Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-09T22:43:39.812Z Has data issue: false hasContentIssue false

Financial transition and costs of sustainable agricultural intensification practices on a beef cattle and crop farm in Brazil's Amazon

Published online by Cambridge University Press:  09 December 2019

Lorena Machado Pedrosa*
Affiliation:
Programa de Pós-graduação em Agricultura Tropical at Universidade Federal de Mato Grosso, Campus Cuiabá, Brasil
Aaron Kinyu Hoshide
Affiliation:
School of Economics, The University of Maine, Orono, ME, USA
Daniel Carneiro de Abreu
Affiliation:
Instituto de Ciências Agrárias e Ambientais at Universidade Federal de Mato Grosso, Campus Sinop, Brasil
Luana Molossi
Affiliation:
Programa de Pós-Graduação em Ciência Animal at Universidade Federal de Mato Grosso, Campus Cuiabá, Cuiabá, Brasil
Eduardo Guimarães Couto
Affiliation:
Programa de Pós-graduação em Agricultura Tropical at Universidade Federal de Mato Grosso, Campus Cuiabá, Brasil
*
Author for correspondence: Lorena Machado Pedrosa, E-mail: pedrosa@agronoma.eng.br

Abstract

The intensification of Brazil's beef cattle production system can involve different strategies to increase beef production while reducing deforestation in the Amazon biome and mitigating climate change. This study economically evaluates a cooperating beef farm in the state of Mato Grosso, Brazil's Amazon biome over three crop years (2015–16 to 2017–18), transitioning from an extensive grazing system to a semi-intensive system using five sustainable agricultural intensification (SAI) practices. These five practices include (1) grain supplementation for cattle, (2) pasture fertilization, (3) pasture re-seeding, (4) crop–livestock integration (CLI) and (5) irrigated and fertilized pasture that is rotationally grazed. The relative costs of these five SAI strategies used on this cooperating farm are compared. The adoption of SAI strategies increased beef productivity 5.7% (228–241 kg live-weight sold per hectare) and gradually improved net farm income by ~130% over the 3 years of transition (−US$94.79 to $29.80 ha−1). Grain supplementation (US$188 ha−1) had the cheapest cost per hectare, followed by pasture fertilization (US$477 ha−1) and pasture reseeding (US$650 ha−1). The most costly practice was in-ground irrigation of fenced rotationally grazed pasture (US$1600 ha−1) with the second most costly being CLI (US$672 ha−1). Despite adoption challenges of these SAI practices, past research confirm these five practices can increase beef productivity and profitability while reducing carbon footprint. Regardless of the cost per hectare of each practice, farmer adoption can be improved through education, support and incentives from both the public and private sectors.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AGROSTAT (2018) Indicadores Gerais Agrostat. Ministério Agricultura, Pecuária e Abastecimento. Available at http://indicadores.agricultura.gov.br/agrostat/index.htm.Google Scholar
Amaral, DD, Cordeiro, LAM and Galerani, PR (2012) Plano Setorial de Mitigação e Adaptação às Mudanças Climáticas para Consolidação da Economia de Baixa Emissão de Carbono na Agricultura – PLANO ABC. Revista Brasileira de Geografia Física 6, 12661274.CrossRefGoogle Scholar
Antoniel, LS, do Prado, G, Tinos, AC, Beltrame, GA, de Almeida, JVC and Cuco, GP (2016) Pasture production under different irrigation depths. Revista Brasileira de Engenharia Agrícola e Ambiental 20, 539544.CrossRefGoogle Scholar
Asai, M, Moraine, M, Ryschawy, J, de Wit, J, Hoshide, AK and Martin, G (2018) Critical factors for crop-livestock integration beyond the farm level: a cross-analysis of worldwide case studies. Land Use Policy 73, 184194.CrossRefGoogle Scholar
Assunção, J, Gandour, C and Rocha, R (2015) Deforestation slowdown in the Brazilian Amazon: prices or policies? Environment and Development Economics 20, 697722.CrossRefGoogle Scholar
Bergier, I, Souza Silva, AP, De Abreu, UGP, De Oliveira, LOF, Tomazi, M, Teixeira Dias, FR, Urbanetz, C, Nogueira, E and Borges-Silva, JC (2019) Could bovine livestock intensification in Pantanal be neutral regarding enteric methane emissions? Science for the Total Environment 655, 463472.CrossRefGoogle ScholarPubMed
Beutler, SJ, Pereira, MG, Loss, A, Perin, A, Figueira, C and Silva, DA (2016) Edaphic attributes of a crop – livestock integration system in the Cerrado Biome 1. Revista Caatinga 225, 892900. http://dx.doi.org/10.1590/1983-21252016v29n414rcCrossRefGoogle Scholar
Bogaerts, M, Cirhigiri, L, Robinson, I, Rodkin, M, Hajjar, R, Costa Junior, C and Newton, P (2017) Climate change mitigation through intensified pasture management: estimating greenhouse gas emissions on cattle farms in the Brazilian Amazon. Journal of Cleaner Production 162, 15391550.CrossRefGoogle Scholar
Börner, J, Mendoza, A and Vosti, SA (2007) Ecosystem services, agriculture, and rural poverty in the Eastern Brazilian Amazon: interrelationships and policy prescriptions. Ecological Economics 64, 356373.CrossRefGoogle Scholar
Camelo, DM, Marques, AG, Roque, A, Vieira, A and Bellido, I (2017) Pesquisa qualitativa em design: protocolos de pesquisa como suporte a criação e avaliação de produtos conceituais. RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao 23, 7889. doi: 10.17013/risti.23.78-89.CrossRefGoogle Scholar
Cardoso, AS, Berndt, A, Leytem, A, Alves, BJR, de Carvalho, I. das, NO, de Barros Soares, LH, Urquiaga, S and Boddey, RM (2016) Impact of the intensification of beef production in Brazil on greenhouse gas emissions and land use. Agricultural Systems 143, 8696.CrossRefGoogle Scholar
Cardoso, AS, Brito, LF, Janusckiewicz, ER, Morgado, ES, Barbero, RP, Koscheck, JFW, Reis, RA and Ruggieri, AC (2017) Impact of grazing intensity and seasons on greenhouse gas emissions in tropical Grassland. Ecosystems 20, 845859.CrossRefGoogle Scholar
Cepea/Esalq (2012) Intensificação de pastagem pode melhorar em 62% a receita bruta do pecuarista com o novo Código Florestal. Centro de Estudos Avançados em Economia Aplicada, 16. Available at https://www.cepea.esalq.usp.br/br.Google Scholar
Clark, A, Delcurto, T, Vavra, M and Dick, BL (2018) Stocking rate and fuels reduction effects on beef cattle diet composition and quality. Rangeland Ecology and Management 66, 714720. doi: 10.2111/REM-D-12-00122.1CrossRefGoogle Scholar
CONAB (2018) Acompanhamento da safra brasileira de grãos. Monitoramento agrícola - Safra 2017, Brazil: Conab 5, 1-98. Available at http://www.agricultura.gov.br/arq_editor/file/camaras_setoriais/Mel_e_produtos_apicolas/29RO/aPP_MetodologiaCustoProdução_Conab.pdf (Accessed 10 December 2018).Google Scholar
Cordeiro, LAM, Vilela, L, Marchão, RL, Kluthcouski, J and Júnior, GBM (2015) Integração lavoura-pecuária E integração lavoura-pecuária-floresta: estratégias para intensificação sustentável do uso do solo Segundo Pretty (2008), o interesse pela sustentabilidade da agricultura das décadas de 1950 e 1960, apesar de existirem idei. Cadernos de Ciência & Tecnologia 32, 1543.Google Scholar
Creighton, KW, Wilson, CB, Klopfenstein, TJ and Adams, DC (2003) Undegradable intake protein supplementation of compensating spring-born steers and summer-born steers during summer grazing. Journal of Animal Sciences 81–00, 791799.Google ScholarPubMed
Crosson, P, Shalloo, L, Brien, DO, Lanigan, GJ, Foley, PA, Boland, TM and Kenny, DA (2011) A review of whole farm systems models of greenhouse gas emissions from beef and dairy cattle production systems. Animal Feed Science and Technology 166–167, 2945.CrossRefGoogle Scholar
Da Silva, HA, de Moraes, A, Carvalho, PCF, da Fonseca, AF and Dias, CTS (2012) Maize and soybeans production in integrated system under no-tillage: with different pasture combinations and animal categories. Revista Ciencia Agronomica 43, 757765.CrossRefGoogle Scholar
Davis, KF, Rulli, MC, Garrassino, F, Chiarelli, D, Seveso, A and D'Odorico, P (2017) Water limits to closing yield gaps. Advances in Water Resources 99, 6775.CrossRefGoogle Scholar
De Figueiredo, EB, Jayasundara, S, de Oliveira Bordonal, R, Berchielli, TT, Reis, RA, Wagner-Riddle, C and La Scala, N (2017) Greenhouse gas balance and carbon footprint of beef cattle in three contrasting pasture-management systems in Brazil. Journal of Cleaner Production 142, 420431.CrossRefGoogle Scholar
de Moraes, A, Carvalho, PCF, Anghinoni, I, Lustosa, SBC, Costa, SEVGA and Kunrath, TR (2014) Integrated crop-livestock systems in the Brazilian subtropics. European Journal of Agronomy 57, 49. doi: 10.1016/j.eja.2013.10.004CrossRefGoogle Scholar
De Oliveira Silva, R, Barioni, LG, Hall, JAJ, Moretti, AC, Fonseca Veloso, R, Alexander, P, Crespolini, M and Moran, D (2017) Sustainable intensification of Brazilian livestock production through optimized pasture restoration. Agricultural Systems 153, 201211.CrossRefGoogle Scholar
De Oliveira Silva, R, Barioni, LG, Pellegrino, GQ and Moran, D (2018) The role of agricultural intensification in Brazil's Nationally Determined Contribution on emissions mitigation. Agricultural Systems 161, 102112.CrossRefGoogle Scholar
Debiasi, H and Franchini, JC (2012) Atributos físicos do solo e produtividade da soja em sistema de integração lavoura-pecuária com braquiária e soja. Ciência Rural 42, 11801186.CrossRefGoogle Scholar
Detmann, E, Valente, ÉEL, Batista, ED and Huhtanen, P (2014) An evaluation of the performance and efficiency of nitrogen utilization in cattle fed tropical grass pastures with supplementation. Livestock Science 162, 141153.CrossRefGoogle Scholar
Dick, M, Da Silva, MA and Dewes, H (2015 a) Mitigation of environmental impacts of beef cattle production in southern Brazil – evaluation using farm-based life cycle assessment. Journal of Cleaner Production 87, 5867.CrossRefGoogle Scholar
Dick, M, Da Silva, MA and Dewes, H (2015 b) Life cycle assessment of beef cattle production in two typical grassland systems of southern Brazil. Journal of Cleaner Production 96, 426434.CrossRefGoogle Scholar
Eaton, DP, Santos, SA, do Santos, MCA, Lima, JVB and Keuroghlian, A (2011) Rotational grazing of native pasturelands in the Pantanal: an effective conservation tool. Tropical Conservation Science 4, 3952.CrossRefGoogle Scholar
Fernandes, RM, de Almeida, CM, Carvalho, BC, Neto, JAA, Mota, VAC, de Resende, FD and Siqueira, GR (2016) Effect of supplementation of beef cattle with different protein levels and degradation rates during transition from the dry to rainy season. Tropical Animal Health and Production 48, 95101.CrossRefGoogle ScholarPubMed
Ferraz, JBS and Felício, PE (2010) Production systems – an example from Brazil. Meat Science 84, 238243.CrossRefGoogle ScholarPubMed
Ferreira, ET, Nabinger, C, Elejalde, DAG, de Freitas, AK, Carassai, IJ and Schmitt, F (2011) Fertilization and oversowing on natural grassland: effects on pasture characteristics and yearling steers performance. Revista Brasileira de Zootecnia 40, 20392047.CrossRefGoogle Scholar
Florindo, TJ, de Medeiros Florindo, GIB, Talamini, E, da Costa, JS and Ruviaro, CF (2017a) Carbon footprint and Life Cycle Costing of beef cattle in the Brazilian midwest. Journal of Cleaner Production 147, 119129.CrossRefGoogle Scholar
Florindo, TJ, Florindo, GIBDM, Talamini, E and Ruviaro, CF (2017b) Improving feed efficiency as a strategy to reduce beef carbon footprint in the Brazilian Midwest region. International Journal of Environment and Sustainable Development 16, 379.CrossRefGoogle Scholar
Garcia, E, Filho, FSVR, Mallmann, GM and Fonseca, F (2017) Costs, benefits and challenges of sustainable livestock intensification in a major deforestation frontier in the Brazilian amazon. Sustainability (Switzerland) 9, 117. doi: 10.3390/su9010158.Google Scholar
Gil, JDB, Siebold, M and Berger, T (2015) Adoption and development of integrated crop-livestock-forestry systems in Mato Grosso, Brazil. Agriculture, Ecosystems and Environment 199, 394406.CrossRefGoogle Scholar
Gil, JDB, Garrett, RD and Berger, T (2016) Determinants of crop-livestock integration in Brazil: evidence from the household and regional levels. Land Use Policy 59, 557568.CrossRefGoogle Scholar
Gil, JDB, Garrett, RD, Rotz, A, Daioglou, V, Valentim, J, Pires, GF, Costa, MH, Lopes, L and Reis, JC (2018) Tradeoffs in the quest for climate smart agricultural intensification in Mato Grosso, Brazil. Environmental Research Letters 13, 064025.CrossRefGoogle Scholar
Gillham, B (2010) Case study research: the qualitative dimension. Case Study Research Methods, 914.Google Scholar
Godoy, AS (1995) A pesquisa qualitativa e sua utilização em administração de empresas. RAE – Revista de Administração de Empresas 35, 6571.CrossRefGoogle Scholar
Göpel, J, Schüngel, J, Schaldach, R, Meurer, KHE, Jungkunst, HF, Franko, U, Boy, J, Strey, R, Strey, S, Guggenberger, G, Hampf, A and Parker, P (2018) Future land use and land cover in Southern Amazonia and resulting greenhouse gas emissions from agricultural soils. Regional Environmental Change. Regional Environmental Change 18, 129142.CrossRefGoogle Scholar
Guerra, GL, Mizubuti, IY, De Azambuja Ribeiro, EL, Prado-Calixto, OP, Das Dores Ferreira Da Silva, L, Pereira, ES, Massaro, FL, Guerra, AL, Fernandes, F and Henz, ÉL (2016) Supplementation of beef cattle grazing Brachiaria brizantha during the dry and rainy seasons: performance and carcass ultrasound prediction. Semina: Ciencias Agrarias 37, 32773292.Google Scholar
Hoshide, AK, Dalton, TJ and Smith, SN (2006) Profitability of coupled potato and dairy farms in Maine. Renewable Agriculture and Food Systems 21, 261272.CrossRefGoogle Scholar
INCRA (2013) Sistema Nacional de Cadastro Rural: índices básicos de 2013. Instituto Nacional de Colonização e Reforma Agrária, pp. 1149. Available at http://www.incra.gov.br/sites/default/files/uploads/estrutura-fundiaria/regularizacao-fundiaria/indices-cadastrais/indices_basicos_2013_por_municipio.pdf.Google Scholar
Koutroubas, SD, Katsantonis, D, Ntanos, DA and Lupotto, E (2009) Blast disease influence on agronomic and quality traits of rice varieties under Mediterranean conditions. Turkish Journal of Agriculture and Forestry 33, 487494.Google Scholar
Latawiec, AE, Strassburg, BBN, Silva, D, Alves-Pinto, HN, Feltran-Barbieri, R, Castro, A, Iribarrem, A, Rangel, MC, Kalif, KAB, Gardner, T and Beduschi, F (2017) Improving land management in Brazil: a perspective from producers. Agriculture, Ecosystems and Environment 240, 276286.CrossRefGoogle Scholar
Lathuillière, MJ, Coe, MT and Johnson, MS (2016) A review of green-and blue-water resources and their trade-offs for future agricultural production in the Amazon Basin: what could irrigated agriculture mean for Amazonia? Hydrology and Earth System Sciences 20, 21792194.CrossRefGoogle Scholar
Lathuillière, MJ, Coe, MT, Castanho, A, Graesser, J and Johnson, MS (2018) Evaluating water use for agricultural intensification in Southern Amazonia using the water footprint sustainability assessment. Water (Switzerland) 10, 122. doi: 10.3390/w10040349.Google Scholar
Le Polain de Waroux, Y, Garrett, RD, Graesser, J, Nolte, C, White, C and Lambin, EF (2017) The restructuring of South American soy and beef production and trade under changing environmental regulations. World Development. 121, 188202. doi: 10.1016/j.worlddev.2017.05.034.CrossRefGoogle Scholar
Maggi, B and Vaz de Araújo, W (2018) Crédito que faz o campo avançar e a vida melhorar. Plano Agrícola e Pecuário, 2018–2019. 14 p. Available at http://www.agricultura.gov.br/assuntos/sustentabilidade/plano-agricola-e-pecuario/arquivos-pap/ApresentacaoLancamentoPAP20182019_EDITADO_05062018Sintese_final....pdf.Google Scholar
Martha Júnior, GB, Alves, E and Contini, E (2011) Dimensão econômica de sistemas de integração lavoura-pecuária. Pesquisa Agropecuária Brasileira 46, 11171126.CrossRefGoogle Scholar
Júnior GB, Martha, Alves, E and Contini, E (2012) Land-saving approaches and beef production growth in Brazil. Agricultural Systems 110, 173177.Google Scholar
Matsunaga, M, Bemelmans, PF, de Toledo, PEN, Dulley, RD, Okawa, H and Pedroso, IA (1976) Metodologia de custo de produção utilizada pelo IEA. Agricultura em Sao Paulo (Brasil), 123139. doi: 10.15406/jig.2015.02.00018.Google Scholar
Mazzetto, AM, Feigl, BJ, Schils, RLM, Cerri, CEP and Cerri, CC (2015) Improved pasture and herd management to reduce greenhouse gas emissions from a Brazilian beef production system. Livestock Science 175, 101112.CrossRefGoogle Scholar
McDermott, JJ, Staal, SJ, Freeman, HA, Herrero, M and Van de Steeg, JA (2010) Sustaining intensification of smallholder livestock systems in the tropics. Livestock Science 130, 95109.CrossRefGoogle Scholar
Merry, F and Soares-Filho, B (2017) Will intensification of beef production deliver conservation outcomes in the Brazilian Amazon? Elementa: Science of Anthropocene 5, 24.Google Scholar
Moreira, VR, Kureski, R and Pereira Da Veiga, C (2016) Assessment of the economic structure of Brazilian agribusiness. Scientific World Journal 2016, 110. doi: 10.1155/2016/7517806.CrossRefGoogle Scholar
Nepstad, DC, Stickler, CM and Almeida, OT (2006) Globalization of the Amazon soy and beef industries: opportunities for conservation. Conservation Biology 20, 15951603.CrossRefGoogle ScholarPubMed
Oliveira, PPA, Corte, RRS, Silva, SL, Rodriguez, PHM, Sakamoto, LS, Pedroso, AF, Tullio, RR and Berndt, A (2018) The effect of grazing system intensification on the growth and meat quality of beef cattle in the Brazilian Atlantic Forest biome. Meat Science 139, 157161.CrossRefGoogle ScholarPubMed
Palermo, GC, de d'Avignon, ALA and Freitas, MAV (2014) Reduction of emissions from Brazilian cattle raising and the generation of energy: intensification and confinement potentials. Energy Policy 68, 2838.CrossRefGoogle Scholar
Pashaei Kamali, F, van der Linden, A, Meuwissen, MPM, Malafaia, GC, Oude Lansink, AGJM and de Boer, IJM (2016) Environmental and economic performance of beef farming systems with different feeding strategies in southern Brazil. Agricultural Systems 146, 7079.CrossRefGoogle Scholar
Pereira, DN, Augusto, J, Agostini, F, Lima, PF, Silva, AV and Santos, CS (2013) Diagnóstico e recuperação de áreas de pastagens degradadas. Revista Agrogeoambiental 1, 4953.Google Scholar
Pereira, CH, Patino, HO, Hoshide, AK, Abreu, DC, Alan Rotz, C and Nabinger, C (2018) Grazing supplementation and crop diversification benefits for southern Brazil beef: a case study. Agricultural Systems 162, 19.CrossRefGoogle Scholar
Peres, RM, Chabaribery, D, Justo, CL, Coutinho Filho, JLV, Mendes, EEB and Oliveira, MDM (2014) Estudo Econômico De Implantação De Sistemas De Integração Lavoura-Pecuária Na Recria De Bovinos De Corte, São José Do Rio Preto, Estado De São Paulo. Informações Econômicas 44, 12–31.Google Scholar
Pinheiro, BDS, Castro, EDMD and Guimarães, CM (2006) Sustainability and profitability of aerobic rice production in Brazil. Field Crops Research 97, 3442.CrossRefGoogle Scholar
Poppi, DP, Quigley, SP, Alves Corrêa Carvalho da Silva, T, McLennan, SR and Brasileira de Zootecnia, R (2018) Challenges of beef cattle production from tropical pastures. Revista Brasileira de Zootecnia 47, 20160419. doi: 10.1590/rbz4720160419.CrossRefGoogle Scholar
Rosales, M (2006) Livestock Policy Brief 3: Cattle ranching and deforestation. Food and Agriculture Organization (FAO), pp. 1–4. Available at http://www.fao.org/3/a-a0262e.pdf (Accessed 10 December 2018).Google Scholar
Ruviaro, CF, Barcellos, JOJ and Dewes, H (2014) Market-oriented cattle traceability in the Brazilian legal Amazon. Land Use Policy 38, 104110.CrossRefGoogle Scholar
Ruviaro, CF, da Costa, JS, Florindo, TJ, Rodrigues, W, Bom de Medeiros, GI and Vasconcelos, PS (2016) Economic and environmental feasibility of beef production in different feed management systems in the Pampa biome, southern Brazil. Ecological Indicators 60, 930939.CrossRefGoogle Scholar
Salton, JC, Mercante, FM, Tomazi, M, Zanatta, JA, Concenço, G, Silva, WM and Retore, M (2014) Integrated crop-livestock system in tropical Brazil: toward a sustainable production system. Agriculture, Ecosystems and Environment 190, 7079.CrossRefGoogle Scholar
Santana, RAV, Barbosa, FA, de Andrade, VJ, Molina, PC, Filho, GHBM and Leão, JM (2016) Risk analysis and probability of return on invested capital in an intensive beef cattle production system in Minas Gerais, Brazil. Revista Brasileira de Zootecnia 45, 788793.CrossRefGoogle Scholar
Sartorello, GL, Bastos, JPST and Gameiro, AH (2018) Development of a calculation model and production cost index for feedlot beef cattle. Revista Brasileira de Zootecnia 47, 111. doi: 10.1590/rbz4720170215.CrossRefGoogle Scholar
Soares, JCR, Barcellos, JOJ, Queiroz Filho, LAV, Oaigen, RP, Canozzi, CM, Camargo, CM, Drumond, LCD and Braccini Neto, J (2015) Avaliação econômica da terminação de bovinos de corte em pastagem irrigada. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia 67, 10961104.CrossRefGoogle Scholar
Strassburg, BBN, Latawiec, AE, Barioni, LG, Nobre, CA, da Silva, VP, Valentim, JF, Vianna, M and Assad, ED (2014) When enough should be enough: improving the use of current agricultural lands could meet production demands and spare natural habitats in Brazil. Global Environmental Change 28, 8497.CrossRefGoogle Scholar
Sudam (2018) Ministério da integração nacional superintendência do desenvolvimento da Amazônia diretoria colegiada. Publicação do Boletim da Amazônia, Conjuntural, A.E.A. Available at http://www.sudam.gov.br/index.php/component/content/article/89-diretoria-colegiada/1257-2018-planeujamento-atos-diretoria-colegiada (Accessed 10 December 2018).Google Scholar
Tilman, D, Balzer, C, Hill, J and Befort, BL (2011) Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences 108, 2026020264.CrossRefGoogle ScholarPubMed
Tonello, CL, Branco, AF, Tsutsumi, CY, Ribeiro, LB, Coneglian, SM and Castañeda, RD (2011) Suplementação e desempenho de bovinos de corte em pastagens: Tipo de forragem. Acta Scientiarum – Animal Sciences 33, 199205.CrossRefGoogle Scholar
Valin, H, Sands, RD, van der Mensbrugghe, D, Nelson, GC, Ahammad, H, Blanc, E, Bodirsky, B, Fujimori, S, Hasegawa, T, Havlik, P, Heyhoe, E, Kyle, P, Mason-D'Croz, D, Paltsev, S, Rolinski, S, Tabeau, A, van Meijl, H, von Lampe, M and Willenbockel, D (2014) The future of food demand: understanding differences in global economic models. Agricultural Economics 45, 5167.CrossRefGoogle Scholar
VanWey, LK, Spera, S, de Sa, R, Mahr, D and Mustard, JF (2013) Socioeconomic development and agricultural intensification in Mato Grosso. Philosophical Transactions of the Royal Society B: Biological Sciences 368, 2012016820120168.CrossRefGoogle ScholarPubMed
Venturini, T, de Menezes, LFG, Montagner, MM, Paris, W, Schmitz, GR and Molinete, ML (2017) Influences of nitrogen fertilization and energy supplementation for growth performance of beef cattle on Alexander grass. Tropical Animal Health and Production 49, 17571762.CrossRefGoogle Scholar
Zu Ermgassen, EKHJ, de Alcântara, MP, Balmford, A, Barioni, L, Neto, FB, Bettarello, MMF, de Brito, G, Carrero, GC, de Florence, EAS, Garcia, E, Gonçalves, ET, da Luz, CT, Mallman, GM, Strassburg, BBN, Valentim, JF and Latawiec, A (2018) Results from on-the-ground efforts to promote sustainable cattle ranching in the Brazilian Amazon. Sustainability (Switzerland) 10, 126. doi: 10.3390/su10041301.Google Scholar
Supplementary material: File

Pedrosa et al. supplementary material

Tables S1-S9

Download Pedrosa et al. supplementary material(File)
File 141.8 KB