Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-01T06:30:54.225Z Has data issue: false hasContentIssue false

How Fishy was the Inland Mesolithic? New Data from Friesack, Brandenburg, Germany

Published online by Cambridge University Press:  05 November 2018

John Meadows*
Affiliation:
Centre for Baltic and Scandinavian Archaeology, Schloss Gottorf, 24837 Schleswig, Germany Leibniz-Laboratory for AMS Dating and Isotope Research, Christian-Albrechts-University Kiel, Max-Eyth-Str. 11-13, 24118 Kiel, Germany
Harry K Robson
Affiliation:
Centre for Baltic and Scandinavian Archaeology, Schloss Gottorf, 24837 Schleswig, Germany BioArCh Laboratory, University of York, Wentworth Way, York, YO10 5DD, United Kingdom
Daniel Groß
Affiliation:
Centre for Baltic and Scandinavian Archaeology, Schloss Gottorf, 24837 Schleswig, Germany
Charlotte Hegge
Affiliation:
Institute for Natural Resource Conservation, Christian-Albrechts-University Kiel, Kiel, Germany
Harald Lübke
Affiliation:
Centre for Baltic and Scandinavian Archaeology, Schloss Gottorf, 24837 Schleswig, Germany
Ulrich Schmölcke
Affiliation:
Centre for Baltic and Scandinavian Archaeology, Schloss Gottorf, 24837 Schleswig, Germany
Thomas Terberger
Affiliation:
Lower Saxony State Office for Cultural Heritage, Hannover, Germany
Bernhard Gramsch
Affiliation:
Retired; formerly Brandenburg State Office for Preservation of Monuments and State Archaeological Museum, Potsdam, Germany
*
*Corresponding author. Email: jmeadows@leibniz.uni-kiel.de.

Abstract

Recent studies have shown that faunal assemblages from Mesolithic sites in inland Northern Europe contain more fish remains than previously thought, but the archaeological and archaeozoological record does not reveal the dietary importance of aquatic species to hunter-gatherer-fishers, even at a societal level. For example, the function of bone points, as hunting weapons or fishing equipment, has long been debated. Moreover, traditional methods provide no indication of variable subsistence practices within a population. For these reasons, paleodietary studies using stable isotope analyses of human remains have become routine. We present radiocarbon (14C) and stable isotope data from nine prehistoric human bones from the Early Mesolithic-Early Neolithic site of Friesack 4, and isotopic data for local terrestrial mammals (elk, red deer, roe deer, wild boar, aurochs, beaver) and freshwater fish (European eel, European perch). The reference data allow individual paleodiets to be reconstructed. Using paleodiet estimates of fish consumption, and modern values for local freshwater reservoir effects, we also calibrate human 14C ages taking into account dietary reservoir effects. Although the number of individuals is small, it is possible to infer a decline in the dietary importance of fish from the Preboreal to the Boreal Mesolithic, and an increase in aquatic resource consumption in the Early Neolithic.

Type
Regional Applications
Copyright
© 2018 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

current address: Wielandstr. 21, 14471 Potsdam, Germany.

Selected Papers from the 2nd International Radiocarbon and Diet Conference: Aquatic Food Resources and Reservoir Effects, 20–23 June 2017, Aarhus, Denmark

References

REFERENCES

Benecke, N. 2016. Die Tierreste aus den spätmesolithischen und neolithischen Besiedlungsphasen von Friesack 4. In: Benecke, et al., editors. Subsistenz und Umwelt der Feuchtbodenstation Friesack 4 im Havelland. Ergebnisse der naturwissenschaftlichen Untersuchungen. Wünsdorf: Brandenburgisches Landesamt für Denkmal-pflege und Archäologisches Landesmuseum. p 117159.Google Scholar
Boethius, A. 2017. Signals of sedentism: Faunal exploitation as evidence of a delayed-return economy at Norje Sunnansund, an Early Mesolithic site in south-eastern Sweden. Quaternary Science Reviews 162:145168.Google Scholar
Boethius, A, Storå, S, Hongslo Vala, C, Apel, J. 2017. The importance of freshwater fish in Early Holocene subsistence: Exemplified with the human colonization of the island of Gotland in the Baltic basin. Journal of Archaeological Science: Reports 13:625634.Google Scholar
Bollongino, R, Nehlich, O, Richards, MP, Orschiedt, J, Thomas, MG, Sell, C, Fajkošová, Z, Powell, A, Burger, J. 2013. 2000 years of parallel societies in Stone Age Central Europe. Science 342(6157):479481.Google Scholar
Bronk Ramsey, C. 2001. Development of the radiocarbon calibration program. Radiocarbon 43(2A):355363.Google Scholar
Dee, MW, Bronk Ramsey, C. 2014. High-precision Bayesian modeling of samples susceptible to inbuilt age. Radiocarbon 56(1):8394.Google Scholar
DeNiro, MJ. 1985. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to paleodietary reconstruction. Nature 317(6040):806809.Google Scholar
Dörfler, W, Feeser, I, van den Bogaard, C, Dreibrodt, S, Erlenkeuser, H, Kleinmann, A, Merkt, J, Wiethold, J. 2012. A high-quality annually laminated sequence from Lake Belau, Northern Germany: Revised chronology and its implications for palynological and tephrochronological studies. The Holocene 22(12):14131426.Google Scholar
Drucker, DG, Rosendahl, W, Van Neer, W, Weber, M-J, Görner, I, Bocherens, H. 2016. Environment and subsistence in north-western Europe during the Younger Dryas: An isotopic study of the human of Rhünda (Germany). Journal of Archaeological Science: Reports 6:690699.Google Scholar
Fernandes, R, Grootes, P, Nadeau, M-J, Nehlich, O. 2015. Quantitative diet reconstruction of a Neolithic population using a Bayesian mixing model (FRUITS): The case study of Ostorf (Germany). American Journal of Physical Anthropology 158(2):325340.Google Scholar
Fernandes, R, Millard, AR, Brabec, M, Nadeau, M-J, Grootes, P. 2014. Food Reconstruction Using Isotopic Transferred Signals (FRUITS): A Bayesian model for diet reconstruction. PLOS ONE 9(2):e87436.Google Scholar
Fernandes, R, Nadeau, M-J, Grootes, PM. 2012. Macronutrient-based model for dietary carbon routing in bone collagen and bioapatite. Archaeological and Anthropological Sciences 4(4):291301.Google Scholar
Fischer, A, Olsen, J, Richards, M, Heinemeier, J, Sveinbjörnsdóttir, ÁE, Bennike, P. 2007a. Coast–inland mobility and diet in the Danish Mesolithic and Neolithic: evidence from stable isotope values of humans and dogs. Journal of Archaeological Science 34(12):21252150.Google Scholar
Fischer, A, Richards, M, Olsen, J, Robinson, DE, Bennike, P, Kubiak‐Martens, L, Heinemeier, J. 2007b. The composition of Mesolithic food. Acta Archaeologica 78(2):163178.Google Scholar
Görsdorf, J, Gramsch, B. 2004. Interpretation of 14C dates of the Mesolithic site of Friesack, Germany. In: Higham T, Bronk Ramsey C, Owen C, editors. Radiocarbon and Archaeology 4th International Symposium, 9–14 April 2002. Oxford: Oxford University School of Archaeology Monograph 62:303–11.Google Scholar
Gramsch, B. 2002. Friesack: Letzte Jäger und Sammler in Brandenburg. Jahrbuch des Römisch-Germanischen Zentralmuseums Mainz 47(2000):5196.Google Scholar
Gramsch, B. 2016. Friesack 4 - eine Feuchtbodenstation des Mesolithikums in Norddeutschland. In: Benecke, et al., editors. Subsistenz und Umwelt der Feuchtbodenstation Friesack 4 im Havelland. Ergebnisse der naturwissenschaftlichen Untersuchungen. Wünsdorf: Brandenburgisches Landesamt für Denkmalpflege und Archäologisches Landesmuseum. p 924.Google Scholar
Groß, D. 2017. Welt und Umwelt frühmesolithischer Jäger und Sammler. Mensch-Umwelt-Interaktion im Frühholozän in der nordmitteleuropäischen Tiefebene. Kiel: Ludwig.Google Scholar
Grootes, PM, Nadeau, M-J, Rieck, A. 2004. 14C-AMS at the Leibniz-Labor: radiometric dating and isotope research. Nuclear Instruments and Methods in Physics Research B 223:5561.Google Scholar
Grünberg, JM. 2000. Mesolithische Bestattungen in Europa. Ein Beitrag zur vergleichenden Gräberkunde. I: Auswertung; II: Katalog. Internationale Archäologie 40, Rahden/Westfalen.Google Scholar
Hammer, S, Levin, I. 2017. Monthly mean atmospheric Δ14CO2 at Jungfraujoch and Schauinsland from 1986 to 2016. heiDATA Dataverse.Google Scholar
Jahns, S, Gramsch, B, Kloss, K. 2016. Pollenanalytische Untersuchungen am mesolithischen Fundplatz Friesack 4, Lkr. Havelland, nach Unterlagen aus dem Nachlass von Klaus Kloss. In: Benecke, et al., editors. Subsistenz und Umwelt der Feuchtbodenstation Friesack 4 im Havelland. Ergebnisse der naturwissenschaftlichen Untersuchungen. Wünsdorf: Brandenburgisches Landesamt für Denkmalpflege und Archäologisches Landesmuseum. p 2544.Google Scholar
Kloss, K. 1987a. Pollenanalysen zur Vegetationsgeschichte, Moorentwicklung und mesolithisch-neolithischen Besiedlung im Unteren Rhinluch bei Friesack, Bezirk Potsdam. Veröffentlichungen des Museums für Ur- und Frühgeschichte Potsdam 21:101120.Google Scholar
Kloss, K. 1987b. Zur Umwelt mesolithischer Jäger und Sammler im Unteren Rhinluch bei Friesack – Versuch einer Rekonstruktion mit Hilfe von Moorstratigraphie und Pollenanalyse. Veröffentlichungen des Museums für Ur- und Frühgeschichte Potsdam 21:121130.Google Scholar
Kobusiewicz, M, Kabaciński, J. 1993. Chwalim. Subboreal Hunter-Gatherers of the Polish Plain. Poznań: Institute of Archaeology and Ethnology, Polish Academy of Sciences.Google Scholar
Lidén, K, Eriksson, G, Nordqvist, B, Götherström, A, Bendixen, E. 2003. ‘The wet and wild followed by the dry and the tame?’ - or did they occur at the same time? Diet in Mesolithic - Neolithic southern Sweden. Antiquity 78(299):2337.Google Scholar
Litt, T, Brauer, A, Goslar, T, Merkt, J, Bałaga, K, Müller, H, Ralska-Jasiewiczowa, M, Stebich, M, Negendank, JFW. 2001. Correlation and synchronisation of Lateglacial continental sequences in northern central Europe based on annually laminated lacustrine sediments. Quaternary Science Reviews 20(11):12331249.Google Scholar
Meadows, J, Bērziņš, V, Brinker, U, Lübke, H, Schmölcke, U, Staude, A, Zagorska, I, Zariņa, G. 2016. Dietary freshwater reservoir effects and the radiocarbon ages of prehistoric human bones from Zvejnieki, Latvia. Journal of Archaeological Science: Reports 6:678689.Google Scholar
Münster, A, Knipper, C, Oelze, VM, Nicklisch, N, Stecher, M, Schlenker, B, Ganslmeier, R, Fragata, M, Friederich, S, Dresely, V, Hubensack, V, Brandt, G, Döhle, H-J, Vach, W, Schwarz, R, Metzner-Nebelsick, C, Meller, H, Alt, KW. 2018. 4000 years of human dietary evolution in central Germany, from the first farmers to the first elites. PLOS ONE 13(3):e0194862.Google Scholar
Nadeau, M-J, Grootes, PM, Schleicher, M, Hasselberg, P, Rieck, A, Bitterling, M. 1998. Sample throughput and data quality at the Leibniz-Labor AMS facility. Radiocarbon 40(1):239245.Google Scholar
Olsen, J, Heinemeier, J, Lübke, H, Lüth, F, Terberger, T. 2010. Dietary habits and freshwater reservoir effects in bones from a Neolithic NE German cemetery. Radiocarbon 52(2):635644.Google Scholar
Robson, HK. 2016. New ichthyoarchaeological data from the Mesolithic lakeshore settlement site of Friesack 4. In: Benecke, et al., editors. Subsistenz und Umwelt der Feuchtbodenstation Friesack 4 im Havelland. Ergebnisse der naturwissenschaftlichen Untersuchungen. Wünsdorf: Brandenburgisches Landesamt für Denkmalpflege und Archäologisches Landesmuseum. p 160177.Google Scholar
Schmölcke, U. 2016. Die Säugetierfunde vom präboreal- und borealzeitlichen Fundplatz Friesack 4 in Brandenburg. In: Benecke, et al., editors. Subsistenz und Umwelt der Feuchtbodenstation Friesack 4 im Havelland. Ergebnisse der naturwissenschaftlichen Untersuchungen. Wünsdorf: Brandenburgisches Landesamt für Denkmal-pflege und Archäologisches Landesmuseum. p 45116.Google Scholar
Schneider, M. 1932. Die Urkeramiker. Entstehung eines mesolithischen Volkes und seiner Kultur. Leipzig: Kabitzsch.Google Scholar
Scholz, E. 1962. Die naturräumliche Gliederung Brandenburgs. Potsdam: Pädag. Bezirkskabinett.Google Scholar
Speth, JD, Spielmann, KA. 1983. Energy source, protein metabolism, and hunter-gatherer subsistence strategies. Journal of Anthropological Archaeology 2(1):131.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion reporting of 14C data. Radiocarbon 19(3):355363.Google Scholar
Szpak, P. 2011. Fish bone chemistry and ultrastructure: implications for taphonomy and stable isotope analysis. Journal of Archaeological Science 38:33583372.Google Scholar
Terberger, T, Gramsch, B, Heinemeier, J. 2012. The underestimated fish? – Early Mesolithic human remains from Northern Germany. In: Niekus MJLT, Barton RNE, Street M, Terberger T, editors. A Mind Set on Flint. Studies in Honour of Dick Stapert. Groningen University Library. p 343354.Google Scholar
Terberger, T, Kotula, A, Lorenz, S, Schult, M, Burger, J, Jungklaus, B. 2015. Standing upright to all eternity – the Mesolithic burial site at Groß Fredenwalde, Brandenburg (NE Germany). Quartär 65:133153.Google Scholar
Ullrich, H, Gramsch, B. 2015. Menschliche Skelettreste und Schmuckzahne vom mesolithischen Moorfundplatz Friesack in Brandenburg. Anthropologie LIII(1-2):315327.Google Scholar
van der Plicht, J, Amkreutz, LWSW, Niekus, MJLT, Peeters, JHM, Smit, BI. 2016. Surf’n Turf in Doggerland: Dating, stable isotopes and diet of Mesolithic human remains from the southern North Sea. Journal of Archaeological Science: Reports 10:110118.Google Scholar
Wenzel, S. 2002. Mesolithische Lagerplatzstrukturen am Moorfundplatz Friesack 4 Lkr. Havelland. Greifswalder Geographische Arbeiten 26:207210.Google Scholar
Wolters, S. 2016. Die pflanzlichen Makroreste der Mesolithstation Friesack. In: Benecke, et al., editors. Subsistenz und Umwelt der Feuchtbodenstation Friesack 4 im Havelland. Ergebnisse der naturwissenschaftlichen Untersuchungen. Wünsdorf: Brandenburgisches Landesamt für Denkmal-pflege und Archäologisches Landesmuseum. p 189203.Google Scholar
Zoppi, U, Crye, J, Song, Q, Arjomand, A. 2007. Performance evaluation of the new AMS system at Accium Biosciences. Radiocarbon 49(1):173182.Google Scholar
Supplementary material: File

Meadows et al. supplementary material

Appendix 1

Download Meadows et al. supplementary material(File)
File 21.2 KB
Supplementary material: File

Meadows et al. supplementary material

Appendix 2

Download Meadows et al. supplementary material(File)
File 23.1 KB