Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-19T06:41:31.776Z Has data issue: false hasContentIssue false

Climatic controls on phosphorus concentrations in The Loch, Loch Vale Watershed, Rocky Mountain National Park, Colorado, USA since the last glacial maximum

Published online by Cambridge University Press:  26 May 2022

Jason R. Price*
Affiliation:
Department of Physical Sciences and Mathematics, 1111 Main Street, Wayne State College, Wayne, NE 68787, USA
David W. Szymanski
Affiliation:
Department of Natural and Applied Sciences, 175 Forest Street, Bentley University, Waltham, MA 02452, USA
Krista E.H. Slemmons
Affiliation:
Department of Biology, 2101 4th Avenue, University of Wisconsin-Stevens Point, Stevens Point, WI 54481, USA
Mackenzie Eskey
Affiliation:
Department of Physical Sciences and Mathematics, 1111 Main Street, Wayne State College, Wayne, NE 68787, USA
Edward Johnson
Affiliation:
Department of Physical Sciences and Mathematics, 1111 Main Street, Wayne State College, Wayne, NE 68787, USA
Suzanne Bricker
Affiliation:
National Centers for Coastal Ocean Science, 1305 East West Highway, National Oceanic and Atmospheric Administration, Silver Spring, MD 20910, USA
*
*Corresponding author email address: japrice1@wsc.edu

Abstract

The alpine–subalpine Loch Vale watershed (LVW) of Colorado, USA, has relatively high natural lithogenic P5+ fluxes to surface waters. For 1992–2018, the largest number of stream samples with P5+ concentrations ([P5+]) above detection limits occurred in 2008, corresponding with the highest frost-cracking intensity (FCI). Therefore, relatively cold winters and warm summers with a comparatively low mean annual temperature partly influence stream [P5+]. Sediment cores were collected from The Loch, an outlet lake of the LVW. Iron-, Al-, and Mn-oxide-bound phosphorus (adsorbed and authigenic phosphates; NP) serves as a proxy measurement for paleolake [P5+]. The highest NP in the core occurred during the cold and dry Allerød interstade. The lowest NP concentrations in the core occurred during climatically very wet periods in the Late Pleistocene and Early Holocene. Therefore, [P5+] are highest with relatively cold winters followed by relatively warm summers, relatively low mean annual temperatures, and relatively little rainfall and/or cryospheric melting. Currently the LVW is experiencing warming and melting of the permanent cryosphere with a rapidly declining FCI since 2008. This has the potential to dramatically decrease [P5+] in surface water ecosystems of the LVW, reducing biological productivity, enhancing P-limitation, and increasing ecosystem reliance on aeolian P5+.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akie, G.A., McDermott, W.M., Sexstone, G.A., Clow, D.W., 2020. Climatological data for the Loch Vale watershed in Rocky Mountain National Park, Colorado, water years 1992–2019. U.S. Geological Survey Data Release. https://doi.org/10.5066/P92ULNAG.CrossRefGoogle Scholar
Alley, R., 2000. The Younger Dryas cold interval as viewed from central Greenland. Quaternary Science Reviews 19, 213226.CrossRefGoogle Scholar
Alley, R., 2004. GISP2 ice core temperature and accumulation data. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series #2004-013. NOAA/NGDC Paleoclimatology Program, Boulder CO, USA. ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/greenland/summit/gisp2/isotopes/gisp2_temp_accum_alley2000.txt. [accessed April 3, 2022]Google Scholar
Anderson, R.S., 1998. Near-surface thermal profiles in alpine bedrock: Implications for the frost weathering of rock. Arctic and Alpine Research 30, 362372.CrossRefGoogle Scholar
Anderson, R.S., Anderson, S.P., Tucker, G.E., 2013. Rock damage and regolith transport by frost: an example of climate modulation of the geomorphology of the critical zone. Earth Surface Processes and Landforms 38, 299316.CrossRefGoogle Scholar
Arthur, M.A., 1992. Vegetation. In: Baron, J. (Ed.), Biogeochemistry of a Subalpine Ecosystem: Loch Vale Watershed. Springer Ecological Studies Series 90. Springer-Verlag, New York, pp. 7692.CrossRefGoogle Scholar
Arthur, M.A., Fahey, P.J., 1990. Mass and nutrient content of decaying boles in an Englemann spruce-subalpine fir forest, Rocky Mountain National Park, Colorado. Canadian Journal of Forest Research 20, 730737. https://doi.org/10.1139/x90-096.CrossRefGoogle Scholar
Arvin, L.J., Riebe, C.S., Aciego, S.M., Blakowski, M.A., 2017. Global patterns of dust and bedrock nutrient supply to montane ecosystems. Science Advances 3, eaao1588. https://doi.org/10.1126/sciadv.aao1588.CrossRefGoogle ScholarPubMed
Baken, S., Moens, C., van der Grift, B., Smolders, E., 2016. Phosphate binding by natural iron-rich colloids in streams. Water Research 98, 326-333.CrossRefGoogle ScholarPubMed
Baron, J., 2006. Hindcasting nitrogen deposition to determine an ecological critical load. Ecological Applications 16, 433439.CrossRefGoogle ScholarPubMed
Baron, J., 1992a. Introduction. In: Baron, J. (Ed.), Biogeochemistry of a Subalpine Ecosystem: Loch Vale Watershed. Springer Ecological Studies Series 90. Springer-Verlag, New York, pp. 111.CrossRefGoogle Scholar
Baron, J., 1992b. Surface waters. In: Baron, J. (Ed.), Biogeochemistry of a Subalpine Ecosystem: Loch Vale Watershed. Springer Ecological Studies Series 90. Springer-Verlag, New York, pp. 142186.CrossRefGoogle Scholar
Baron, J., Denning, A.S., 1992. Hydrologic budget estimates. In: Baron, J. (Ed.), Biogeochemistry of a Subalpine Ecosystem: Loch Vale Watershed. Springer Ecological Studies Series 90. Springer-Verlag, New York, pp. 2847.CrossRefGoogle Scholar
Baron, J., Denning, A.S., McLaughlin, P. 1992a. Deposition. In: Baron, J. (Ed.), Biogeochemistry of a Subalpine Ecosystem: Loch Vale Watershed. Springer Ecological Studies Series 90. Springer-Verlag, New York, 2847.CrossRefGoogle Scholar
Baron, J., Mast, M.A., 1992. Regional characterization and setting for the Loch Vale watershed study. In: Baron, J. (Ed.), Biogeochemistry of a Subalpine Ecosystem: Loch Vale Watershed. Springer Ecological Studies Series 90. Springer-Verlag, New York, pp. 1227.CrossRefGoogle Scholar
Baron, J.S., Rueth, H.M., Wolfe, A.M., Nydick, K.R., Alstott, E.J., Minear, J.T., Moraska, B., 2000. Ecosystem responses to nitrogen deposition in the Colorado Front Range. Ecosystems 3, 352368.CrossRefGoogle Scholar
Baron, J.S., Schmidt, T.M., Hartman, M.D., 2009. Climate-induced changes in high elevation stream nitrate dynamics. Global Change Biology 15, p. 17771789.CrossRefGoogle Scholar
Baron, J., Walthall, P.M., Mast, M.A., Arthur, M.A., 1992b, Soils. In: Baron, J. (Ed.), Biogeochemistry of a Subalpine Ecosystem: Loch Vale Watershed. Springer Ecological Studies Series 90. Springer-Verlag, New York, pp. 108141.CrossRefGoogle Scholar
Battarbee, R.W., 1986. Diatom analysis. In: Berglund, B.E. (Ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley, Chichester, pp. 527570.Google Scholar
Battarbee, R.W., Anderson, N.J., Jeppesen, E., Leavitt, P.R., 2005. Combining palaeolimnological and limnological approaches in assessing lake ecosystem response to nutrient reduction: Freshwater Biology 50, 17721780.CrossRefGoogle Scholar
Beniston, M., 2003. Climatic change in mountain regions: A review of possible impacts. Climate Change 59, 531.CrossRefGoogle Scholar
Benson, L., Burdett, J., Lund, S., Kashgarin, M., Mensing, S., 1997. Nearly synchronous climate change in the Northern Hemisphere during the last glacial termination. Nature 388, 263265.CrossRefGoogle Scholar
Blaauw, M., Christen, J.A., 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6, 457474.CrossRefGoogle Scholar
Bostrom, B., Petterson, K., 1982. Different patterns of phosphorus release from lake sediments in laboratory experiments. Hydrobiologia 91, 415429.CrossRefGoogle Scholar
Braddock, W.A., Cole, J.C., 1990. Geologic Map of Rocky Mountain National Park and Vicinity, Colorado. 1:50,000. United States Geological Survey Miscellaneous Investigations Series MAP I-1973, Reston, Virginia.Google Scholar
Brahney, J., Ballantyne, A.P., Kociolek, P., Spaulding, S., Otu, M., Porwoll, T., Neff, J.C., 2014. Dust mediated transfer of phosphorus to alpine lake ecosystems of the Wind River Range, Wyoming, USA. Biogeochemistry 120, 259278.CrossRefGoogle Scholar
Briles, C.E, Whitlock, C., Meltzer, D.J., 2012. Last glacial-interglacial environments in the southern Rocky Mountains, USA and implications for Younger Dryas-age human occupation. Quaternary Research 77, 96103.CrossRefGoogle Scholar
Broecker, W.S., 1982. Ocean chemistry during glacial time. Geochimica et Cosmochimica Acta 46, 16891705.CrossRefGoogle Scholar
Burpee, B.T., Saros, J.E., 2020. Cross-ecosystem nutrient subsidies in Arctic and alpine lakes: implications of global change for remote lakes. Environmental Science: Processes & Impacts 22, 11661189.Google ScholarPubMed
Camburn, K.E., Charles, D.F., 2000. Diatoms of Low-Alkalinity Lakes in the Northeastern United States. Academy of Natural Sciences of Philadelphia Special Publication 18, Philadelphia, 152 pp.Google Scholar
Campbell, D.H., Clow, D.W., Ingersoll, G.P., Mast, M.A., Spahr, N.E., Turk, J.T., 1995. Processes controlling the chemistry of two snowmelt-dominated streams in the Rocky Mountains. Water Resources Research 31, 28112821.CrossRefGoogle Scholar
Carignan, R., Flett, R.J., 1981. Postdepositional mobility of phosphorus in lake sediments. Limnology and Oceanography 26, 361366.CrossRefGoogle Scholar
Catalan, J., Pla-Rabés, S., Wolfe, A.P., Smol, J.P., Rühland, K.M., Anderson, N.J., Kopáček, J., et al. , 2013. Global change revealed by paleolimnological records from remote lakes: A review. Journal of Paleolimnology 49, 513535.CrossRefGoogle Scholar
Chadwick, O.A., Derry, L.A., Vitousek, P.M., Huebert, B.J., Hedin, L.O., 1999. Changing sources of nutrients during four million years of ecosystem development. Nature 397, 491497.CrossRefGoogle Scholar
Chen, G., Dalton, C., Leira, M., Taylor, D., 2008. Diatom-based total phosphorus (TP) and pH transfer functions for the Irish Ecoregion. Journal of Paleolimnology 40, 143163.CrossRefGoogle Scholar
Cole, J.C., 1977. Geology of East-Central Rocky Mountain National Park and Vicinity, with Emphasis on the Emplacement of the Precambrian Silver Plume Granite in the Longs Peak–St. Vrain Batholith. PhD Dissertation, University of Colorado, Boulder, USA.Google Scholar
Cumming, B.F., Laird, K.R., Gregory-Eaves, I., Simpson, K.G., Sokal, M.A., Nordin, R.N., Walker, I.R., 2015. Tracking past changes in lake-water phosphorus with a 251-lake calibration dataset in British Columbia: tool development and application in a multiproxy assessment of eutrophication and recovery in Osoyoos Lake, a transboundary lake in Western North America. Frontiers in Ecology and Evolution: Paleoecology. https://doi.org/10.3389/fevo.2015.00084.CrossRefGoogle Scholar
Elser, J.J., Andersen, T., Baron, J.S., Bergström, A.-K., Jansson, M., Kyle, M., Nydick, K.R., Steger, L., Hessen, D.O., 2009. Shifts in lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science 326, 835837.CrossRefGoogle Scholar
Girard, L., Gruber, S., Weber, S., Beutel, J., 2013. Environmental controls on frost cracking revealed through in situ acoustic emission measurements in steep bedrock. Geophysical Research Letters 40, 17481753.CrossRefGoogle Scholar
Guiry, M.D., Guiry, G.M. 2017. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. https://www.algaebase.org; last accessed June 7, 2017.Google Scholar
Hales, T.C., Roering, J.J., 2007. Climatic controls on frost cracking and implications for the evolution of bedrock landscapes. Journal of Geophysical Research 112, F02033. https://doi.org/10.1029/2006JF000616.CrossRefGoogle Scholar
Hallet, B., Walder, J.S., Stubbs, C.W., 1991. Weathering by segregation ice growth in microcracks at sustained sub-zero temperatures; Verification from an experimental study using acoustic emissions. Permafrost and Periglacial Process 2, 283300.CrossRefGoogle Scholar
Hartmann, J., Moosdorf, N., Lauerwald, R., Hinderer, M., West, A.J., 2014. Global chemical weathering and associated P-release–The role of lithology, temperature and soil properties. Chemical Geology 363, 145163.CrossRefGoogle Scholar
Heath, J., Baron, J.S., 2014. Climate, not atmospheric deposition, drives the biogeochemical mass-balance of a mountain watershed. Aquatic Geochemistry 20, 167181.CrossRefGoogle Scholar
Heindel, R.C., Putman, A.L., Murphy, S.F., Repert, D.A., Hinckley, E.-L.S., 2020. Atmospheric dust deposition varies by season and elevation in the Colorado Front Range, USA. Journal of Geophysical Research 125, e2019JF005436. doi.org/10.1029/2019JF005436.Google Scholar
Hodson, A.J., Mumford, P.N., Kohler, J., and Wynn, P.M., 2005. The High Arctic glacial ecosystem: new insights from nutrient budgets. Biogeochemistry 72, 233256.CrossRefGoogle Scholar
Hodson, A.J., Mumford, P.N., Lister, D., 2004. Suspended sediment and phosphorus in proglacial rivers: bioavailability and potential impacts upon the P status of ice-marginal receiving waters. Hydrological Processes 18, 24092422.CrossRefGoogle Scholar
Huang, Q., Wang, Z., Wang, C., Wang, S., Jin, X., 2005. Phosphorus release in response to pH variation in the lake sediments with different ratios of iron-bound P to calcium-bound P. Chemical Speciation and Bioavailability 17, 5561.CrossRefGoogle Scholar
Ivanovic, R.F., Gregoire, L.J., Wickert, A.D., Valdes, P.J., Burke, A., 2017. Collapse of the North American ice saddle 14,500 years ago caused widespread cooling and reduced ocean overturning circulation. Geophysical Research Letters 44, 383392.CrossRefGoogle Scholar
Johnson, B.G., Jiménez-Moreno, G., Eppes, M.C., Diemer, J.A., Stone, J.R., 2013. A multiproxy record of postglacial climate variability from a shallowing, 12-m deep sub-alpine bog in the southeastern San Juan Mountains of Colorado, USA. The Holocene 23, 10281038.CrossRefGoogle Scholar
Juggins, S., Anderson, N.J., Ramstack Hobbs, J.M., Heathcote, A.J., 2013. Reconstructing epilimnetic total phosphorus using diatoms: statistical and ecological constraints. Journal of Paleolimnology 49, 373390.CrossRefGoogle Scholar
Juggins, S., Birks, H.J.B., 2012. Quantitative environmental reconstructions from biological data. In: Birks, H.J.B., Lotter, A.F., Juggins, S., Smol, J.P. (Eds.), Tracking Environmental Change Using Lake Sediments 5: Data Handling and Numerical Techniques. Springer, Dordrecht, pp. 431494.CrossRefGoogle Scholar
Krammer, K., Lange-Bertalot, H., 1986. Bacillariophyceae 1. Teil: Naviculaceae. In: Ettl, H., Gerloff, J., Heynig, H., Mollenhauer, D. (Eds.), Süβwasserflora von Mitteleuropa Bd. 2/1. Gustav Fischer Verlag, Stuttgart, pp. 1876.Google Scholar
Krammer, K., Lange-Bertalot, H., 1988. Bacillariophyceae 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In: Ettl, H., Gerloff, J., Heynig, H., Mollenhauer, D., (Eds.), Süsswasserflora von Mitteleuropa Bd. 2/2, Gustav Fischer Verlag, Stuttgart. pp. 1596.Google Scholar
Krammer, K., Lange-Bertalot, H., 1991a. Bacillariophyceae 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In: Ettl, H., Gerloff, J., Heynig, H., Mollenhauer, D. (Eds.), Süsswasserflora von Mitteleuropa Bd. 2/3, Gustav Fisher Verlag, Stuttgart, pp. 1-576.Google Scholar
Krammer, K., Lange-Bertalot, H., 1991b. Bacillariophyceae 4. Teil: Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema Gesamtliteraturverzeichnis Teil 1–4. In: Ettl, H., Gärtner, G., Gerloff, J., Heynig, H., Mollenhauer, D. (Eds.), Süβwasserflora von Mitteleuropa Bd. 2/4. Gustav Fischer Verlag, Stuttgart, pp. 1437.Google Scholar
Krumina, L., Kenney, J.P.L., Loring, J.S., Persson, P., 2016. Desorption mechanisms of phosphate from ferrihydrite and goethite surfaces. Chemical Geology 427, 5464.CrossRefGoogle Scholar
Lacourse, T., Gajewski, K., 2020. Current practices in building and reporting age-depth models. Quaternary Research 96, 2838.CrossRefGoogle Scholar
Larsen, D.J., Finkenbinder, M.S., Abbott, M.B., Ofstun, A.R., 2016. Deglaciation and postglacial environmental changes in the Teton Mountain Range recorded at Jenny Lake, Grand Teton National Park, WY. Quaternary Science Reviews 138, 6275.CrossRefGoogle Scholar
Lins, H.F., 1994. Recent directions taken in water, energy, and biogeochemical budgets research. EOS: Transactions of the American Geophysical Union 75, 433439.CrossRefGoogle Scholar
Lora, J.M., Ibarra, D.E., 2019. The North American hydrologic cycle through the last deglaciation. Quaternary Science Reviews 226, 105991. https://doi.org/10.1016/j.quascirev.2019.105991.CrossRefGoogle Scholar
MacGregor, K.R., Riihimaki, C.A., Myrbo, A., Shapley, M.D., Jankowski, K., 2011. Geomorphic and climatic change over the past 12,900 yr at Swiftcurrent Lake, Glacier National Park, Montana, USA. Quaternary Research 75, 8090.CrossRefGoogle Scholar
Madole, R.F., 1976. Glacial geology of the Front Range, Colorado. In: Mahaney, W.C. (Ed.), Quaternary Stratigraphy of North America. Dowden, Hutchinsen, & Ross, Stroudsberg, Pennsylvania, pp. 297398.Google Scholar
Mast, M.A., 1992. Geochemical characteristics. In: Baron, J. (Ed.), Biogeochemistry of a Subalpine Ecosystem: Loch Vale Watershed. Springer Ecological Studies Series 90. Springer-Verlag, New York, 93107.CrossRefGoogle Scholar
Mast, M.A., Clow, D.W., Baron, J.S., Wetherbee, G.A., 2014. Links between N deposition and nitrate export from a high-elevation watershed in the Colorado Front Range. Environmental Science and Technology 48, 1425814265.CrossRefGoogle ScholarPubMed
Mast, M.A., Drever, J.I., Baron, J., 1990. Chemical weathering in the Loch Vale Watershed, Rocky Mountain National Park, Colorado. Water Resources Research 26, 29712978.CrossRefGoogle Scholar
McKnight, D.M., Smith, R.L., Bradbury, J., Baron, J., Spaulding, S., 1990. Phytoplankton dynamics in three Rocky Mountain Lakes, Colorado, USA. Arctic and Alpine Research 22, 264274.CrossRefGoogle Scholar
Menounos, B., Reasoner, M.A., 1997. Evidence for cirque glaciation in the Colorado Front Range during the Younger Dryas Chronozone. Quaternary Research 48, 3847.CrossRefGoogle Scholar
Menviel, L., Timmerman, A., Timm, O.E., Mouchet, A., 2011. Deconstructing the Last Glacial termination: the role of millennial and orbital-scale forcings. Quaternary Science Reviews 30, 11551172.CrossRefGoogle Scholar
Milner, A.M., Khamis, K., Battin, T.J., Brittain, J.E., Barrand, N.E., Füreder, L., Cauvy-Fraunié, S., et al. , 2017. Glacier shrinkage effects on downstream systems. Proceedings of the National Academy of Sciences of the United States of America 114, 97709778.CrossRefGoogle Scholar
Mladenov, N., Williams, M.W., Schmidt, S.K., Cawley, K., 2012. Atmospheric deposition as a source of carbon and nutrients to an alpine catchment of the Colorado Rocky Mountains. Biogeosciences 9, 33373355.CrossRefGoogle Scholar
Moser, K.A., Baron, J.S., Brahney, J., Oleksy, I.A., Saros, J.E., Hundey, E.J., Sadro, S.A., et al. , 2019. Mountain lakes: Eyes on global environmental change. Global and Planetary Change 178, 7795.CrossRefGoogle Scholar
Nesse, W., 1977. Geology and Metamorphic Petrology of the Pingree Park Area, Northeast Front Range, Colorado. PhD Dissertation, University of Colorado, Boulder, USA.Google Scholar
Oldani, K.M., Mladenov, N., Williams, M.W., Campbell, C.M., Lipson, D.A., 2017. Seasonal patterns of dry deposition at a high-elevation site in the Colorado Rocky Mountains. Journal of Geophysical Research: Atmospheres 122, 11,183–11,200.Google Scholar
Oleksy, I.A., Baron, J.S., Leavitt, P.R., Spaulding, S.A., 2020. Nutrients and warming interact to force mountain lakes into unprecedented ecological states. Proceedings of the Royal Society B: Biological Sciences 287, 20200304. https://doi.org/10.1098/rspb.2020.0304.CrossRefGoogle ScholarPubMed
Ostrofsky, M.L., 2012. Differential post-depositional mobility of phosphorus species in lake sediments. Journal of Paleolimnology 48, 559569.CrossRefGoogle Scholar
Oviatt, C.G., 1997. Lake Bonneville fluctuations and global climate change. Geology 25, 155158.2.3.CO;2>CrossRefGoogle Scholar
Peterman, Z.E., Hedge, C.E., Braddock, W.A., 1968. Age of Precambrian events in the northwestern Front Range, Colorado. Journal of Geophysical Research 73, 22772296.CrossRefGoogle Scholar
Phillips, F.M., Zreda, M.G., Benson, L.V., Plummer, M.A., Elmore, D., Sharma, P., 1996. Chronology for fluctuations in Late Pleistocene Sierra Nevada glaciers and lakes. Science 274, 749751.CrossRefGoogle Scholar
Price, J.R., Moore, J., Kerans, D., 2017. Monazite chemical weathering, rare earth element behavior, and paleoglaciohydrology since the last glacial maximum for the Loch Vale watershed, Colorado, USA. Quaternary Research 87, 191207.CrossRefGoogle Scholar
Price, J.R., Nunez, J., Moore, J., 2020. Using plug-flow column reactor data to constrain calcic mineral weathering rates from watershed mass-balance methods: Lithogenic apatite dissolution and phosphorus fluxes into the Loch Vale Watershed ecosystem, Colorado, USA. Applied Geochemistry 120, 104664. https://doi.org/10.1016/j.apgeochem.2020.104664.CrossRefGoogle Scholar
Price, J.R., Peresolak, K., Brice, R.L., Tefend, K.S., 2013. Temporal variability in the chemical weathering of Ca2+-bearing phases in the Loch Vale Watershed, Colorado, USA: a mass-balance approach. Chemical Geology 342, 151166.CrossRefGoogle Scholar
Price, J.R., Velbel, M.A., Patino, L.C., 2005. Allanite and epidote weathering at the Coweeta Hydrologic Laboratory, western North Carolina, USA. American Mineralogist 90, 101114.CrossRefGoogle Scholar
Price, J.R., Wilton, D.H.C., Tubrett, M.N., Schneiderman, J.S., Fan, X., Peresolak, K., 2014. Predicting radioactive accessory mineral dissolution during chemical weathering: The radiation dose at the solubility threshold for epidote-group detrital grains from the Yangtze River delta, China. Chemical Geology 393–394, 93111.Google Scholar
Quirk, B.J., Mackey, G.N., Fernandez, D.P., Armstrong, A., Moore, J.R., 2020. Speleothem and glacier records of Latest Pleistocene-Early Holocene climate change in the western North America interior. Journal of Quaternary Science 35, 776790.CrossRefGoogle Scholar
Reasoner, M.A., 1993. Equipment and procedure improvements for a lightweight, inexpensive, percussion core sampling system. Journal of Paleolimnology 8, 273281.CrossRefGoogle Scholar
Reasoner, M.A., Jodry, M.A., 2000. Rapid response of alpine timberline vegetation to the Younger Dryas climate oscillation in the Colorado Rocky Mountains, USA. Geology 28, 5154.2.0.CO;2>CrossRefGoogle Scholar
Reimer, P., Bard, E., Bayliss, A., Beck, J., Blackwell, P., Bronk Ramsey, C., Buck, C., et al. , 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 18691887.CrossRefGoogle Scholar
Rempel, A.W., Marshall, J.A., Roering, J.J., 2016. Modeling relative frost weathering rates at geomorphic scales. Earth and Planetary Science Letters 453, 8795.CrossRefGoogle Scholar
Ren, Z., Martyniuk, N., Oleksy, I.A., Swain, A., Hotaling, S., 2019. Ecological stoichiometry of the mountain cryosphere. Frontiers in Ecology and Evolution: Behavioral and Ecological Stoichiometry 7, 360. https://doi.org/10.3389/fevo.2019.00360.CrossRefGoogle Scholar
Ruban, V., Brigault, S., Demare, D., and Philippe, A.-M., 1999b. An investigation of the origin and mobility of phosphorus in freshwater sediments from Bort-Les-Orgues Reservoir, France. Journal of Environmental Monitoring 1, 403407.CrossRefGoogle ScholarPubMed
Ruban, V., López-Sánchez, J.F., Pardo, P., Rauret, G., Muntau, H., Quevauviller, P., 1999a. Selection and evaluation of sequential extraction procedures for the determination of phosphorus forms in lake sediment. Journal of Environmental Monitoring 1, 5156.CrossRefGoogle ScholarPubMed
Ruban, V., López-Sánchez, J.F., Pardo, P., Rauret, G., Muntau, H., Quevauviller, P., 2001. Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments–A synthesis of recent works. Fresenius’ Journal of Analytical Chemistry 370, 224228.CrossRefGoogle ScholarPubMed
Rydin, E., 2000. Potentially mobile phosphorus in Lake Erken sediment. Water Resources 34, 20372042.Google Scholar
Sapota, T., Aldahan, A., Al-Aasm, I.S., 2006. Sedimentary facies and climate control on formation of vivianite and siderite microconcretions in sediments of Lake Baikal, Siberia. Journal of Paleolimnology 36, p. 245257.CrossRefGoogle Scholar
Saros, J.E., Michel, T.J., Interlandi, S.J., Wolfe, A.P., 2005. Resource requirements of Asterionella formosa and Fragilaria crotonensis in oligotrophic alpine lakes: implications for recent phytoplankton community reorganizations. Canadian Journal of Fisheries and Aquatic Sciences 62, 16811689.CrossRefGoogle Scholar
Saros, J.E., Rose, K.C., Clow, D.W., Stephens, V.C., Nurse, A.B., Arnett, H.A., Stone, J.R., Williamson, C.E., Wolfe, A.P., 2010. Melting high alpine glaciers enrich lakes with reactive nitrogen: Environmental Science and Technology 44, 48914896.CrossRefGoogle ScholarPubMed
Savi, S., Delunel, R., Schlunegger, F., 2015. Efficiency of frost-cracking processes through space and time: An example from the eastern Italian Alps. Geomorphology 232, 248260.CrossRefGoogle Scholar
Selig, U., Fischer, K., Leipe, T., 2005. Phosphorus accumulation in lake sediments during the last 14,000 years: Description b fractionation techniques and X-ray micro-analysis. Journal of Freshwater Ecology 20, 347359.CrossRefGoogle Scholar
Shiller, A.M., 2010. Dissolved rare earth elements in a seasonally snow-covered, alpine/ subalpine watershed, Loch Vale, Colorado. Geochemica et Cosmochimica Acta 74, 20402052.CrossRefGoogle Scholar
Slemmons, K.E.H., Rodgers, M.L., Stone, J.R., Saros, J.E., 2017. Nitrogen subsidies in glacial meltwaters have altered planktic diatom communities in lakes of the US Rocky Mountains for at least a century: Hydrobiologia 800, 129144.CrossRefGoogle Scholar
Slemmons, K.E.H., Saros, J.E., 2012. Implications of nitrogen-rich glacial meltwater for phytoplankton diversity and productivity in alpine lakes. Limnology and Oceanography 57, 16511663.CrossRefGoogle Scholar
Slemmons, K.E.H., Saros, J.E., Simon, K., 2013. The influence of glacial meltwater on alpine aquatic ecosystems: a review. Environmental Science: Processes and Impacts 15, 17941806.Google ScholarPubMed
Slemmons, K.E.H., Saros, J.E., Stone, J.R., McGowan, S., Hess, C.T., Cahl, D., 2015. Effects of glacier meltwater on the algal sedimentary record of an alpine lake in the central US Rocky Mountains throughout the Late Holocene. Journal of Paleolimnology 53, 385399.CrossRefGoogle Scholar
Smith, V.H., Tilman, G.D., Nekola, J.C., 1999. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution 100, 179196.CrossRefGoogle ScholarPubMed
Spaulding, S., Potapova, M.G., Bishop, I.W., Lee, S.S., Gasperak, T.S., Jovanoska, E., Furey, P.C., Edlund, M.B., 2022. Diatoms.org: supporting taxonomists, connecting communities. Diatom Research 36, 291304. [website database accessed April 30, 2020].CrossRefGoogle ScholarPubMed
Tomkins, J.D., Antoniades, D., Lamoureux, S.F., Vincent, W.F., 2007. A simple and effective method for preserving the sediment-water interface of sediment cores during transport. Journal of Paleolimnology 40, 577582.CrossRefGoogle Scholar
Turk, J.T., Spahr, N.E., Campbell, K., 1993. Planning document of water, energy, and biogeochemical-budget (WEBB) research project, Loch Vale watershed, Rocky Mountain National Park, Colorado. U.S. Geological Survey Open File Report 92-628. U.S. Geological Survey, Reston, Virginia. 18 pp.Google Scholar
Walthall, P.M., 1985. Acidic Deposition and the Soil Environment of Loch Vale Watershed in Rocky Mountain National Park. PhD dissertation, Colorado State University, Fort Collins, USA.Google Scholar
Wang, C., Zhang, Y., Li, H., Morrison, R.J., 2013. Sequential extraction procedures for the determination of phosphorus forms in sediment. Limnology 14, 147157.CrossRefGoogle Scholar
Wardle, P., 1968. Englemann spruce (Picea engelmanii engel.) at its upper limits on the Front Range, Colorado. Ecology 49, 483495.CrossRefGoogle Scholar
Wolfe, A.P., Van Gorp, A.C., Baron, J.S., 2003. Recent ecological and biogeochemical changes in alpine lakes of Rocky Mountain National Park (Colorado, USA): a response to anthropogenic nitrogen deposition. Geobiology 1, 153168.CrossRefGoogle Scholar
Yuan, F., Koran, M.R., Valdez, A., 2013. Late Glacial and Holocene record of climactic change in the southern Rocky Mountains from sediments in San Luis Lake, Colorado, USA: Palaeogeography, Palaeoclimatology, Palaeoecology 392, 146160.CrossRefGoogle Scholar
Zic, M., Negrini, R.M., Wigand, P.E., 2002. Evidence of synchronous climate change across the Northern Hemisphere between the North Atlantic and the northwestern Great Basin, United States. Geology 30, 635638.2.0.CO;2>CrossRefGoogle Scholar
Supplementary material: File

Price et al. supplementary material

Table S1

Download Price et al. supplementary material(File)
File 14.3 KB
Supplementary material: File

Price et al. supplementary material

Table S2

Download Price et al. supplementary material(File)
File 58.2 KB