Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-10-31T08:21:32.358Z Has data issue: false hasContentIssue false

Comment on “A Large California Flood and Correlative Global Climatic Events 400 Years Ago” (Schimmelmannet al.,1998)

Published online by Cambridge University Press:  20 January 2017

Bas van Geel
Affiliation:
The Netherlands Centre for Geo-ecological Research, University of Amsterdam, Kruislaan 318, 1098 SM, Amsterdam, The Netherlands, E-mail: vanGeel@bio.uva.nl
Johannes van der Plicht
Affiliation:
Centre for Isotope Research, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands, E-mail: Plicht@phys.rug.nl
Hans Renssen
Affiliation:
The Netherlands Centre for Geo-ecological Research, Free University, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands, E-mail: renh@geo.vu.nl
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Letter to the Editor
Copyright
University of Washington

References

Friis-Christensen, E., and Lassen, K. (1991). Length of the solar cycle: An indicator of solar activety closely associated with climate. Science 254, 698700.CrossRefGoogle Scholar
Haigh, J.D. (1994). The role of stratospheric ozone in modulating the solar radiative forcing of climate. Nature 370, 544546.CrossRefGoogle Scholar
Haigh, J.D. (1996). The impact of solar variability on climate. Science 272, 981984.CrossRefGoogle ScholarPubMed
Harvey, L.D.D. (1980). Solar variability as a contributing factor to Holocene climatic change. Progress in Physical Geography 4, 487530.CrossRefGoogle Scholar
Kilian, M.R., van der Plicht, J., and van Geel, B. (1995). Dating raised bogs: New aspects of AMS14 . Quaternary Science Reviews 14, 959966.CrossRefGoogle Scholar
Pudovkin, M.I., and Raspopov, O.M. (1992). The mechanism of action of solar activity on the state of the lower atmosphere and meteorological parameters (a review). Geomagnetism and Aeronomy 32, 593608.Google Scholar
Raspopov, O.M., Shumilov, O.I., Kasatkina, E.A., Dergachev, V.A., and Creer, K.M. (1997). Impact of cosmic ray flux variations caused by changes in geomagnetic dipole moment on climate variability. Russian Academy of Sciences IOFFE Physical-Technical Institute, Preprint 1693, 141.Google Scholar
Schimmelmann, A., Zhao, M., Harvey, C.C., and Lange, C.B. (1998). A large California flood and correlative global climatic events 400 years ago. Quaternary Research 49, 5161.CrossRefGoogle Scholar
Stuiver, M., and Braziunas, T.F. (1989). Atmospheric14 . Nature 338, 405408.CrossRefGoogle Scholar
Stuiver, M., and Braziunas, T.F. (1993). Sun, ocean, climate and atmospheric14 . The Holocene 3, 289305.CrossRefGoogle Scholar
Stuiver, M., and Braziunas, T.F. (1998). Anthropogenic and solar components of hemispheric 14C. Geophysical Research Letters 25, 329332.CrossRefGoogle Scholar
Svensmark, H., and Friis-Christensen, E. (1997). Variation of cosmic ray flux and global cloud coverage—A missing link in solar-climate relationships. Journal of Atmospheric and Solar-Terrestrial Physics 59, 12251232.CrossRefGoogle Scholar
van Geel, B., Buurman, J., and Waterbolk, H.T. (1996). Archeological and paleoecological indications for an abrupt climate change in The Netherlands and evidence for climatological teleconnections around 2650 BP. Journal of Quaternary Science 11, 451460.3.0.CO;2-9>CrossRefGoogle Scholar
van Geel, B., van der Plicht, J., Kilian, M.R., Klaver, E.R., Kouwenberg, J.H.M., Renssen, H., Reynaud-Farrera, I., and Waterbolk, H.T. (1998). The sharp rise of Δ14 . Radiocarbon 40, 535550.CrossRefGoogle Scholar