Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-18T19:18:25.569Z Has data issue: false hasContentIssue false

An asymmetric S-curve trajectory planning based on an improved jerk profile

Published online by Cambridge University Press:  29 April 2024

Chol Jun Han*
Affiliation:
Robotics Institute, Kim Chaek University of Technology, Pyongyang, Democratic People’s Republic of Korea
Kwang Rim Song
Affiliation:
Faculty of Automatics, Kim Chaek University of Technology, Pyongyang, Democratic People’s Republic of Korea
Un-Ryong Rim
Affiliation:
Institute of Ocean Engineering, Kim Chaek University of Technology, Pyongyang, Democratic People’s Republic of Korea
*
Corresponding author: Chol Jun Han; Email: hcj901128@star-co.net.kp

Abstract

In this paper, a method of planning the expanded S-curve trajectory of robotic manipulators is proposed to minimize the execution time as well as to achieve the smoother trajectory generation in the deceleration stage for point-to-point motions. An asymmetric parameter is added to the piecewise sigmoid function for an improved jerk profile. This asymmetric profile is continuous and infinitely differentiable. Based on this profile, two analytical algorithms are presented. One is applied to determine the suitable time intervals of trajectory satisfying the time optimality under the kinematic constraints, and the other is to determine the asymmetric parameter generating the minimum execution time. Also, the calculation procedure for the time-scaled synchronization for all joints is given to decrease unnecessary loads onto the actuators. The velocity, acceleration, jerk and snap (the derivative of jerk) of the joints and the end-effector are equal to zero at two end points of motion. The simulation results through 3 DOF and 6 DOF robotic manipulators show that our approach reduces the jerk and snap of the deceleration stage effectively while decreasing the total execution time. Also, the analysis for a single DOF mass-spring-damper system indicates that the residual vibration could be reduced to 10% more than the benchmark techniques in case velocity, acceleration and jerk are limited to 1.24 m/s, 6 m/s2 and 80 m/s3, respectively and displacement is set to 0.8m. These results manifest that the performance of reducing residual vibrations is good and demonstrate an important characteristic of the proposed profile suitable for point-to-point motion.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Macfarlane, S. and Croft, E. A., “Jerk-bounded manipulator trajectory planning: Design for real-time applications,” IEEE Trans Robot Autom 19(1), 4252 (2003). doi: 10.1109/TRA.2002.807548.CrossRefGoogle Scholar
Zhao, M.-Y., Gao, X.-S. and Zhang, Q., “An efficient stochastic approach for robust time-optimal trajectory planning of robotic manipulators under limited actuation,” Robotica 35(12), 24002417 (2017).10.1017/S026357471700011XCrossRefGoogle Scholar
Huaizhong Li, M. D. L., Gong, Z. M. and Lin, W., “Motion profile design to reduce residual vibration of high-speed positioning stages,” IEEE/ASME Trans Mech 14, 264269 (2009). doi: TMECH.2008.2012160.CrossRefGoogle Scholar
Ghariblu, H. and Korayem, M. H., “Trajectory optimization of flexible mobile manipulators,” Robotica 24(3), 333335 (2006).10.1017/S0263574705002225CrossRefGoogle Scholar
Gasparetto, A. and Zanotto, V., “A technique for time-jerk optimal planning of robot trajectories,” Robot Com-Integr Manuf 24(3), 415426 (2008). doi: 10.1016/j.rcim.2007.04.001.CrossRefGoogle Scholar
Kyriakopoulos, K. J. and Saridis, G. N., “Minumum Jerk Path Generation,” In: Proceedings. 1988 IEEE International Conference on Robotics and Automation, (1988) pp. 364369. doi: 10.1109/ROBOT.1988.12075.CrossRefGoogle Scholar
Zanotto, V., Gasparetto, A., Lanzutti, A., Boscariol, P. and Vidoni, R., “Experimental validation of minimum time-jerk algorithms for industrial robots,” J Intell Robotic Syst 64(2), 197219 (2011).10.1007/s10846-010-9533-5CrossRefGoogle Scholar
Fang, Y., Hu, J., Liu, W., Shao, Q., Qi, J. and Peng, Y., “Smooth and time-optimal S-curve trajectory planning for automated robots and machines,” Mech Mach Theory 137, 127153 (2019). doi: 10.1016/j.mechmachtheory.2019.03.019.CrossRefGoogle Scholar
Boryga, M., “The use of higher-degree polynomials for trajectory planning with jerk, acceleration and velocity constraints,” Int J Comput Appl Tech 63(4), 337347 (2020). doi: 10.1504/IJCAT.2020.110414.CrossRefGoogle Scholar
Xiao, Y., Du, Z. and Dong, W., “Smooth and near time-optimal trajectory planning of industrial robots for online applications,” Ind Robot 39, 169177 (2012).10.1108/01439911211201636CrossRefGoogle Scholar
Saravanan, R., Ramabalan, S. and Balamurugan, C., “Multi objective trajectory planner for industrial robots with payload constraints,” Robotica 26(6), 753765 (2008). doi: 10.1017/S0263574708004359.CrossRefGoogle Scholar
Zhao, D. and Guo, H., “A trajectory planning method for polishing optical elements based on a non-uniform rational B-spline curve,” Appl Sci 8(8), 1355 (2018). doi: 10.3390/app8081355.CrossRefGoogle Scholar
Huang, J., Hu, P., Wu, K. and Zeng, M., “Optimal time-jerk trajectory for industrial robots,” Mech Mach Theory 121, 530544 (2018). doi: 10.1016/j.mechmachtheory.2017.11.006.CrossRefGoogle Scholar
Lie, H., Lai, X. and Wu, W., “Time-optimal and jerk-continuous trajectory planning for robot manipulators with kinematic constraints,” Robot Com-Integr Manuf 29(2), 309317 (2013). doi: 10.1016/j.rcim.2012.08.002.CrossRefGoogle Scholar
Kornmaneesang, W. and Chen, S.-L., “Time-optimal federate scheduling with actuator constraints for 5-axis machining,” Int J Adv Manuf Technol 119, 67896807 (2022). doi: 10/21203/rs.3.rs-687810/v1.CrossRefGoogle Scholar
Boryga, M. and Graboś, A., “Planning of manipulator motion trajectory with higher-degree polynomials use,” Mech Mach Theory 44(7), 14001419 (2009). doi: 10.1016/j.mechmachtheory.2008.11.003.CrossRefGoogle Scholar
Yue, S. G., Henrich, D., Xu, W. L. and Tso, S. K., “Point-to-point trajectory planning of flexible redundant robot manipulators using genetic alogrithms,” Robotica 20(3), 269280 (2002).10.1017/S0263574701003861CrossRefGoogle Scholar
Wang, H., Wang, H., Huang, J., Zhao, B. and Quan, L., “Smooth point-to-point trajectory planning for industrial robots with kinematical constraints based on high-order polynomial curve,” Mech Mach Theory 139, 284293 (2019). doi: 10.1016/j.mechmachtheroy.2019.05.002.CrossRefGoogle Scholar
Lee, D. and Ha, C.-W., “Optimization process for polynomial motion profiles to achieve fast movement with low vibration,” IEEE Trans Cont Syst Technol 28(5), 18921901 (2020). doi: 10.1109/TCST.2020.2998094.CrossRefGoogle Scholar
Biagiotti, L. and Melchiorri, C., “Optimization of generalized S-curve trajectories for residual vibration suppression and compliance with kinematic bounds,” IEEE-ASME Trans Mechatron 26, 27242734 (2021). doi: 10/1109/TMECH.2020.3045504.CrossRefGoogle Scholar
García-Martínez, J. R., Rodríguez-Reséndiz, J. and Cruz-Miguel, E. E., “A new seven-segment profile algorithm for an open source architecture in a hybrid electronic platform,” Electronics 8(6), 652 (2019). doi: 10.3390/electronics8060652.CrossRefGoogle Scholar
Ni, H., Zhang, C., Ji, S., Hu, T., Chen, Q., Liu, Y. and Wnag, G., “A bidirectional adaptive feedrate scheduling method of NURBS interpolation based on S-shaped ACC/DEC algorithm,” IEEE Access 6, 6379463812 (2018).10.1109/ACCESS.2018.2875403CrossRefGoogle Scholar
Mu, H., Zhou, Y., Yan, S. and Han, A., “Third-order trajectory planning for high accuracy point-to-point motion,” Front Electric Electron Eng China 4(1), 8387 (2009).10.1007/s11460-009-0017-yCrossRefGoogle Scholar
Lu, T.-C. and Chen, S.-L., “Shyh-leh Chen, genetic algorithm-based S-curve acceleration and deceleration for five-axis machine tools,” Int J Adv Manuf Technol 87(1-4), 219232 (2016).10.1007/s00170-016-8464-0CrossRefGoogle Scholar
Hassan, G., Gouttefarde, M., Chemori, A., Herve, P.-E., Rafei, M. E., Francis, C. and Salle, D., “Time-optimal pick-and-throw S-curve trajectories for fast parallel robots,” IEEE/ASME Trans Mechatron 27(6), 47074717 (2022). doi: 10.1109/TMECH.2022.3164247.CrossRefGoogle Scholar
Chen, Y., Wei, H., Sun, K., Liu, M. and Wang, T., “Algorithm for smooth S-curve feedrate profiling generation,” Chin J Mech Eng 24(02), 237247 (2011). doi: 10.3901/CJME.2011.02.237.CrossRefGoogle Scholar
Song, F., Yu, S., Chen, T. and Sun, L.-N., “Research on CNC simulation system with instruction interpretations possessed of wireless communication,” J Super-comput 72(7), 27032719 (2016).Google Scholar
Huaizhong Li, Z. M. G. and Wei Lin, T. L., “Motion profile planning for reduced jerk and vibration residuals,” SIMTech Tech Rep 8, 3237 (2007). doi: 10.13140/2.1.4211.2647.Google Scholar
Fang, Y., Qi, J., Hu, J., Wang, W. and Peng, Y., “An approach for jerk-continuous trajectory generation of robotic manipulators with kinematical constraints,” Mech Mach Theory 153, 103957 (2020). doi: 10.1016/j.mechmachtheory.2020.103957.CrossRefGoogle Scholar
Perumaal, S. and Jawahar, N., “Synchronized trigonometric S-curve trajectory for jerk-bounded time-optimal pick and place operation,” Int J Robot Autom 27(4), 385395 (2012). doi: 10.2316/Journal.206.2012.4.206-3780.Google Scholar
Zou, F., Qu, D., Wang, J. and Xu, F., “Asymmetric Trajectory Planning for Vacuum Robot Motion,” In: 2011 IEEE International Conference on Robotics and Automation (ICRA), (2011) pp. 14. doi: 10.1109/ICRA.2011.5980588.CrossRefGoogle Scholar
Li, T., Liu, Y. and Sun, L., “Asymmetric velocity profile with fixed motion time for motion control,” Adv Sci Lett 6(1), 593598 (2012). doi: 10.1166/ASL.2012.2200.CrossRefGoogle Scholar
Bai, Y., Chen, X., Sun, H. and Yang, Z., “Time-optimal freeform S-curve profile under positioning error and robustness constraints,” IEEE/ASME Trans Mech 23, 19932003 (2018).10.1109/TMECH.2018.2835830CrossRefGoogle Scholar
Li, X., Gao, X., Xiao, J., Cheng, H., Zhang, Y. and Hao, L., “Time-optimal general asymmetric S-curve profile with low residual vibration,” Mech Syst Signal Pr 188, 109978 (2023). doi: 10.1016/j.ymssp.2022.109978.CrossRefGoogle Scholar
Li, H., “A jerk-constrained asymmetric motion profile for high-speed motion stages to reduce residual vibration,” Int J Comp Appl Tech 53(2), 149156 (2016). doi: 10.1504/IJCAT.2016.074453.CrossRefGoogle Scholar
Li, X. and Chen, L., “Research on the Asymmetric S-type Curve based on the Position,” In: 5th International Conference on Frontiers of Manufacturing Science and Measuring Technology (FMSMT 2017), (2017) pp. 1301598. doi: 10.2991/fmsmt-ln.2017.310.CrossRefGoogle Scholar
Wu, Z., Chen, J., Bao, T., Wang, J., Zhang, L. and Xu, F., “A novel point-to-point trajectory planning algorithm for industrial robots based on a locally asymmetrical jerk motion profile,” Processes 10(4), 728 (2022). doi: 10.3390/pr10040728.CrossRefGoogle Scholar
Liu, T., Cui, J., Li, Y., Gao, S., Zhu, M. and Chen, L., “Time-optimal asymmetric S-curve trajectory planning of redundant manipulators under kinematic constraints,” Sensors 23(6), 3074 (2023). doi: 10.3390/s23063074.CrossRefGoogle ScholarPubMed
Chettibi, T., Lehtihet, H. E., Haddad, M. and Hanchi, S., “Minimum cost trajectory planning for industrial robots,” European J Mech –A/Solids 23(4), 703715 (2004). doi: 10.1016/j.euromechsol.2004.02.006.CrossRefGoogle Scholar