrossRefGoogle ScholarPubMed
Boumparis, N., Karyotaki, E., Kleiboer, A., Hofmann, S. G., & Cuijpers, P. (2016). The effect of psychotherapeutic interventions on positive and negative affect in depression: A systematic review and meta-analysis. Journal of Affective Disorders, 202, 153162. https://doi.org/10.1016/j.jad.2016.05.019.CrossRefGoogle ScholarPubMed
Conen, S., Matthews, J. C., Patel, N. K., Anton-Rodriguez, J., & Talbot, P. S. (2018). Acute and chronic changes in brain activity with deep brain stimulation for refractory depression. Journal of Psychopharmacology, 32(4), 430440. https://doi.org/10.1177/0269881117742668.CrossRefGoogle ScholarPubMed
Cooper, J. A., Arulpragasam, A. R., & Treadway, M. T. (2018). Anhedonia in depression: Biological mechanisms and computational models. Current Opinion in Behavioral Sciences, 22, 128135. https://doi.org/10.1016/j.cobeha.2018.01.024.CrossRefGoogle ScholarPubMed
Craske, M. G., Meuret, A. E., Ritz, T., Treanor, M., Dour, H., & Rosenfield, D. (2019). Positive affect treatment for depression and anxiety: A randomized clinical trial for a core feature of anhedonia. Journal of Consulting and Clinical Psychology, 87(5), 457471. https://doi.org/10.1037/ccp0000396.CrossRefGoogle ScholarPubMed
Cuijpers, P., Karyotaki, E., Ciharova, M., Miguel, C., Noma, H., & Furukawa, T. A. (2021). The effects of psychotherapies for depression on response, remission, reliable change, and deterioration: A meta-analysis. Acta Psychiatrica Scandinavica, 144(3), 288299. https://doi.org/10.1111/acps.13335.CrossRefGoogle ScholarPubMed
Der-Avakian, A., & Markou, A. (2012). The neurobiology of anhedonia and other reward-related deficits. Trends in Neurosciences, 35(1), 6877. https://doi.org/10.1016/j.tins.2011.11.005.CrossRefGoogle ScholarPubMed
Dunlop, B. W., Rajendra, J. K., Craighead, W. E., Kelley, M. E., McGrath, C. L., Choi, K. S., … Mayberg, H. S. (2017). Functional connectivity of the subcallosal cingulate cortex and differential outcomes to treatment with cognitive-behavioral therapy or antidepressant medication for major depressive disorder. The American Journal of Psychiatry, 174(6), 533545. https://doi.org/10.1176/appi.ajp.2016.16050518.CrossRefGoogle ScholarPubMed
Etzelmueller, A., Vis, C., Karyotaki, E., Baumeister, H., Titov, N., Berking, M., … Ebert, D. D. (2020). Effects of internet-based cognitive-behavioral therapy in routine care for adults in treatment for depression and anxiety: Systematic review and meta-analysis. Journal of Medical Internet Research, 22(8), e18100. https://doi.org/10.2196/18100.CrossRefGoogle ScholarPubMed
Ferrari, A. J., Charlson, F. J., Norman, R. E., Patten, S. B., Freedman, G., Murray, C. J. L., … Whiteford, H. A. (2013). Burden of depressive disorders by country, sex, age, and year: Findings from the global burden of disease study 2010. PLoS Medicine, 10(11), e1001547.10.1371/journal.pmed.1001547CrossRefGoogle Scholar
Franken, I. H. A., Rassin, E., & Muris, P. (2007). The assessment of anhedonia in clinical and non-clinical populations: Further validation of the Snaith-Hamilton Pleasure Scale (SHAPS). Journal of Affective Disorders, 99(1–3), 8389. https://doi.org/10.1016/j.jad.2006.08.020.CrossRefGoogle ScholarPubMed
Furukawa, T. A., Karyotaki, E., Suganuma, A., Pompoli, A., Ostinelli, E. G., Cipriani, A., … Efthimiou, O. (2018). Dismantling, personalising and optimising internet cognitive-behavioural therapy for depression: A study protocol for individual participant data component network meta-analysis. BMJ Open, 8(11), 19. https://doi.org/10.1136/bmjopen-2018-026137.CrossRefGoogle Scholar
Gabbay, V., Ely, B. A., Li, Q., Bangaru, S. D., Panzer, A. M., Alonso, C. M., … Milham, M. P. (2013). Striatum-based circuitry of adolescent depression and anhedonia. Journal of the American Academy of Child and Adolescent Psychiatry, 52(6), 628641.e13. https://doi.org/10.1016/j.jaac.2013.04.003.CrossRefGoogle ScholarPubMed
Gaynes, B. N., Rush, A. J., Trivedi, M. H., Wisniewski, S. R., Spencer, D., & Fava, M. (2008). The STAR*D study: Treating depression in the real world. Cleveland Clinic Journal of Medicine, 75(1), 5766. https://doi.org/10.3949/ccjm.75.1.57.CrossRefGoogle ScholarPubMed
Greenberg, P. E., Fournier, A. A., Sisitsky, T., Pike, C. T., & Kessler, R. C. (2015). The economic burden of adults with major depressive disorder in the United States (2005 and 2010). Journal of Clinical Psychiatry, 76(2), 155162. https://doi.org/10.4088/JCP.14m09298.CrossRefGoogle ScholarPubMed
Guo, C. C., Hyett, M. P., Nguyen, V. T., Parker, G. B., & Breakspear, M. J. (2016). Distinct neurobiological signatures of brain connectivity in depression subtypes during natural viewing of emotionally salient films. Psychological Medicine, 46(7), 15351545. https://doi.org/10.1017/S0033291716000179.CrossRefGoogle Scholar
Haber, S. N., & Knutson, B. (2010). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35(1), 426. https://doi.org/10.1038/npp.2009.129.CrossRefGoogle ScholarPubMed
Hasler, G., Drevets, W. C., Manji, H. K., & Charney, D. S. (2004). Discovering endophenotypes for major depression. Neuropsychopharmacology, 29(10), 17651781. https://doi.org/10.1038/sj.npp.1300506.CrossRefGoogle ScholarPubMed
Heller, A. S., Johnstone, T., Light, S. N., Peterson, M. J., Kolden, G. G., Kalin, N. H., & Davidson, R. J. (2013). Relationships between changes in sustained fronto-striatal connectivity and positive affect in major depression resulting from antidepressant treatment. American Journal of Psychiatry, 170(2), 197206. https://doi.org/10.1176/appi.ajp.2012.12010014.CrossRefGoogle ScholarPubMed
Höflich, A., Michenthaler, P., Kasper, S., & Lanzenberger, R. (2018). Circuit mechanisms of reward, anhedonia, and depression. International Journal of Neuropsychopharmacology, 22(2), 105118. https://doi.org/10.1093/ijnp/pyy081.CrossRefGoogle Scholar
Josephine, K., Josefine, L., Philipp, D., David, E., & Harald, B. (2017). Internet- and mobile-based depression interventions for people with diagnosed depression: A systematic review and meta-analysis. Journal of Affective Disorders, 223, 2840. https://doi.org/10.1016/j.jad.2017.07.021.CrossRefGoogle ScholarPubMed
Karyotaki, E., Efthimiou, O., Miguel, C., Bermpohl, F. M. G., Furukawa, T. A., Cuijpers, P., … Gemmil, A. W. (2021). Internet-based cognitive-behavioral therapy for depression: A systematic review and individual patient data network meta-analysis. JAMA Psychiatry, 78(4), 361371.10.1001/jamapsychiatry.2020.4364CrossRefGoogle ScholarPubMed
Kaur, M., & Sanches, M. (2021). Experimental therapeutics in treatment-resistant major depressive disorder. Journal of Experimental Pharmacology, 13, 181196. https://doi.org/10.2147/JEP.S259302.CrossRefGoogle ScholarPubMed
Keller, J., Young, C. B., Kelley, E., Prater, K., Levitin, D. J., & Menon, V. (2013). Trait anhedonia is associated with reduced reactivity and connectivity of mesolimbic and paralimbic reward pathways. Journal of Psychiatric Research, 47(10), 13191328. https://doi.org/10.1016/j.jpsychires.2013.05.015.CrossRefGoogle ScholarPubMed
Keren, H., O'Callaghan, G., Vidal-Ribas, P., Buzzell, G. A., Brotman, M. A., Leibenluft, E., … Stringaris, A. (2018). Reward processing in depression: A conceptual and meta-analytic review across fMRI and EEG studies. American Journal of Psychiatry, 175(11), 11111120. https://doi.org/10.1176/appi.ajp.2018.17101124.CrossRefGoogle ScholarPubMed
Kessler, R. C., Andrews, G., Colpe, L. J., Hiripi, E., Mroczek, D. K., Normand, S. L. T., … Zaslavsky, A. M. (2002). Short screening scales to monitor population prevalences and trends in non-specific psychological distress. Psychological Medicine, 32(6), 959976. https://doi.org/10.1017/s0033291702006074.CrossRefGoogle ScholarPubMed
Knutson, B., Bhanji, J. P., Cooney, R. E., Atlas, L. Y., & Gotlib, I. H. (2008). Neural responses to monetary incentives in major depression. Biological Psychiatry, 63(7), 686692. https://doi.org/10.1016/j.biopsych.2007.07.023.CrossRefGoogle ScholarPubMed
Knutson, B., Westdorp, A., Kaiser, E., & Hommer, D. (2000). FMRI visualization of brain activity during a monetary incentive delay task. NeuroImage, 12(1), 2027. https://doi.org/10.1006/nimg.2000.0593.CrossRefGoogle ScholarPubMed
Kroenke, K., Spitzer, R. L., & Williams, J. B. W. (2001). The PHQ-9. Journal of General Internal Medicine, 16(9), 606613. https://doi.org/10.1046/j.1525-1497.2001.016009606.x.CrossRefGoogle ScholarPubMed
Lopez, A. D., & Murray, C. C. J. L. (1998). The global burden of disease, 1990–2020. Nature Medicine, 4(11), 12411243. https://doi.org/10.1038/3218.CrossRefGoogle ScholarPubMed
Mclaren, D. G., Ries, M. L., Xu, G., & Johnson, S. C. (2012). A generalized form of context-dependent psychophysiological interactions (gPPI): A comparison to standard approaches. Neuroimage, 61, 12771286.10.1016/j.neuroimage.2012.03.068CrossRefGoogle ScholarPubMed
Moitra, M., Santomauro, D., Degenhardt, L., Collins, P. Y., Whiteford, H., Vos, T., & Ferrari, A. (2021). Estimating the risk of suicide associated with mental disorders: A systematic review and meta-regression analysis. Journal of Psychiatric Research, 137(December 2020), 242249. https://doi.org/10.1016/j.jpsychires.2021.02.053.CrossRefGoogle ScholarPubMed
Nakamura, T., Tomita, M., Horikawa, N., Ishibashi, M., Uematsu, K., Hiraki, T., … Uchimura, N. (2021). Functional connectivity between the amygdala and subgenual cingulate gyrus predicts the antidepressant effects of ketamine in patients with treatment-resistant depression. Neuropsychopharmacology Reports, 41(2), 168178. https://doi.org/10.1002/npr2.12165.CrossRefGoogle ScholarPubMed
Narushima, K., McCormick, L. M., Yamada, T., Thatcher, R. W., & Robinson, R. G. (2010). Subgenual cingulate theta activity predicts treatment response of repetitive transcranial magnetic stimulation in participants with vascular depression. The Journal of Neuropsychiatry and Clinical Neurosciences, 22(1), 7584. https://doi.org/10.1176/jnp.2010.22.1.75.CrossRefGoogle ScholarPubMed
Nestler, E. J., & Carlezon, W. A. (2006). The mesolimbic dopamine reward circuit in depression. Biological Psychiatry, 59(12), 11511159. https://doi.org/10.1016/j.biopsych.2005.09.018.CrossRefGoogle ScholarPubMed
Nielson, D. M., Keren, H., O'Callaghan, G., Jackson, S. M., Douka, I., Vidal-Ribas, P., … Stringaris, A. (2021). Great expectations: A critical review of and suggestions for the study of reward processing as a cause and predictor of depression. Biological Psychiatry, 89(2), 134143. https://doi.org/10.1016/j.biopsych.2020.06.012.CrossRefGoogle Scholar
Ormel, J., Kessler, R. C., & Schoevers, R. (2019). Depression: More treatment but no drop in prevalence: How effective is treatment? And can we do better? Current Opinion in Psychiatry, 32(4), 348354. https://doi.org/10.1097/YCO.0000000000000505.CrossRefGoogle ScholarPubMed
Perini, S., Titov, N., & Andrews, G. (2009). Clinician-assisted internet-based treatment is effective for depression: Randomized controlled trial. The Australian and New Zealand Journal of Psychiatry, 43(6), 571578. https://doi.org/10.1080/00048670902873722.CrossRefGoogle ScholarPubMed
Pizzagalli, D. A. (2011). Frontocingulate dysfunction in depression: Toward biomarkers of treatment response. Neuropsychopharmacology, 36(1), 183206.10.1038/npp.2010.166CrossRefGoogle ScholarPubMed
Pizzagalli, D. A. (2014). Depression, stress, and anhedonia: Toward a synthesis and integrated model. Annual Review of Clinical Psychology, 10(1), 393423. https://doi.org/10.1146/annurev-clinpsy-050212-185606.CrossRefGoogle Scholar
Pizzagalli, D. A., Holmes, A. J., Dillon, D. G., Goetz, E. L., Birk, J. L., Bogdan, R., … Fava, M. (2009). Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder. American Journal of Psychiatry, 166(6), 702710. https://doi.org/10.1176/appi.ajp.2008.08081201.CrossRefGoogle ScholarPubMed
Rizvi, S. J., Pizzagalli, D. A., Sproule, B. A., & Kennedy, S. H. (2016). Assessing anhedonia in depression: Potentials and pitfalls. Neuroscience and Biobehavioral Reviews, 65, 2135. https://doi.org/10.1016/j.neubiorev.2016.03.004.CrossRefGoogle ScholarPubMed
Rolls, E. T., Huang, C.-C., Lin, C.-P., Feng, J., & Joliot, M. (2020). Automated anatomical labelling atlas 3. NeuroImage, 206, 116189. https://doi.org/https://doi.org/10.1016/j.neuroimage.2019.116189.CrossRefGoogle ScholarPubMed
Rosso, I. M., Killgore, W. D. S., Olson, E. A., Webb, C. A., Fukunaga, R., Auerbach, R. P., … Rauch, S. L. (2017). Internet-based cognitive behavior therapy for major depressive disorder: A randomized controlled trial. Depression and Anxiety, 34(3), 236245. https://doi.org/10.1002/da.22590.CrossRefGoogle ScholarPubMed
Sander, L., Rausch, L., & Baumeister, H. (2016). Effectiveness of internet-based interventions for the prevention of mental disorders: A systematic review and meta-analysis. JMIR Mental Health, 3, e38. https://doi.org/10.2196/mental.6061.CrossRefGoogle ScholarPubMed
Schlaepfer, T. E., Cohen, M. X., Frick, C., Kosel, M., Brodesser, D., Axmacher, N., … Sturm, V. (2008). Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology, 33(2), 368377. https://doi.org/10.1038/sj.npp.1301408.CrossRefGoogle ScholarPubMed
Siegle, G. J., Thompson, W. K., Collier, A., Berman, S. R., Feldmiller, J., Thase, M. E., & Friedman, E. S. (2012). Toward clinically useful neuroimaging in depression treatment: Prognostic utility of subgenual cingulate activity for determining depression outcome in cognitive therapy across studies, scanners, and patient characteristics. Archives of General Psychiatry, 69(9), 913924. https://doi.org/10.1001/archgenpsychiatry.2012.65.CrossRefGoogle ScholarPubMed
Snaith, R. P., Hamilton, M., Morley, S., Humayan, A., Hargreaves, D., & Trigwell, P. (1995). A scale for the assessment of hedonic tone the Snaith–Hamilton Pleasure Scale. The British Journal of Psychiatry, 167(1), 99103.10.1192/bjp.167.1.99CrossRefGoogle ScholarPubMed
Strait, C. E., Sleezer, B. J., Blanchard, T. C., Azab, H., Castagno, M. D., & Hayden, B. Y. (2016). Neuronal selectivity for spatial positions of offers and choices in five reward regions. Journal of Neurophysiology, 115(3), 10981111. https://doi.org/10.1152/jn.00325.2015.CrossRefGoogle ScholarPubMed
Straub, J., Metzger, C. D., Plener, P. L., Koelch, M. G., Groen, G., & Abler, B. (2017). Successful group psychotherapy of depression in adolescents alters fronto-limbic resting-state connectivity. Journal of Affective Disorders, 209(August 2016), 135139. https://doi.org/10.1016/j.jad.2016.11.024.CrossRefGoogle ScholarPubMed
Straub, J., Plener, P. L., Sproeber, N., Sprenger, L., Koelch, M. G., Groen, G., & Abler, B. (2015). Neural correlates of successful psychotherapy of depression in adolescents. Journal of Affective Disorders, 183, 239246. https://doi.org/10.1016/j.jad.2015.05.020.CrossRefGoogle ScholarPubMed
Takamura, M., Okamoto, Y., Okada, G., Toki, S., Yamamoto, T., Ichikawa, N., … Yamawaki, S. (2017). Patients with major depressive disorder exhibit reduced reward size coding in the striatum. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 79(June), 317323. https://doi.org/10.1016/j.pnpbp.2017.07.006.CrossRefGoogle ScholarPubMed
Titov, N., Andrews, G., Davies, M., Mcintyre, K., Robinson, E., & Solley, K. (2010). Internet treatment for depression: A randomized controlled trial comparing clinician vs. technician assistance. PLoS One, 5(6), 19. https://doi.org/10.1371/journal.pone.0010939.CrossRefGoogle ScholarPubMed
Wacker, J., Dillon, D. G., & Pizzagalli, D. A. (2009). The role of the nucleus accumbens and rostral anterior cingulate cortex in anhedonia: Integration of resting EEG, fMRI, and volumetric techniques. NeuroImage, 46(1), 327337. https://doi.org/10.1016/j.neuroimage.2009.01.058.CrossRefGoogle ScholarPubMed
Walsh, E., Carl, H., Eisenlohr-Moul, T., Minkel, J., Crowther, A., Moore, T., … Dichter, G. S. (2017). Attenuation of frontostriatal connectivity during reward processing predicts response to psychotherapy in major depressive disorder. Neuropsychopharmacology, 42(4), 831843. https://doi.org/10.1038/npp.2016.179.CrossRefGoogle ScholarPubMed
Wang, Q., Tian, S., Tang, H., Liu, X., Yan, R., Hua, L., … Yao, Z. (2019). Identification of major depressive disorder and prediction of treatment response using functional connectivity between the prefrontal cortices and subgenual anterior cingulate: A real-world study. Journal of Affective Disorders, 252, 365372. https://doi.org/10.1016/j.jad.2019.04.046.CrossRefGoogle ScholarPubMed
Wang, S., Leri, F., & Rizvi, S. J. (2021). Anhedonia as a central factor in depression: Neural mechanisms revealed from preclinical to clinical evidence. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 110(December 2020), 110289. https://doi.org/10.1016/j.pnpbp.2021.110289.CrossRefGoogle ScholarPubMed
Webb, C. A., Dillon, D. G., Pechtel, P., Goer, F. K., Murray, L., Huys, Q. J., … Pizzagalli, D. A. (2016). Neural correlates of three promising endophenotypes of depression: Evidence from the EMBARC study. Neuropsychopharmacology, 41(2), 454463. https://doi.org/10.1038/npp.2015.165.CrossRefGoogle ScholarPubMed
Webb, C. A., Olson, E. A., Killgore, W. D. S., Pizzagalli, D. A., Rauch, S. L., & Rosso, I. M. (2018). Rostral anterior cingulate cortex morphology predicts treatment response to internet-based cognitive-behavioral therapy for depression. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(3), 255262. https://doi.org/10.1016/j.bpsc.2017.08.005.Google Scholar
Wilson, R. P., Colizzi, M., Bossong, M. G., Allen, P., Kempton, M., & Bhattacharyya, S. (2018). The neural substrate of reward anticipation in health: A meta-analysis of fMRI findings in the monetary incentive delay task. Neuropsychology Review, 28(4), 496506. https://doi.org/10.1007/s11065-018-9385-5.CrossRefGoogle ScholarPubMed
World Health Organization. (2017). Depression and other common mental disorders: Global health estimates. World Health Organization. Retrieved from https://apps.who.int/iris/handle/10665/254610.Google Scholar
Yang, Z., Oathes, D., Linn, K. A., Bruce, S. E., Satterthwaite, T. D., Cook, P. A., … Sheline, Y. I. (2018). Cognitive-behavioral therapy Is associated with enhanced cognitive control network activity in major depression and posttraumatic stress disorder. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(4), 311319. https://doi.org/10.1016/j.bpsc.2017.12.006.Google ScholarPubMed
Yoshimura, S., Okamoto, Y., Onoda, K., Matsunaga, M., Okada, G., Kunisato, Y., … Yamawaki, S. (2014). Cognitive-behavioral therapy for depression changes medial prefrontal and ventral anterior cingulate cortex activity associated with self-referential processing. Social Cognitive and Affective Neuroscience, 9(4), 487493. https://doi.org/10.1093/scan/nst009.CrossRefGoogle ScholarPubMed
Zhang, W. N., Chang, S. H., Guo, L. Y., Zhang, K. L., & Wang, J. (2013). The neural correlates of reward-related processing in major depressive disorder: A meta-analysis of functional magnetic resonance imaging studies. Journal of Affective Disorders, 151(2), 531539. https://doi.org/10.1016/j.jad.2013.06.039.CrossRefGoogle ScholarPubMed