Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-09T18:56:31.738Z Has data issue: false hasContentIssue false

An adaptive impedance control method for polishing system of an optical mirror processing robot

Published online by Cambridge University Press:  25 September 2023

Xujing Tian
Affiliation:
School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, China
Mengyao Lv
Affiliation:
School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, China
Jiazheng Sun
Affiliation:
School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, China
Hongzheng Zhao
Affiliation:
Henan Shenhuo Coal Industry & Electric Power Co., Ltd., Yongcheng, China
Ziyuan Jiang
Affiliation:
School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, China
Jinshuo Han
Affiliation:
Shandong Zhongheng Optoelectronic Technology Co., Ltd., Zaozhuang, China
Wei Gu
Affiliation:
Shandong Zhongheng Optoelectronic Technology Co., Ltd., Zaozhuang, China
Gang Cheng*
Affiliation:
School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, China Shandong Zhongheng Optoelectronic Technology Co., Ltd., Zaozhuang, China
*
Corresponding author: Gang Cheng; E-mail: chg@cumt.edu.cn

Abstract

To solve the constant contact force control problem between the end tool of a 5 degrees of freedom hybrid optical mirror processing robot and a workpiece, an adaptive impedance control method for the pneumatic servo-polishing system of the robot is designed. Firstly, the pneumatic servo-polishing control system at the end of the robot is set up. Secondly, the impedance control method for contact force is investigated based on the mathematical model of the pneumatic servo-polishing control system. Additionally, the causes of steady-state error of impedance control are analyzed theoretically, and the calculation method for steady-state error of impedance control is deduced. Finally, an indirect adaptive impedance controller based on Lyapunov Stability Principle is developed to estimate the environmental stiffness and position online, so as to reduce steady-state error and realize the tracking of polishing contact force. The simulation and experimental results suggest that the adaptive impedance control method not only recognizes that the contact force of the robot is relatively constant during the polishing process but also has high control accuracy for the force, fast-tracking response for the abrupt force, and considerable adaptability to the variable environmental stiffness.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wu, Z. W., Shen, J. Y., Peng, Y. F. and Wu, X., “Review on ultra-precision bonnet polishing technology,” Int. J. Adv. Manuf. Technol. 121(5-6), 29012921 (2022).CrossRefGoogle Scholar
Pal, R. K., Kumar, M. and Karar, V., “Experimental investigation and modeling of friction coefficient and material removal during optical glass polishing,” Arab. J. Sci. Eng. 48(3), 32553268 (2022).CrossRefGoogle Scholar
Liang, Y., Cui, Z., Zhang, C., Meng, F., Ma, Z., Li, M., Yu, T. and Zhao, J., “Large size optical glass lens polishing based on ultrasonic vibration,” Ceram. Int. 49(9), 1437714388 (2023).CrossRefGoogle Scholar
Wang, T., Ke, X., Huang, L., Negi, V., Choi, H., Pullen, W., Kim, D., Zhu, Y. and Idir, M., “Computer-controlled finishing via dynamically constraint position-velocity-time scheduler,” J. Manuf. Process. 87, 97105 (2023).CrossRefGoogle Scholar
Kakinuma, Y., Igarashi, K., Katsura, S. and Aoyama, T., “Development of 5-axis polishing machine capable of simultaneous trajectory, posture, and force control,” CIRP Ann. Manuf. Technol. 62(1), 379382 (2013).CrossRefGoogle Scholar
Xu, P., Cheung, C. F., Wang, C. J. and Zhao, C. Y., “Novel hybrid robot and its processes for precision polishing of freeform surfaces,” Precis. Eng. J. Int. Soc. Precis. Eng. Nanotechnol. 64, 5362 (2020).Google Scholar
Guo, F., Cheng, G., Wang, S. L. and Li, J., “Rigid-flexible coupling dynamics analysis with joint clearance for a 5-dof hybrid polishing robot,” Robotica 40(7), 21682188 (2022).CrossRefGoogle Scholar
Liao, L., Xi, F. F. and Liu, K. F., “Modeling and control of automated polishing/deburring process using a dual-purpose compliant toolhead,” Int. J. Mach. Tools Manuf. 48(12-13), 14541463 (2008).CrossRefGoogle Scholar
Kamezaki, S., Aoyama, T. and Inasaki, I., “Development of a robot-polishing system. Polishing force control by means of fuzzy set theory,” Trans. Jpn. Soc. Mech. Eng. Ser. C 57(543), 37143719 (1991).CrossRefGoogle Scholar
Nagata, F., Hase, T., Haga, Z., Omoto, M. and Watanabe, K., “Cad/cam-based position/force controller for a mold polishing robot,” Mechatronics 17(4-5), 207216 (2007).CrossRefGoogle Scholar
Liu, C. H., Chen, C. C. A. and Huang, J. S., “The polishing of molds and dies using a compliance tool holder mechanism,” J. Mater. Process. Technol. 166(2), 230236 (2005).CrossRefGoogle Scholar
Shahinian, H., Cherukuri, H. and Mullany, B., “Evaluation of fiber-based tools for glass polishing using experimental and computational approaches,” Appl. Opt. 55(16), 43074316 (2016).CrossRefGoogle ScholarPubMed
Wei, Y. Z. and Xu, Q. S., “Design of a new passive end-effector based on constant-force mechanism for robotic polishing,” Robot. Comput. Integr. Manuf. 74, 102278 (2022).CrossRefGoogle Scholar
Chaves-Jacob, J., Linares, J. M. and Sprauel, J. M., “Control of the contact force in a pre-polishing operation of free-form surfaces realised with a 5-axis cnc machine,” CIRP Ann. Manuf. Technol. 64(1), 309312 (2015).CrossRefGoogle Scholar
Mohammad, A., Hong, J. and Wang, D. W., “Design of a force-controlled end-effector with low-inertia effect for robotic polishing using macro-mini robot approach,” Robot. Comput. Integr. Manuf. 49, 5465 (2018).CrossRefGoogle Scholar
Jin, M. S., Ji, S. M., Pan, Y., Ao, H. P. and Han, S. F., “Effect of downward depth and inflation pressure on contact force of gasbag polishing,” Precis. Eng. J. Int. Soc. Precis. Eng. Nanotechnol. 47, 8189 (2017).Google Scholar
Zhou, W. S., Zhang, L., Fan, C., Zhao, J. and Gao, Y. P., “Development of a real-time force-controlled compliant polishing tool system with online tuning neural proportional-integral-derivative controller,” Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 229(5), 440454 (2015).Google Scholar
Dai, S. J., Li, S. N., Ji, W. B., Sun, Z. L. and Zhao, Y. F., “Force tracking control of grinding end effector based on backstepping plus pid,” Ind. Robot Int. J. Robot. Res. Appl. 49(1), 3446 (2022).CrossRefGoogle Scholar
Liao, L. A., Xi, F. J. and Liu, K. F., “Adaptive control of pressure tracking for polishing process,” J. Manuf. Sci. Eng. 132(1), 011015012010 (2010).CrossRefGoogle Scholar