Published online by Cambridge University Press: 09 June 2020
The sedimentologic fingerprinting in detrital deposit is vital to reconstruct sedimentary environments and discriminate sources. In this study, grain size and microtextural characteristics of quartz from the late Pleistocene hard clay in the Yangtze River delta (YRD) were analyzed by using a laser particle size analyzer and a scanning electron microscope. Subaqueous quartz from the Yangtze River and Yellow River sediments and eolian quartz from the Chinese Loess Plateau loess were also analyzed by scanning electron microscopy to obtain the microtextural characteristics. Quartz grains of the hard clay were characterized by poor sorting, fine skew, bimodal grain-size distributions, and numerous eolian microtextures. The comparison of the quartz grain characteristics of the hard clay with these in eolian loess indicated that the hard clay belonged to an eolian deposition. Moreover, the fine quartz grains of the hard clay were dominated by eolian microtextural characteristics, representing long-distance transportation. The coarse quartz grains of the hard clay exhibited more subaqueous microtextural characteristics, which indicated that the coarse fraction of the hard clay was derived from the proximal source regions in the YRD. The determination of buried eolian deposition with multiple sources in the YRD implies a southward westerly jet stream, strengthened eolian dust transportation, and extensive aridification in the YRD due to the increased Northern Hemisphere ice sheets in Marine Oxygen Isotope Stage 2.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.