Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T10:23:17.776Z Has data issue: false hasContentIssue false

The effect of biogas digestion on the environmental impact and energy balances in organic cropping systems using the life-cycle assessment methodology

Published online by Cambridge University Press:  16 March 2010

Jens Michel
Affiliation:
Deutsches Biomasse-Forschungs-Zentrum, Torgauer Strasse 116, 04347Leipzig, Germany.
Achim Weiske
Affiliation:
Deutsches Biomasse-Forschungs-Zentrum, Torgauer Strasse 116, 04347Leipzig, Germany.
Kurt Möller*
Affiliation:
Department of Plant Nutrition, Universität Hohenheim, D-70593Stuttgart, Germany.
*
*Corresponding author: kurt.moeller@alumni.tum.de

Abstract

A life-cycle assessment (LCA) was carried out to compare the environmental performance of different organic cropping systems with and without digestion of slurry and crop residues. The aims of the present study are: (1) to compare the environmental performance of organic farming dairy systems with the currently prevalent animal housing systems [solid farmyard manure (FYM) versus liquid slurry] as the main reference systems; (2) to analyze the effect of the implementation of a biogas digestion system on the consumption of fossil fuels and production of electrical energy; (3) to quantify the effects of the implementation of a biogas digestion system on the environment; and (4) to compare the obtained net energy yields with other means of obtaining energy by using the farmland area. The considered impact categories are greenhouse gas (GHG) balances, acidification, eutrophication and groundwater pollution. LCA results indicated that total emissions in systems based on FYM are much higher than in liquid slurry systems for most of the considered impact categories. The benefits of digestion of stable wastes in comparison with the reference system without digestion are mainly (1) the net reduction of the emissions of GHG and (2) energy recovery from produced biogas, while the disadvantages can be higher emissions of NH3 after spreading. The effects of additional biogas digestion of biomass such as crop residues (e.g., straw of peas and cereals) and cover crops are: (1) an optimization of the N-cycle and therewith higher yields; (2) higher energy production per unit arable land; (3) a further reduction of the GHG balance; but (4) higher N-related environmental burdens like eutrophication and acidification. The offsets of fossil fuel emissions were the largest GHG sink in most of the biogas digestion systems. The inclusion of a biogas plant into organic cropping systems and the use of the available wastes for production of energy largely increased the overall productivity of the farming system and matched very well the basic principles of organic farming such as a high self-sufficiency of the cropping system and reducing as much as possible the environmental impact of farming.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., and Johnson, C.A. 2001. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. 881 pp.Google Scholar
2Olesen, J.E., Schelde, K., Weiske, A., Weisbjerg, M.R., Asman, W.A.H., and Djurhuus, J. 2006. Modelling greenhouse gas emissions from European conventional and organic dairy farms. Agriculture, Ecosystems and Environment 112:207220.CrossRefGoogle Scholar
3Mosier, A.R., Duxbury, J.M., Freney, J.R., Heinemeyer, O., Minami, K., and Johnson, D.E. 1998. Mitigating agricultural emissions of methane. Climate Change 40:3980.CrossRefGoogle Scholar
4Mosier, A.R., Kroeze, C., Nevison, C., Oenema, O., Seitzinger, S., and van Cleemput, O. 1998. Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle. Nutrient Cycling in Agroecosystems 52:225248.CrossRefGoogle Scholar
5Mosier, A.R. 2001. Exchange of gaseous nitrogen compounds between agricultural systems and the atmosphere. Plant and Soil 228:1727.CrossRefGoogle Scholar
6Bussink, D.W. and Oenema, O. 1998. Ammonia volatilization from dairy farming systems in temperate areas: a review. Nutrient Cycling in Agroecosystems 19:3351.Google Scholar
7Asman, W.A.H., Sutton, M.A., and Schørromg, J.K. 1998. Ammonia: emission, atmospheric transport and deposition. New Phytologist 139:2748.CrossRefGoogle Scholar
8Schulze, E.D., de Vries, W., Hauhs, M., Rosen, K., Rasmussen, L., Tamm, C.O., and Nilsson, J. 1989. Critical loads for nitrogen deposition on forest ecosystems. Water, Air and Soil Pollution 48:451456.CrossRefGoogle Scholar
9Greene, N., Celik, F.E., Dale, B., Jackson, M., Jayawardhana, K., and Jin, H. 2004. Growing energy: how biofuels can help end America's oil dependence. Natural Resources Defense Council, New York. Available at Web site http://www.nrdc.org/air/energy/biofuels/biofuels.pdf (verified July 4, 2008).Google Scholar
10Farrell, A.E., Plevin, R.J., Turner, B.T., Jones, A.D., O'Hare, M., and Kammen, D.M. 2006. Ethanol can contribute to energy and environmental goals. Science 311:506508.CrossRefGoogle ScholarPubMed
11Möller, K. and Stinner, W. 2009. Effects of different manuring systems with and without biogas digestion on soil mineral nitrogen content and on gaseous nitrogen losses (ammonia, nitrous oxides). European Journal of Agronomy 30:116.CrossRefGoogle Scholar
12Möller, K., Stinner, W., and Leithold, G. 2008. Growth, composition, biological N2 fixation and nutrient uptake of a leguminous cover crop mixture and the effect of their removal on field nitrogen balances and nitrate leaching risk. Nutrient Cycling in Agroecosystems 82:233249.CrossRefGoogle Scholar
13Stinner, W., Möller, K., and Leithold, G. 2008. Effects of biogas digestion of clover/grass-leys, cover crops and crop residues on nitrogen cycle and crop yield in organic stockless farming systems. European Journal of Agronomy 29:125134.CrossRefGoogle Scholar
14Möller, K., Stinner, W., Deuker, A., and Leithold, G. 2008. Effects of different manuring systems with and without biogas digestion on nitrogen cycle and crop yield in mixed organic dairy farming systems. Nutrient Cycling in Agroecosystems 82:209232.CrossRefGoogle Scholar
15Clemens, J., Trimborn, M., Weiland, P., and Amon, B. 2006. Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry. Agriculture, Ecosystems and Environment 112:171177.CrossRefGoogle Scholar
16Weiske, A., Vabitsch, A., Olesen, J.E., Schelde, K., Michel, J., Friedrich, R., and Kaltschmitt, M. 2006. Mitigation of greenhouse gas emissions in European conventional and organic dairy farming. Agriculture, Ecosystems and Environment 112:221232.CrossRefGoogle Scholar
17Möller, K. 2009. Effects of biogas digestion on soil organic matter and nitrogen inputs, flows and budgets in organic cropping systems. Nutrient Cycling in Agroecosystems 84:179202.CrossRefGoogle Scholar
18Börjesson, P. and Berglund, M. 2007. Environmental systems analysis of biogas systems—Part II: the environmental impact of replacing various reference systems. Biomass and Bioenergy 31:326344.CrossRefGoogle Scholar
19Consoli, F., Allen, D., Boustead, I., Fava, J., Franklin, W., Jensen, A.A., de Oude, N., Parrish, R., Perriman, R., Postlethwaite, D., Quay, B., Séguin, J., and Vignon, B. (eds). 1993. Guidelines for Life-Cycle Assessment: A ‘Code of Practice’. Society of Environmental Toxicology and Chemistry (SETAC), Brussels.Google Scholar
20ISO. 1997. ISO 14040: Environmental Management—Life Cycle Assessment—Principles and Framework.Google Scholar
21ISO. 1998. ISO 14041: Environmental Management—Life Cycle Assessment—Goal and Scope Definition and Inventory Analysis.Google Scholar
22ISO. 1999. ISO 14042: Environmental Management—Life Cycle Assessment—Life Cycle Impact Assessment.Google Scholar
23ISO. 1998. ISO 14043: Environmental Management—Life Cycle Assessment—Life Cycle Interpretation.Google Scholar
24KTBL. 2002. Ökologische Landbau—Kalkulationsdaten zu Ackerfrüchten, Feldgemüse, Rindern, Schafen und Legehennen. KTBL (Hrsg.), Darmstadt, Germany.Google Scholar
25KTBL (ed.). 2004. Betriebsplanung Landwirtschaft 2004/05—Daten für die Betriebsplanung in der Landwirtschaft. KTBL, Darmstadt, Germany.Google Scholar
26Ecoinvent. 2004. Life Cycle Inventories of Agricultural Production Systems Data v1.1 (2004) Ecoinvent Report No. 15. Swiss Centre for Life Cycle Inventories (Hrsg.), Dübendorf, Germany.Google Scholar
27Clausen, N. 2000. Analyse des Elektroenergieverbrauchs und Konzeption energetisch und verfahrenstechnisch optimierter Lösungen für die Milchvieh- und Schweinehaltung. Dissertation, Institut für Landwirtschaftliche Verfahrenstechnik, Christian-Albrechts-Universität, Kiel, Germany.Google Scholar
28FAL. 2000. Bewertung von Verfahren der ökologischen und konventionellen landwirtschaftlichen Produktion im Hinblick auf den Energieeinsatz und bestimmte Schadgasemissionen. Sonderheft 211, Braunschweig, Germany.Google Scholar
29BTL. 2002. Bayerische Landesanstalt für Tierzucht (ed.): Fütterung der Milchkühe, Zuchtrinder, Mastrinder, Schafe, Ziegen. 23. Auflage, Poring.Google Scholar
30VdOe. 2001. 300 Futterrationen für Milchkühe. 4th edition, Verband Deutscher Ölmühlen e. V, Bonn, Germany.Google Scholar
31Boeckx, P. and van Cleemput, O. 2001. Estimates of N2O and CH4 fluxes from agricultural lands in various regions in Europe. Nutrient Cycling in Agroecosystems 60:3547.CrossRefGoogle Scholar
32IPCC. 2006. IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use. Available at Web site: http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html (accessed March 4, 2010).Google Scholar
33IPCC. 2000. IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories.Google Scholar
34Søgaard, H.T., Sommer, S.G., Hutchings, N.J., Huijsmans, J.F.M., Bussink, D.W., and Nicholson, F. 2002. Ammonia volatilization from field-applied animal slurry—the ALFAM model. Atmospheric Environment 36:33093319.CrossRefGoogle Scholar
35Hutchings, N.J., Sommer, S.G., Andersen, J.M., and Asman, W.A.H. 2001. A detailed ammonia emission inventory for Denmark. Atmospheric Environment 35:19591968.CrossRefGoogle Scholar
36Poulsen, H.D., Børsting, C.F., Rom, H.B., and Sommer, S.G. 2001. Kvælstof, fosfor og kalium i husdyrgødning—normtal 2000. Danish Institute of Agricultural Sciences, DJF Report No. 36.Google Scholar
37Olesen, J.E., Weiske, A., Asman, W.A., Weisbjerg, M.R., Djufhuus, J., and Schelde, K. 2004. FarmGHG—A model for estimating greenhouse gas emissions from livestock farm—Documentation. Danish Institute of Agricultural Sciences, Tjele, Denmark.Google Scholar
38Edelmann, W., Schleiss, K., Engeli, H., and Baier, U. 2001. Ökobilanz der Stromgewinnung aus landwirtschaftlichem Biogas. Bundesamt für Energie, Bern, Switzerland.Google Scholar
39DBG (ed.). 1992. Strategien zur Reduzierung standort- und nutzungsbedingter Belastungen des Grundwassers mit Nitrat. German Soil Science Association (DBG), Gießen, Germany.Google Scholar
40Nill, M. 2004. Die zukünftige Entwicklung von Stromerzeugungstechniken—Eine ökologische Analyse vor dem Hintergrund technischer und ökonomischer Zusammenhänge. Fortschritt-Bericht VDI Reihe 6 Nr. 518, VDI Verlag GmbH, Düsseldorf.Google Scholar
41UBA (ed.). 2005. Deutsches Treibhausgasinventar 1990–2003—Nationaler Inventarbericht 2005. Umweltbundesamt, Dessau, Germany.Google Scholar
42Brentrup, F., Küsters, J., Lammel, J., and Kuhlmann, H. 2000. Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. International Journal of Life Cycle Assessment 5:349357.CrossRefGoogle Scholar
43Heijungs, R. 1992. Environmental Life Cycle Assessment of Products. Centrum voor Milieukunde, Leiden, The Netherlands.Google Scholar
44Guinée, J.B., Gorrée, M., Heijungs, R., Huppes, G., Kleijn, R., de Koning, A., van Oers, L., Wegener Sleeswijk, A., Suh, S., Udo de Haes, H.A., de Bruijn, H., van Duin, R., Huijbregts, M.A.J., Lindeijer, E., Roorda, A.A.H., van der Ven, B.L., and Weidema, B.P. (eds). 2002. Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards. Centrum voor Milieukunde—Universiteit Leiden (CML). Kluwer Academic Publishers, Leiden, The Netherlands.Google Scholar
45Külling, D.R., Menzi, H., Sutter, F., Lischer, P., and Kreuzer, M. 2003. Ammonia, nitrous oxide and methane emissions from differently stored dairy manure derived from grass- and hay-based rations. Nutrient Cycling in Agroecosystems 65:1322.CrossRefGoogle Scholar
46Külling, D.R., Menzi, H., Kröber, T.F., Neftel, A., Sutter, F., Lischer, P., and Kreuzer, M. 2001. Emissions of ammonia, nitrous oxide and methane from different types of dairy manure during storage as affected by dietary protein content. Journal of Agricultural Science, Cambridge 137:235250.CrossRefGoogle Scholar
47Hüther, L. 1999. Entwicklung analytischer Methoden und Untersuchung von Einflussfaktoren auf Ammoniak-, Methan- und Distickstoffmonoxidemissionen aus Flüssig- und Festmist. Landbauforschung Völkenrode, Wissenschaftliche Mitteilungen der Bundesforschungsanstalt für Landwirtschaft (FAL), Sonderheft 200.Google Scholar
48Sneath, R.W., Chadwick, D.R., Phillips, V.R., and Pain, B.F. 1997. A U.K. inventory of nitrous oxide emissions from farmed livestocks. Silsoe Research Institute, IGER, Silsoe.Google Scholar
49Tuyttens, F.A.M. 2005. The importance of straw for pig and cattle welfare: A review. Applied Animal Behaviour Science 92:261282.CrossRefGoogle Scholar
50Amon, B., Kryvoruchko, V., Amon, T., and Zechmeister-Boltenstern, S. 2006. Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment. Agriculture, Ecosystems and Environment 112:153162.CrossRefGoogle Scholar
51Ghafoori, E., Flynn, P.C., and Checkel, M.D. 2006. Global warming impact of electricity generation from beef cattle manure: a life cycle assessment study. International Journal of Green Energy 3:257270.CrossRefGoogle Scholar
52Schauss, K., Ratering, S., Stinner, W., Deuker, A., Möller, K., and Schnell, S. 2006. Auswirkungen der Biogasvergärung auf die bodenbürtigen Distickstoffoxid- und Methanemissionen. In Möller, K., Leithold, G., Michel, J., Schnell, S., Stinner, W., and Weiske, A. (eds). Auswirkung der Fermentation biogener Rückstände in Biogasanlagen auf Flächenproduktivität und Umweltverträglichkeit im Ökologischen Landbau – Pflanzenbauliche, ökonomische und ökologische Gesamtbewertung im Rahmen typischer Fruchtfolgen viehhaltender und viehloser ökologisch wirtschaftender Betriebe. Final Report (in German). pp. 173255. Available at Web site: http://orgprints.org/10970/ (accessed March 4, 2010).Google Scholar
53Haas, G., Wetterich, F., and Kopke, U. 2001. Comparing intensive, extensified and organic grassland farming in southern Germany by process life cycle assessment. Agriculture, Ecosystems and Environment 83:4353.CrossRefGoogle Scholar
54Moriarty, P. and Honnery, D. 2007. Global bioenergy: problems and prospects. International Journal Global Energy Issues 27:231249.CrossRefGoogle Scholar
55Searchinger, T., Heimlich, R., Houghton, R.A., Dong, F., Elobeid, A., Fabiosa, J., Tokgoz, S., Hayes, D., and Yu, T.-H. 2008. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:12381240.CrossRefGoogle ScholarPubMed
56Thyø, K.A. and Wenzel, H. 2007. Life cycle assessment of biogas from maize silage and from manure—for transport and for heat and power production under displacement of natural gas based heat works and marginal electricity in northern Germany. Available at Web site: http://biogasmax.info/media/life_cycle_assess__074696200_1349_02092008.pdf (verified April 6, 2009).Google Scholar
57Koch, H.-J., Foth, H., Faulstich, M., von Haaren, Chr., Jädicke, M., Michaelis, P., and Ott, K. 2007. Klimaschutz durch Biomasse—Sondergutachten des Sachverständigenrats für Umweltfragen. Available at Web site: http://dip21.bundestag.de/dip21/btd/16/063/1606340.pdf (verified February 4, 2009).Google Scholar
58Gerin, P.A., Vliegen, F., and Jossart, J.-M. 2008. Energy and CO2 balance of maize and grass as energy crops for anaerobic digestion. Bioresource Technology 99:26202627.CrossRefGoogle ScholarPubMed
59Reijnders, L. 2008. Ethanol production from crop residues and soil organic carbon. Resources, Conservation and Recycling 52:653658.CrossRefGoogle Scholar
60Lal, R. 2008. Crop residues as soil amendments and feedstock for bioethanol production. Waste Management 28:747758.CrossRefGoogle ScholarPubMed
61Asmus, F., Linke, B., and Dunkel, H. 1988. Eigenschaften und Düngerwirkung von ausgefaulter Gülle aus der Biogasgewinnung. Archiv Acker- Pflanzenbau und Bodenkunde, Berlin 32:527532.Google Scholar
62Azar, C. 2004. Emerging scarcities—bioenergy-food competition in a carbon constrained world. In Simpson, D., Toman, M. and Ayres, R. (eds). Scarcity and Growth in the New Millennium. Resources for the Future, John Hopkins University Press.Google Scholar
63Bastianoni, S. and Marchettini, N. 1996. Ethanol production from biomass: analysis of process efficiency and sustainability. Biomass and Bioenergy 11:411418.CrossRefGoogle Scholar
64Pimentel, D. 2003. Ethanol fuels: energy balance, economics, and environmental impacts are negative. Natural Resources Research 12:127134.CrossRefGoogle Scholar
65Grass, R. and Scheffer, K. 2003. Kombinierter Anbau von Energie- und Futterpflanzen im Rahmen eines Fruchtfolgegliedes—Beispiel Direkt- und Spätsaat von Silomais nach Wintererbsenvorfrucht. Mitteilungen Gesellschaft für Pflanzenbauwissenschaften 14:106109. Available at Web site: http://orgprints.org/1265/01/pflanznebaut-energepfl.pdf (verified April 3, 2009).Google Scholar
66Anex, R.P., Lynd, L.R., Laser, M.S., Heggenstaller, A.H., and Liebman, M. 2007. Potential for enhanced nutrient cycling through coupling of agricultural and bioenergy systems. Crop Science 47:13271335.CrossRefGoogle Scholar
67Oenema, O., van Liere, L., and Schoumans, O. 2005. Effects of lowering nitrogen and phosphorus surpluses in agriculture on the quality of groundwater and surface water in the Netherlands. Journal of Hydrology 304:289301.CrossRefGoogle Scholar
68Hartmann, K. 2006. Life-cycle-assessment of industrial scale biogas plants. PhD thesis, University of Göttingen, Germany.Google Scholar
69Andren, O. 1987. Decomposition of shoot and root litter of barley, lucerne and meadow fescue under field conditions. Swedish Journal of Agricultural Research 17:113122.Google Scholar
70Båth, B., Malgeryd, J., Stintzing, A.R., and Åkerhielm, H. 2006. Surface mulching with red clover in white cabbage production. nitrogen uptake, ammonia losses and the residual fertility effect in ryegrass. Biological Agriculture and Horticulture 23:287304.CrossRefGoogle Scholar
71Larsson, L., Ferm, M., Kasimir-Klemedtsson, A., and Klemedtsson, L. 1998. Ammonia and nitrous oxide emissions from grass and alfalfa mulches. Nutrient Cycling in Agroecosystems 51:4146.CrossRefGoogle Scholar
72Ranells, N.N. and Wagger, M.G. 1992. Nitrogen release from crimson clover in relation to plant growth stage and composition. Agronomy Journal 84:424430.CrossRefGoogle Scholar
73Whitehead, D.C. and Lockyer, D.R. 1989. Decomposing grass herbage as a source of ammonia in the atmosphere. Atmospheric Environment 23:18671869.CrossRefGoogle Scholar
74Whitehead, D.C., Lockyer, D.R., and Raistrick, N. 1988. The volatilization of ammonia from perennial ryegrass during decomposition, drying and induced senescence. Annals of Botany 61:567571.CrossRefGoogle Scholar
75Senbayram, M., Chen, R., Mühling, K.H., and Dittert, K. 2009. Contribution of nitrification and denitrification to nitrous oxide emissions from soils after application of biogas waste and other fertilizers. Rapid Communications in Mass Spectrometry 23:24892498.CrossRefGoogle ScholarPubMed