Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-19T09:32:08.797Z Has data issue: false hasContentIssue false

REINTERPRETATION OF FLUVIAL-AEOLIAN SEDIMENTS FROM LAST GLACIAL TERMINATION CLASSIC TYPE LOCALITIES USING HIGH-RESOLUTION RADIOCARBON DATA FROM THE POLISH PART OF THE EUROPEAN SAND BELT

Published online by Cambridge University Press:  09 June 2022

Robert J Sokołowski
Affiliation:
Department of Geophysics, Institute of Oceanography, University of Gdansk, al. Piłsudskiego 46, 81-378 Gdynia, Poland
Piotr Moska*
Affiliation:
Institute of Physics, Centre for Science and Education, Silesian University of Technology, ul. Konarskiego 22B, 44-100 Gliwice, Poland
Paweł Zieliński
Affiliation:
Institute of Earth and Environmental Sciences, Maria Curie-Skłodowska University, Al. Kraśnicka 2d, 20-718, Lublin, Poland
Zdzisław Jary
Affiliation:
Institute of Geography and Regional Development, University of Wrocław, Pl. Uniwersytecki 1, 50-137 Wrocław, Poland
Natalia Piotrowska
Affiliation:
Institute of Physics, Centre for Science and Education, Silesian University of Technology, ul. Konarskiego 22B, 44-100 Gliwice, Poland
Jerzy Raczyk
Affiliation:
Institute of Geography and Regional Development, University of Wrocław, Pl. Uniwersytecki 1, 50-137 Wrocław, Poland
Przemysław Mroczek
Affiliation:
Institute of Earth and Environmental Sciences, Maria Curie-Skłodowska University, Al. Kraśnicka 2d, 20-718, Lublin, Poland
Agnieszka Szymak
Affiliation:
Institute of Physics, Centre for Science and Education, Silesian University of Technology, ul. Konarskiego 22B, 44-100 Gliwice, Poland
Marcin Krawczyk
Affiliation:
Institute of Geography and Regional Development, University of Wrocław, Pl. Uniwersytecki 1, 50-137 Wrocław, Poland
Jacek Skurzyński
Affiliation:
Institute of Geography and Regional Development, University of Wrocław, Pl. Uniwersytecki 1, 50-137 Wrocław, Poland
Grzegorz Poręba
Affiliation:
Institute of Physics, Centre for Science and Education, Silesian University of Technology, ul. Konarskiego 22B, 44-100 Gliwice, Poland
Michał Łopuch
Affiliation:
Institute of Geography and Regional Development, University of Wrocław, Pl. Uniwersytecki 1, 50-137 Wrocław, Poland
Konrad Tudyka
Affiliation:
Institute of Physics, Centre for Science and Education, Silesian University of Technology, ul. Konarskiego 22B, 44-100 Gliwice, Poland
*
*Corresponding author. Email: Piotr.Moska@polsl.pl

Abstract

This paper presents 66 radiocarbon (14C) dates obtained at 33 key sites from the Polish part of the European Sand Belt. These calibrated dating results were compared to 34 high-resolution 14C dates obtained from a fluvial-aeolian sediments to identify pedogenic phases from the late Pleniglacial interval to the early Holocene. These identified pedogenic phases were correlated with Greenland ice-core records, revealing high sensitivity of the fluvio-aeolian paleoenvironment to climate changes. Two pedogenic phases were identified from the late Pleniglacial interval (Greenland Stadial GS-2.1b and GS-2.1a), three from the Bølling-Allerød interstadial (Greenland Stadial GI-1), one from the late Allerød–Younger Dryas boundary, and at least one from the Younger Dryas. The ages of these pedogenic phases reveal a distinct delay of 50–100 calendar years after the onset of cool climate conditions during GI-1, reflecting gradual withdrawal of vegetation. Soil horizons from the early Holocene do not show any clear relation with climate change, where breaks in soil formation were caused by local factors such as human activity.

Type
Conference Paper
Copyright
© The Author(s), 2022. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 3rd Radiocarbon in the Environment Conference, Gliwice, Poland, 5–9 July 2021

References

REFERENCES

Andrzejewski, L, Weckwerth, P. 2010. Dunes of the Toruń Basin against palaeogeographical conditions of the Late Glacial and Holocene. Ecological Questions 12:915.CrossRefGoogle Scholar
Antoine, P, Maunaut, AV, Limondin-Lozouet, N, Ponel, P, Duperon, J, Duperon, M. 2003. Response of the Selle River to climatic modifications during the Lateglacial and Early Holocene (Somme basin – N France). Quaternary Science Reviews 22:20612076.CrossRefGoogle Scholar
Berger, GW. 2010. An alternate form of probability—distribution plot for De values. Ancient TL 28:1122.Google Scholar
Bertran, P, Bosq, M, Borderie, Q, Coussot, C, Coutard, S, Deschodt, L, Franc, O, Gardere, P, Liard, M, Wuscher, P. 2021. Revised map of European aeolian deposits derived from soil texture data. Quaternary Science Reviews 266:107085.CrossRefGoogle Scholar
Błaszkiewicz, M, Piotrowski, JA, Brauer, A, Gierszewski, P, Kordowski, J, Kramkowski, M, Lamparski, P, Lorenz, S, Noryskiewicz, AM, Ott, F, Słowinski, M, Tyszkowski, S. 2015. Climatic and morphological controls on diachronous postglacial lake and river valley evolution in the area of Last Glaciation, northern Poland. Quaternary Science Reviews 109:1327.CrossRefGoogle Scholar
Borówka, RK, Gonera, P, Kostrzewski, A, Zwoliński, Z. 1982. Origin, age and paleogeographic significance of cover sands in the Wolin end moraine area, north-west Poland. Quaestiones Geographice 8:1936.Google Scholar
Bos, JAA, De Smedt Ph, Demiddele H, Hoek, WZ, Langohr, R, Marcelino, V, Van Asch, N, Van Damme, D, Van der Meeren, T, Verniers, J, Boeckx, P, Boudin, M, Court-Picon, M, Finke, P, Gelorini, V, Gobert, S, Heiri, O, Martens, K, Mostaert, F, Serbruyns, L, Van Strydonck, M, Ph, Crombé. 2017. Multiple oscillations during the Lateglacial as recorded in a multi-proxy, high-resolution record of the Moervaart palaeolake (NW Belgium). Quaternary Science Reviews 162:2641.CrossRefGoogle Scholar
Bos, JAA, De Smedt, P, Demiddele, H, Hoek, W, Langohr, R, Marcelino, V, Van Asch, N, Van Damme, D, Van Der Meeren, T, Verniers, J, Crombé, P. 2018. Weichselian Lateglacial environmental and vegetation development in the Moervaart palaeolake area (NW Belgium); implications for former human occupation patterns. Review of Palaeobotany and Palynology 248:114.CrossRefGoogle Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.CrossRefGoogle Scholar
Crombe, P, Van Strydonck, M, Boudin, M, Van den Brandem, T, Derese, C, Vandenberghe, DAG, Van den haute, P, Court-Picon, M, Verniers, J, Bos, JAA, Verbruggen, F, Antrop, M, Bats, M, Bourgeois, J, De Reu, J, De Maeyer, P, De Smedt Ph, Finke PA, Van Meirvenne, M, Zwertvaegher, A. 2012. Absolute dating (14C and OSL) of the formation of coversand ridges occupied by prehistoric man in NW Belgium. Radiocarbon 54:715726 CrossRefGoogle Scholar
Crombé, P, Bos, JAA, Cruz, F, Verhegge, J. 2020. Repeated aeolian deflation during the Allerød/GI-1a-c in the coversand lowland of NW Belgium. Catena 188:104453.CrossRefGoogle Scholar
De Klerk, P, Helbig, H, Helms, S, Janke, W, Krügel, K, Kühn, P, Michaelis, D, Stolze, S. 2001. The Reinberg researches: palaeoecological and geomorphological studies of a kettle hole in Vorpommern (NE Germany), with special emphasis on a local vegetation during the Weichselian Pleniglacial/Lateglacial transition. Greifsw. Geogr. Arb. 23:43131.Google Scholar
Dulias, R. 1997. Późnoglacjalny i holoceński rozwój pokryw pyłowo-piaszczystych w południowej cześci Wyzyny Częstochowskiej. Geographia, Studia et Disseratationes, UŚ, 21. p. 7–100. In Polish with English summary.Google Scholar
Fedorowicz, S, Zieliński, P. 2009. Chronology of aeolian events recorded in the Karczmiska dune (Lublin Upland) in the light of lithofacial analysis, C-14 and TL dating. Geochronometria 33:917.CrossRefGoogle Scholar
Gärtner, P. 1998. Neue Erkenntnise zur jungquartären Landschaftsentwicklung in Nordwestbrandenburg. Eine landschaftsgenetische Studie am Ausgang des Rheinsberger Beckens. Münchener Geographische Abhandlungen 49:95116.Google Scholar
Goslar, T, Czernik, J, Goslar, E. 2004. Low-energy 14C AMS in Poznan Radiocarbon Laboratory, Poland. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 223–224:511.CrossRefGoogle Scholar
Hjelmroos-Ericsson, M. 1981. Holocene development of Lake Wielkie Gacno areas, northwestern Poland. University of Lund. Department of Quaternary Geology, Thesis 10:1–101.Google Scholar
Hirsch, F, Schneider, A, Nicolay, A, Błaszkiewicz, M, Kordowski, J, Noryskiewicz, AM, Tyszkowski, S, Raab, A, Raab, T. 2015. Late Quaternary landscape development at the margin of the Pomeranian phase (MIS 2) near Lake Wygonin (Northern Poland). Catena 124:2844.CrossRefGoogle Scholar
Hughes, ALC, Gyllencreutz, R, Lohne, ØS, Mangerud, J, Svendsen, JI. 2016. The last Eurasian ice sheets—a chronological database and time-slice reconstruction, DATED-1. Boreas 45:145.CrossRefGoogle Scholar
Iversen, J. 1954. The late-glacial flora of Denmark and its relation to climate and soil. Danm. Geol. Unders. II Rk 80:87119.Google Scholar
Jankowski, M. 2012. Lateglacial soil paleocatena in inland-dune area of the Toruń Basin, Northern Poland. Quaternary International 265:116125.CrossRefGoogle Scholar
Johnson, WC, Hanson, PR, Halfen, AF, Koop, AN. 2020. The Central and Southern Great Plains. In: Lancaster, N, Hesp, P, editors. Inland dunes of North America. Switzerland: Springer International Publishing. p. 121179.CrossRefGoogle Scholar
Kaiser, K, Hilgers, A, Schlaak, N, Jankowski, M, Kühn, P, Bussemer, S, Przegiętka, K. 2009. Palaeopedological marker horizons in northern central Europe: characteristics of Lateglacial Usselo and Finow soils. Boreas 38:591609.CrossRefGoogle Scholar
Kaiser, K, Schneider, T, Küster, M, Dietze, E, Fülling, A, Heinrich, S, Kappler, C, Nelle, O, Schult, M, Theuerkauf, M, Vogel, S, de Boer, AM, Börner, A, Preusser, F, Schwabel, M, Ulrich, J, Wirner, M, Vogel, S. 2020. Palaeosols and their cover sediments of a glacial landscape in northern central Europe: Spatial distribution, pedostratigraphy and evidence on landscape evolution. Catena 193:104647.CrossRefGoogle Scholar
Kalińska-Nartiša, E, Thiel, C, Nartišs, M, Buylaert, JP, Murray, AS. 2015. Age and sedimentary record of inland aeolian sediments in Lithuania, NE European Sand Belt. Quaternary Research 84:8295.CrossRefGoogle Scholar
Kamińska, R, Konecka-Betley, K, Mycielska-Dowgiałło, E. 1986. The Liszyno dune in the Vistula valley (east of Płock). Biuletyn Peryglacjalny 31:141162.Google Scholar
Kappler, C, Kaiser, K, Küster, M, Nicolay, A, Fülling, A, Bens, O, Raab, T. 2019. Late Pleistocene and Holocene terrestrial geomorphodynamics and soil formation in northeastern Germany: a review of geochronological data. Physical Geography 40(5):405432.CrossRefGoogle Scholar
Kasse, C. 2002. Sandy aeolian deposits and their relation to climate during the Last Glacial Maximum and Lateglacial in northwest and central Europe. Progress in Physical Geography 26:507532.CrossRefGoogle Scholar
Kasse, C, Aalbersberg, G. 2019. A complete Late Weichselian and Holocene record of aeolian coversands, drift sands and soils forced by climate change and human impact, Ossendrecht, the Netherlands. Netherlands Journal of Geosciences 98:e4.CrossRefGoogle Scholar
Kasse, C, Hoek, WZ, Bohncke, SJP, Konert, M, Weijers, JWH, Cassee, ML, Van der Zee, RM. 2005. Late Glacial fluvial response of the Niers-Rhine (western Germany) to climate and vegetation change. Journal of Quaternary Science 20:377394.CrossRefGoogle Scholar
Kasse, C, Tebbens, LA, Tump, M, Deeben, J, Derese, C, De Grave, J, Vandenberghe, D. 2018. Late Glacial and Holocene aeolian deposition and soil formation in relation to the Late Palaeolithic Ahrensburg occupation, site Geldrop-A2, the Netherlands. Netherlands Journal of Geosciences 97:329.CrossRefGoogle Scholar
Kasse, C, Van Balen, RT, Bohncke, SJP, Wallinga, J, Vreugdenhil, M. 2017. Climate and base-level controlled fluvial system change and incision during the last glacial–interglacial transition, Roer river, the Netherlands–western Germany. Netherlands Journal of Geosciences 96(2):7192.CrossRefGoogle Scholar
Kasse, C, Vanderberghe, D, De Corte, F, Van Den Haute, P. 2007. Late Weichselian fluvio-aeolian sands and coversands of the type locality Grubbenvorst (souther Netherlands): sedimentary environments, climate record and age. Journal of Quaternary Science 22:695708.CrossRefGoogle Scholar
Kasse, C, Woolderink, HAG, Kloos, ME, Hoek, WZ. 2020. Source-bordering aeolian dune formation along the Scheldt River (southern Netherlands – northern Belgium) was caused by Younger Dryas cooling, high river gradient and southwesterly summer winds. Netherlands Journal of Geosciences 99:119.CrossRefGoogle Scholar
Kolstrup, E. 1980. Climate and stratigraphy in northwestern Europe between 30.000 B.P. and 13.000 B.P., with special reference to the Netherlands. Mededelingen Rijks Geologische Dienst 32–15:181253.Google Scholar
Kolstrup, E. 2007. Lateglacial older and younger coversand in northwest Europe: chronology and relation to climate and vegetation. Boreas 36:6575.CrossRefGoogle Scholar
Konecka-Betley, K. 1991. Late Vistulian and Holocene fossil soils developed from aeolian and alluvial sediments of the Warsaw Basin. Zeitschrift für Geomorphologie Neue Folge Supplement-Band 90:99105.Google Scholar
Konecka-Betley, K. 2012. Late Glacial and Holocene 14C-dated fossil soils in the Middle Vistula Valley. Soil Science Annual 63(4):5060.CrossRefGoogle Scholar
Konecka Betley, K, Janowska, E. 2005. Late Glacial and Holocene stratotype profile of palaeosols in The Warsaw Basin. Studia Quaternaria 22:316.Google Scholar
Konstantinov, A, Loiko, S, Kurasova, A, Konstantinova, E, Novoselov, A, Istigechev, G, Kulizhskiy, S. 2019. First findings of buried late-glacial paleosols within the dune fields of the Tomsk Priobye Region (SE Western Siberia, Russia). Geosciences 9(2):82.CrossRefGoogle Scholar
Koster, EA. 2009. The ‘European Aeolian Sand Belt’: geoconservation of drift sand landscapes. Geoheritage 1:93110.CrossRefGoogle Scholar
Kowalkowski, A, Nowaczyk, B, Okuniewska-Nowaczyk, I. 1999. Chronosequence of biogenic deposits and fossil soils in the dune near Jasień, Western Poland. In: Schirmer W, editor. Dunes and fossil soils. GeoArchaeoRhein 3:107–125.Google Scholar
Kozarski, S, Gonera, P, Antczak, B. 1988. Valley floor development and paleohydrological changes: the Late Vistulian and Holocene history of the Warta river (Poland). In: Lang, G, Schluchter, C, editors. Lake, mire and river environments during the last 15 000 years. Rotterdam: Balkema. p. 185203.Google Scholar
Kozarski, S, Nowaczyk, B. 1991. The Late quaternary climate and human impact on aeolian processes in Poland. Zeitschrift für Geomorphologie N.F., Supplmentband 93:2937.Google Scholar
Krajewski, K. 1977. Późnoplejstoceńskie i holoceńskie procesy wydmotwórcze w Pradolinie Warszawsko-Berlińskiej w widłach Warty i Neru. Acta Geographica Lodziensia 39:187. In Polish with English summary.Google Scholar
Krajewski, K, Balwierz, Z. 1985. Stanowisko Böllingu w osadach wydmowych schyłku Vistulianu w Roślu Nowym k/Dąbia. Acta Geographica Lodziensia 50:93109. In Polish with English summary.Google Scholar
Krüger, S, Damrath, M. 2020. In search of the Bølling-Oscillation: a new high resolution pollen record from the locus classicus Lake Bølling, Denmark. Vegetation History and Archaeobotany 29:189211.CrossRefGoogle Scholar
Lane, CS, Brauer, A, Martin-Puertas, C, Blockley, SPE, Smith, VC, Tomlinson, EL. 2015. The Late Quaternary tephrostratigraphy of annually laminated sediments from Meerfelder Maar, Germany. Quaternary Science Reviews 122:192206.CrossRefGoogle Scholar
Manikowska, B. 1985. O glebach kopalnych, stratygrafii i litologii wydm Polski środkowej (On the fossil soils, stratigraphy and litology of the dunes in central Poland). Acta Geographica Lodziensia 52:1137.Google Scholar
Manikowska, B. 1991. Vistulian and Holocene aeolian activity, pedostratigraphy and relief evolution in Central Poland. Zeitschrift für Geomorphologie N.F., Supplmentband 90:131141.Google Scholar
Manikowska, B. 1995. Aeolian activity differentation in the area of Poland during the Period 20–8 ka BP. Biuletyn Peryglacjalny 34:125166.Google Scholar
Manikowska, B. 2002. Fossil peleosols and pedogenetic periods in the evolution of Central Poland environment after the Wartian Glaciation. In: Manikowska, B, Konecka-Betley, K, Bednarek, R, editors. Paleopedology problems in Poland. Łódź: ŁTN. p. 165212.Google Scholar
Mirosław-Grabowska, J, Obremska, M, Zawisza, E, Stańczak, J, Słowiński, M, Mulczyk, A. 2020. Biological and geochemical indicators of climatic oscillations during the Last Glacial Termination, the Kaniewo palaeolake (Central Poland). Ecological Indicators 114:106301.CrossRefGoogle Scholar
Mol, J. 1997. Fluvial response to Weichselian climate changes in the Niederlausitz (Germany). Journal of Quaternary Science 12:4360.3.0.CO;2-0>CrossRefGoogle Scholar
Moska, P, Jary, Z, Sokołowski, RJ, Poręba, G, Raczyk, J, Krawczyk, M, Skurzyński, J, Zieliński, P, Michczyński, A, Tudyka, K, Adamiec, G, Piotrowska, N, Pawełczyk, F, Łopuch, M, Szymak, A, Ryzner, K. 2020. Chronostratigraphy of Late Glacial aeolian activity in SW Poland – a case study from the Niemodlin Plateau. Geochronometria 47:124137.CrossRefGoogle Scholar
Moska, P, Sokołowski, RJ, Jary, Z, Zieliński, P, Raczyk, J, Szymak, A, Krawczyk, M, Skurzyński, J, Poręba, G, Łopuch, M, Tudyka, K. 2021. Stratigraphy of the Late Glacial and Holocene aeolian series in different sedimentary zones related to the Last Glacial maximum in Poland. Quaternary International. doi: 10.1016/j.quaint.2021.04.004.CrossRefGoogle Scholar
Moska, P, Sokołowski, RJ, Zieliński, P, Jary, Z, Raczyk, J, Mroczek, P, Szymak, A, Krawczyk, M, Skurzyński, J, Poręba, G, Łopuch, M, Tudyka, K. in press. An impact of short-term climate oscillations in the Late Pleniglacial and Lateglacial interstadial on sedimentary processes and the pedogenic record in central Poland. Annals of the American Association of Geographers.Google Scholar
Nowaczyk, B. 1986. Wiek wydm, ich cechy granulometryczne i strukturalne a schemat cyrkulacji atmosferycznej w Polsce w późnym vistulianie i holocenie (The age of dunes, their textural and structural properties against atmospheric circulation pattern of Poland during the Late Vistulian and Holocene). Seria Geografia 28. Poznań, Wyd. Naukowe UAM. p. 245. In Polish.Google Scholar
Nowaczyk, B. 2000. Development of dunes and eolian cover sands in Poland in the Late Vistulian and Holocene. In: Chojnicki Z, Parysek JJ, editors. Polish geography; problems, researches, applications, UAM, Bogucki Wyd. Naukowe S.C. Poznań. p. 133–151. In Polish with English summary.Google Scholar
Nowaczyk, B. Okuniewska-Nowaczyk I. 1996. Etapy rozwoju wydm w Jasieniu w świetle datowań radiowęglowych i palinologicznych. In: Szczypek T, Waga JM, editors. Współczesne oraz kopalne zjawiska i formy eoliczne, wybrane zagadnienia. Sosnowiec. p. 65–75.Google Scholar
Petera-Zganiacz, J, Dzieduszyńska, D. 2017. Palaeoenvironmental proxies for permafrost presence during the Younger Dryas, Central Poland. Permafrost and Periglacial Processes 28:726740.CrossRefGoogle Scholar
Piotrowska, N. 2013. Status report of AMS sample preparation laboratory at GADAM Centre, Gliwice, Poland. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms 294:176181.CrossRefGoogle Scholar
Rasmussen, SO, Bigler, M, Blockley, SP, Blunier, T, Buchardt, SL, Clausen, HB, Cvijanovic, I, Dahl-Jensen, D, Johnsen, SJ, Fischer, H, Gkinis, V, Guillevic, M, Hoek, WZ, Lowe, JJ, Pedro, JB, Popp, T, Seierstad, IK, Steffensen, JP, Svensson, AM, Vallelonga, P, Vinther, BM, Walker, MJC, Wheatley, JJ, Winstrup, M. 2014. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews 106:1428.CrossRefGoogle Scholar
Reimer, P, Austin, W, Bard, E, Bayliss, A, Blackwell, P, Bronk Ramsey, C, Butzin, M, Cheng, H, Edwards, R, Friedrich, M, Grootes, P, Guilderson, T, Hajdas, I, Heaton, T, Hogg, A, Hughen, K, Kromer, B, Manning, S, Muscheler, R, Palmer, J, Pearson, C, van der Plicht, J, Reimer, R, Richards, D, Scott, E, Southon, J, Turney, C, Wacker, L, Adolphi, F, Büntgen, U, Capano, M, Fahrni, S, Fogtmann-Schulz, A, Friedrich, R, Köhler, P, Kudsk, S, Miyake, F, Olsen, J, Reinig, F, Sakamoto, M, Sookdeo, A, Talamo, S. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62(4):725757.CrossRefGoogle Scholar
Ruth, U, Wagenbach, D, Steffensen, JP, Bigler, M. 2003. Continuous record of microparticle concentration and size distribution in the central Greenland NGRIP ice core during the last glacial period. Journal of Geophysics Research 108(D3):4098.CrossRefGoogle Scholar
Słowiński, M, Zawiska, I, Ott, F, Noryśkiewicz, AM, Plessen, B, Apolinarska, K, Rzodkiewicz, M, Michczyńska, DJ, Wulf, S, Skubała, P, Kordowski, J, Błaszkiewicz, M, Brauer, A. 2017. Differential proxy responses to late Allerød and early Younger Dryas climatic change recorded in varved sediments of the Trzechowskie palaeolake in Northern Poland. Quaternary Science Reviews 158:94106.CrossRefGoogle Scholar
Starkel, L, Michczyńska, DJ, Gębica, P, Kiss, T, Panin, A, Persoiu, I. 2015. Climatic fluctuations reflected in the evolution of fluvial systems of Central-Eastern Europe (60–8 ka cal BP). Quaternary International 388:97118.CrossRefGoogle Scholar
Stroeven, AP, Hattestrand, C, Kleman, J, Heyman, J, Fabel, D, Fredin, O, Goodfellow, BW, Harbor, JM, Jansen, JD, Olsen, L, Caffee, MW, Fink, D, Lundqvist, J, Rosqvist, GC, Stromberg, B, Jansson, KN. 2016. Deglaciation of Fennoscandia. Quaternary Science Reviews 147:91121.CrossRefGoogle Scholar
Suther, BE, Leigh, DS, Brook, GA, Yang, L. 2018. Mega-meander paleochannels of the southeastern Atlantic Coastal Plain, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 511:5279.CrossRefGoogle Scholar
Swezey, CS. 2020. Quaternary eolian dunes and sand sheets in inland locations of the Atlantic Coastal Plain province, U.S.A. In: Lancaster, N, Hesp, P, editors. Inland dunes of North America. Switzerland: Springer International Publishing. p. 1163.CrossRefGoogle Scholar
Szczypek, T. 1986. Procesy wydmotwórcze w środkowej części Wyżyny Krakowsko-Wieluńskiej na tle obszarów przyległych. Prace Naukowe UŚ, 823. p. 1–193. In Polish with English summary.Google Scholar
Tobolski, K. 1981. The Gardno-Łeba Plain. In: Kozarski S, Tobolski K, editors. Symposium, “Paleohydrology of the temperate zone”, Guide-book of excurstion, Poznań. p. 89–115. In Polish.Google Scholar
Theuerkauf, M, Joosten, H. 2012. Younger Dryas cold stage vegetation patterns of central Europe – climate, soil and relief controls. Boreas 41:391407.CrossRefGoogle Scholar
Turner, F, Tolksdorf, JF, Viehberg, F, Schwalb, A, Kaiser, K, Bittmann, F, von Bramann, U, Pott, R, Staesche, U, Breest, K, Veil, S. 2013. Lateglacial/early Holocene fluvial reactions of the Jeetzel river (Elbe valley, northern Germany) to abrupt climatic and environmental changes. Quaternary Science Reviews 60:91109.CrossRefGoogle Scholar
Tylmann, K, Rinterknecht, VR, Woźniak, PP, Bourlès, D, Schimmelpfennig, I, Guillou, V, Team, A. 2019. The local Last Glacial Maximum of the southern Scandinavian Ice Sheet front: Cosmogenic nuclide dating of erratics in northern Poland. Quaternary Science Reviews 219:3646.CrossRefGoogle Scholar
Vandenberghe, D, Kasse, C, Hossain, SM, De Corte, F, Van den haute P, Fuchs, M, Murray, AS. 2004. Exploring the method of optical dating and comparison of optical and 14C ages of Late Weichselian coversands in the southern Netherlands. Journal of Quaternary Science 19:7386.CrossRefGoogle Scholar
Vandenberghe, DAG, Derese, C, Kasse, C, Van den Haute, P. 2013. Late Weichselian (fluvio-) aeolian sediments and Holocene drift-sands of the classic type locality in Twente (E Netherlands): a high-resolution dating study using optically stimulated luminescence. Quaternary Science Reviews 68:96113.CrossRefGoogle Scholar
Vandenberghe, J. 2008. The fluvial cycle at cold-warm-cold transitions in lowland regions: a refinement of theory. Geomorphology 98:275284.CrossRefGoogle Scholar
Vandenberghe, J. 2015. River terraces as a response to climatic forcing: formation processes, sedimentary characteristics and sites for human occupation. Quaternary International 370:311.CrossRefGoogle Scholar
Vandenberghe, J, Kasse, C, Bohncke, S, Kozarski, S. 1994. Climate-related river activity at the Weichselian-Holocene transition: A comparative study of the Warta and Maas rivers. Terra Nova 6:476485.CrossRefGoogle Scholar
Wacker, L, Němec, M, Bourquin, J. 2010. A revolutionary graphitisation system: fully automated, compact and simple. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268(7–8):931934.CrossRefGoogle Scholar
Waelbroeck, C, Labeyrie, L, Michel, E, Duplessy, JC, McManus, JF, Lambeck, K, Balbon, E, Labracherie, M. 2002. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quaternary Science Reviews 21:295305.CrossRefGoogle Scholar
Weckwerth, P. 2010. Evolution of the Toruń Basin in the Late Weichselian. Landform Analysis 14:5784.Google Scholar
Weckwerth, P, Przegiętka, K, Chruścińska, A, Woronko, B, Oczkowski, HL. 2011. Age and sedimentological features of fluvial series in the Toruń Basin and the Drwęca Valley (Poland). Geochronometria 38:397412.CrossRefGoogle Scholar
Wohlfarth, B, Skog, G, Possnert, G, Holmquist, B. 1998. Pitfalls in the AMS radiocarbon-dating of terrestrial macrofossils. Journal of Quaternary Science 13:137145.3.0.CO;2-6>CrossRefGoogle Scholar
Wysota, W, Molewski, P, Sokołowski, R. 2009. Record of the Vistula ice lobe advances in the Late Weichselian glacial sequence in north-central Poland. Quaternary International 207:2641.CrossRefGoogle Scholar
Zeeberg, JJ. 1998. The European sand belt in eastern Europe – and comparison of Late Glacial dune orientation with GCM simulation results. Boreas 27:127139.CrossRefGoogle Scholar
Zieliński, P. 2016. Regionalne i lokalne uwarunkowania późnovistuliańskiej depozycji eolicznej w środkowej części europejskiego pasa piaszczystego [Regional and local conditions of the Late Vistulian aeolian deposition in the central part of the European Sand Belt]. Wydawnictwo UMCS, Lublin. p. 1–235. In Polish with English summary.Google Scholar
Zieliński, P, Sokołowski, RJ, Woronko, B, Jankowski, M, Fedorowicz, S, Zaleski, I, Molodkov, A, Weckwerth, P. 2015. The depositional conditions of the fluvio-aeolian succession during the last climate minimum based on the examples from Poland and NW Ukraine. Quaternary International 386:3041.CrossRefGoogle Scholar
Zieliński, P, Sokołowski, RJ, Jankowski, M, Standzikowski, K, Fedorowicz, S. 2019. The climatic control of sedimentary environment changes during the Weichselian—an example from the Middle Vistula Region (eastern Poland). Quaternary International 501:120134.CrossRefGoogle Scholar
Żarski, M. 1990. Nowe stanowisko gleb kopalnych w Stężycy na tle budowy geologicznej. Kwartalnik Geologiczny 3:503510. In Polish with English summary.Google Scholar
Zoppi, U, Crye, J, Song, Q, Arjomand, A. 2007. Performance evaluation of the new AMS system at Accium BioSciences. Radiocarbon 49:171180.CrossRefGoogle Scholar
Supplementary material: File

Sokołowski et al. supplementary material

Sokołowski et al. supplementary material 1

Download Sokołowski et al. supplementary material(File)
File 37.3 KB
Supplementary material: File

Sokołowski et al. supplementary material

Sokołowski et al. supplementary material 2

Download Sokołowski et al. supplementary material(File)
File 107.6 KB