Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-18T22:11:03.230Z Has data issue: false hasContentIssue false

Compliant variable admittance adaptive fixed-time sliding mode control for trajectory tracking of robotic manipulators

Published online by Cambridge University Press:  02 May 2024

Hang Gao
Affiliation:
School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, China.
Chao Ma*
Affiliation:
School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, China.
Xiaodong Zhang
Affiliation:
Beijing Key Laboratory of Intelligent Space Robotic Systems Technology and Application, Beijing, China Beijing Institute of Spacecraft System Engineering CAST, Beijing, China
Cheng Zhou
Affiliation:
School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, China.
*
Corresponding author: Chao Ma; Email: cma@ustb.edu.cn

Abstract

This paper presents a compliant variable admittance adaptive fixed-time sliding mode control (SMC) algorithm for trajectory tracking of robotic manipulators. Specifically, a compliant variable admittance algorithm and an adaptive fixed-time SMC algorithm are combined to construct a double-loop control structure. In the outer loop, the variable admittance algorithm is developed to adjust admittance parameters during a collision to minimize the collision time, which gives the robot compliance property and reduce the rigid collision influence. Then, by employing the Lyapunov theory and the fixed-time stability theory, a new nonsingular sliding mode manifold is proposed and an adaptive fixed-time SMC algorithm is presented in the inner loop. More precisely, this approach enables rapid convergence, enhanced steady-state tracking precision, and a settling time that is independent of system initial states. As a result, the effectiveness and improved performance of the proposed algorithm are demonstrated through extensive simulations and experimental results.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yan, W., Liu, Y., Lan, Q., Zhang, T. and Tu, H., “Trajectory planning and low-chattering fixed-time nonsingular terminal sliding mode control for a dual-arm free-floating space robot,” Robotica 40(3), 625645 2022 (2022).CrossRefGoogle Scholar
Yu, X.-Q., Guo, J.-F. and Zheng, H.-X., “Extended-cbba-based Task Allocation Algorithm for on-Orbit Assembly Spacecraft,” In: 2019 IEEE International Conference on Unmanned Systems (ICUS). IEEE, (2019).CrossRefGoogle Scholar
Jiang, Z., Li, Z., Li, C., Yang, D. andLiu, H., “Design and preliminary ground experiment for robotic assembly of a modular space telescope,” IEEE Access 7, 160870160878 (2019).CrossRefGoogle Scholar
Diftler, M.-A., Mehling, J. S., Abdallah, M. E., Radford, N. A., Bridgwater, L. B., Sanders, A. M., Askew, R. S., Linn, D. M., Yamokoski, J. D., Permenter, F. A., Hargrave, B. K., Platt, R., Savely, R. T. and Ambrose, R. O., “Robonaut 2-the First Humanoid Robot in Space,” In: 2011 IEEE international conference on robotics and automation. IEEE, (2011).CrossRefGoogle Scholar
Borst, C., Wimbock, T., Schmidt, F., Fuchs, M., Brunner, B., Zacharias, F., Giordano, P. R., Konietschke, R., Sepp, W., Fuchs, S., Rink, C., Albu-Schaffer, A. and Hirzinger, G., “Rollin‘Justin-Mobile Platform with Variable Base,” In: 2009 IEEE International Conference on Robotics and Automation. IEEE, (2009).CrossRefGoogle Scholar
Yingzi, G. U. A. N., Wenxu, L. I. U., Ning, Y. A. N. and Chunlin, S. O. N. G., “Research on co-operative motion planning of space multirobots,” J Mech Eng 55(12), 3743 (2019).CrossRefGoogle Scholar
Zhihong, J., Xiaolei, C., Xiao, H., Hui, L. and Marco, C., “Progress and development trend of space intelligent robot technology,” Space: Scie Tech 2022, (2022).Google Scholar
Li, D., Zhong, L., Zhu, W., Xu, Z., Tang, Q. and Zhan, W., “A survey of space robotic technologies for on-orbit assembly,” Space: Sci Tech 2022, (2022).Google Scholar
Li, C., Khan, H., Lee, J., Kim, J. and Lee, M. C., “Fuzzy TSMCSPO for trajectory tracking of nuclear reactor dismantlement robot manipulator,” IEEE Access 11, 3869638707 (2023).CrossRefGoogle Scholar
Luo, X., Li, S., Liu, S. and Liu, G., “An optimal trajectory planning method for path tracking of industrial robots,” Robotica 37(3), 502520 (2019).CrossRefGoogle Scholar
Hao, J., Zhang, K., Zhang, Z., Wang, S. and Shi, C., “An online model-free adaptive tracking controller for cable-driven medical continuum manipulators,” IEEE Trans Med Robot Bio 5(3), 623635 (2023).CrossRefGoogle Scholar
Prakash, A., Giri, D. K. and Kumar, S. R., “Dynamic velocity error based trajectory tracking for space robotic manipulator,” Aerosp Sci Technol 126, 107650 (2022).CrossRefGoogle Scholar
Shahriari, M. and Biglarbegian, M., “A novel predictive safety criteria for robust collision avoidance of autonomous robots,” IEEE/ASME Trans Mech 27(5), 37733783 (2022).CrossRefGoogle Scholar
Han, L., Xu, W., Li, B. and Kang, P., “Collision detection and coordinated compliance control for a dual-arm robot without force/torque sensing based on momentum observer,” IEEE/ASME Trans Mech 24(5), 22612272 (2019).CrossRefGoogle Scholar
Liu, Q., Ji, Z., Xu, W., Liu, Z., Yao, B. and Zhou, Z., “Knowledge-guided robot learning on compliance control for robotic assembly task with predictive model,” Expert Syst Appl 234, 121037 (2023).CrossRefGoogle Scholar
Zhang, O., Yao, W., Du, D., Wu, C., Liu, J., Wu, L. and Sun, Y., “Trajectory optimization and tracking control of free-flying space robots for capturing non-cooperative tumbling objects,” Aerospace Sci Technol 143, 108718 (2023).CrossRefGoogle Scholar
Wang, F., Qian, Z., Yan, Z., Yuan, C. and Zhang, W., “A novel resilient robot: Kinematic analysis and experimentation,” IEEE Access 8, 28852892 (2019).CrossRefGoogle Scholar
Huang, C.-H., Chiao, K.-W., Yu, C.-P., Kuo, Y.-C. and Lan, C.-C., “A variable-stiffness robot for force-sensitive applications,” IEEE/ASME Trans Mech 28(4), 18621870 (2023).CrossRefGoogle Scholar
Memar, A.-H. and Ehsan, T.-E., “A robot gripper with variable stiffness actuation for enhancing collision safety,” IEEE Trans Ind Electron 67(8), 66076616 (2019).CrossRefGoogle Scholar
Lecours, A., Mayer-St-Onge, B. and Clément, G., “Variable Admittance Control of a Four-Degree-of-Freedom Intelligent Assist Device,” In: 2012 IEEE international conference on robotics and automation, (IEEE, 2012).CrossRefGoogle Scholar
Tu, Y., Zhu, A., Song, J., Shen, H., Shen, Z., Zhang, X. and Cao, G., “An adaptive sliding mode variable admittance control method for lower limb rehabilitation exoskeleton robot,” Appl Sci 10(7), 2536 (2020).CrossRefGoogle Scholar
Chen, J.-D. and Ro, P. I., “Human intention-oriented variable admittance control with power envelope regulation in physical human-robot interaction,” Mechatronics 84, 102802 (2022).CrossRefGoogle Scholar
Kang, G., Seok Oh, H., Kyue Seo, J., Kim, U. and Ryeol Choi, H., “Variable admittance control of robot manipulators based on human intention,” IEEE/ASME Trans Mech 24(3), 10231032 (2019).CrossRefGoogle Scholar
Bae, J., Kim, K., Huh, J. and Hong, D., “Variable admittance control with virtual stiffness guidance for human-robot collaboration,” IEEE Access 8, 117335117346 (2020).CrossRefGoogle Scholar
Li, H.-Y., Paranawithana, I., Yang, L., Lim, T. S. K., Foong, S., Ng, F. C. and Tan, U.-X., “Stable and compliant motion of physical human-robot interaction coupled with a moving environment using variable admittance and adaptive control,” IEEE Robot Autom Lett 3(3), 24932500 (2018).CrossRefGoogle Scholar
Song, K.-Y., Behzadfar, M. and Zhang, W.-J., “A dynamic pole motion approach for control of nonlinear hybrid soft legs: A preliminary study,” Machines 10(10), 875 (2022).CrossRefGoogle Scholar
Cheng, L., Lin, Y., Hou, Z.-G., Tan, M., Huang, J. and Zhang, W. J., “Adaptive tracking control of hybrid machines: A closed-chain five-bar mechanism case,” IEEE/ASME Trans Mech 16(6), 11551163 (2010).CrossRefGoogle Scholar
Zhang, M., McDaid, A., Veale, A. J., Peng, Y. and Quan Xie, S., “Adaptive trajectory tracking control of a parallel ankle rehabilitation robot with joint-space force distribution,” IEEE Access 7, 8581285820 (2019).CrossRefGoogle Scholar
Liu, Y., Yan, W., Zhang, T., Yu, C. and Tu, H., “Trajectory tracking for a dual-arm free-floating space robot with a class of general nonsingular predefined-time terminal sliding mode,” IEEE Trans Syst, Man, Cybernet: Syst 52(5), 32733286 (2021).CrossRefGoogle Scholar
Xie, S., Ren, G., Xiong, J. and Lu, Y., “A trajectory tracking control of a robot actuated with pneumatic artificial muscles based on hysteresis compensation,” IEEE Access 8, 8096480977 (2020).CrossRefGoogle Scholar
Baek, S., Baek, J. and Han, S., “An adaptive sliding mode control with effective switching gain tuning near the sliding surface,” IEEE Access 7, 1556315572 (2019).CrossRefGoogle Scholar
Vo, A. T. and Kang, H.-J., “An adaptive terminal sliding mode control for robot manipulators with non-singular terminal sliding surface variables,” IEEE Access 7, 87018712 (2018).CrossRefGoogle Scholar
V.-Cuong, N., A.-Tuan, V. and H.-Jun, K., “A finite-time fault-tolerant control using non-singular fast terminal sliding mode control and third-order sliding mode observer for robotic manipulators,” IEEE Access 9, 3122531235 (2021).Google Scholar
Mobayen, S., Mofid, O., Din, S. U. and Bartoszewicz, A., “Finite-time tracking controller design of perturbed robotic manipulator based on adaptive second-order sliding mode control method,” IEEE Access 9, 7115971169 (2021).CrossRefGoogle Scholar
Van, M., Ge, S. S. and Ren, H., “Finite time fault tolerant control for robot manipulators using time delay estimation and continuous nonsingular fast terminal sliding mode control,” IEEE Trans Cybernet 47(7), 16811693 (2016).CrossRefGoogle Scholar
Ma, C., “Fixed-time compliant motion/force control of robotic manipulators with environmental constraints,” Assembly Autom 37(3), 271277 (2017).CrossRefGoogle Scholar
Liu, K. and Wang, R., “Antisaturation adaptive fixed-time sliding mode controller design to achieve faster convergence rate and its application,” IEEE Trans Circ Syst II: Expr Bri 69(8), 35553559 (2022).Google Scholar
Long, H., Guo, T. and Zhao, J., “Adaptive disturbance observer-based novel fixed-time nonsingular terminal sliding-mode control for a class of doF nonlinear systems,” IEEE Trans Ind Inform 18(9), 59055914 (2021).CrossRefGoogle Scholar
Li, Y., Yang, C., Yan, W., Cui, R. and Annamalai, A., “Admittance-based adaptive cooperative control for multiple manipulators with output constraints,” IEEE Trans Neur Net Lear Syst 30(12), 36213632 (2019).CrossRefGoogle ScholarPubMed
Zhang, J., Liu, W., Gao, L‘e, Li, L. and Li, Z., “The master adaptive impedance control and slave adaptive neural network control in underwater manipulator uncertainty teleoperation,” Ocean Eng 165, 465479 (2018).CrossRefGoogle Scholar
Lin, Y., Chen, Z. and Yao, B., “Unified motion/force/impedance control for manipulators in unknown contact environments based on robust model-reaching approach,” IEEE/ASME Trans Mech 26(4), 19051913 (2021).CrossRefGoogle Scholar
Hu, H., Wang, X. and Chen., L., “Impedance sliding mode control with adaptive fuzzy compensation for robot-environment interacting,” IEEE Access 8, 1988019889 (2020).CrossRefGoogle Scholar
Ma, Z., Liu, Z., Huang, P. and Kuang, Z., “Adaptive fractional-order sliding mode control for admittance-based telerobotic system with optimized order and force estimation,” IEEE Trans Ind Electron 69(5), 51655174 (2021).CrossRefGoogle Scholar
Mujica, M. D.;n, Crespo, M. D.;n, Benoussaad, M., Junco, S. and Fourquet, J.-Y., “Robust variable admittance control for human-robot co-manipulation of objects with unknown load,” Robot Comp-Integr Manuf 79, 102408 (2023).CrossRefGoogle Scholar
Zhang, L., Wang, Y., Hou, Y. and Li, H., “Fixed-time sliding mode control for uncertain robot manipulators,” IEEE Access 7, 149750149763 (2019).CrossRefGoogle Scholar
Polyakov, A., “Nonlinear feedback design for fixed-time stabilization of linear control systems,” IEEE Trans Automat Contr 57(8), 21062110 (2012).CrossRefGoogle Scholar