Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-13T13:30:14.342Z Has data issue: false hasContentIssue false

Development and implementation of a new approach for posture control of a hexapod robot to walk in irregular terrains

Published online by Cambridge University Press:  27 December 2023

Joana Coelho*
Affiliation:
CMEMS-UMinho, LABBELS – Associate Laboratory, Mechanical Engineering Department, University of Minho, Guimarães, 4800-058, Portugal
Bruno Dias
Affiliation:
Center Algoritmi, Department of Informatics, University of Minho, 4710-057, Braga, Portugal
Gil Lopes
Affiliation:
INESC-TEC, University Institute of Maia, 4475-690, Maia, Portugal
Fernando Ribeiro
Affiliation:
Center Algoritmi, Department of Industrial Electronics, University of Minho, 4800-058, Braga, Portugal
Paulo Flores
Affiliation:
CMEMS-UMinho, LABBELS – Associate Laboratory, Mechanical Engineering Department, University of Minho, Guimarães, 4800-058, Portugal
*
Corresponding author: Joana Coelho; Email: id8667@alunos.uminho.pt

Abstract

The adaptability of hexapods for various locomotion tasks, especially in rescue and exploration missions, drives their application. Unlike controlled environments, these robots need to navigate ever-changing terrains, where ground irregularities impact foothold positions and origin shifts in contact forces. This dynamic interaction leads to varying hexapod postures, affecting overall system stability. This study introduces a posture control approach that adjusts the hexapod’s main body orientation and height based on terrain topology. The strategy estimates ground slope using limb positions, thereby calculating novel limb trajectories to modify the hexapod’s angular position. Adjusting the hexapod’s height, based on the calculated slope, further enhances main body stability. The proposed methodology is implemented and evaluated on the ATHENA hexapod (All-Terrain Hexapod for Environment Adaptability). Control feasibility is assessed through dynamic analysis of the hexapod’s multibody model on irregular surfaces, using computational simulations in Gazebo software. Environmental complexity’s impact on hexapod stability is tested on both a ramp and uneven terrain. Independent analyses for each scenario evaluate the controller’s effect on roll and pitch angular velocities, as well as height variations. Results demonstrate the strategy’s suitability for both environments, significantly enhancing posture stability.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Jin, M., Ding, L., Gao, H., Su, Y. and Zhang, P., “Dynamics modeling and simulation of a hexapod robot with a focus on trajectory prediction,” J. Intell. Robot. Syst. Theory Appl. 108(1), 8 (2023).CrossRefGoogle Scholar
Liu, Y. F., Su, B., Zhou, L., Gao, H. B., Ding, L., Jiang, L., Zou, F. Q. and Ma, C. Y., “Foot terrain impact modeling and motion performance research of hexapod robot based on passive elastic leg,” J. Phys. Conf. Ser. 1507(5), 052016 (2020).CrossRefGoogle Scholar
Ding, L., Hu, L., Liu, Y., Gao, H., Deng, Z., Zhang, Y. and Tang, C., “Design and optimization of a deep-sea multimode crawling-swimming hexapod robot with leg-propeller,” Ocean Eng. 280, 114485 (2023).CrossRefGoogle Scholar
Wang, L., Lu, Y., Zhang, Y., Chen, W., Zhao, X. and Gao, F., “Design and soft-landing control of underwater legged robot for active buffer landing on seabed,” Ocean Eng. 266, 112764 (2022).CrossRefGoogle Scholar
Burkus, E., Odry, Á., Awrejcewicz, J., Kecskés, I. and Odry, P., “Mechanical design and a novel structural optimization approach for hexapod walking robots,” Machines 10(6), 466 (2022).CrossRefGoogle Scholar
Deepa, T., Angalaeswari, S., Subbulekshmi, D., Krithiga, S., Sujeeth, S. and Kathiravan, R., “Design and Implementation of Bio Inspired Hexapod for Exploration Applications,” In: Materials Today Proceedings, vol. 37 (2020) pp. 16031607.Google Scholar
Xue, J., Li, J., Chen, Z., Wang, S., Wang, J. and Ma, R., “Gait Planning and Control of Hexapod Robot Based on Velocity Vector,” In: 2021 6th IEEE International Conference on Advanced Robotics and Mechatronics, ICARM 2021 (2021) pp. 616620.Google Scholar
Chang, I. C. and Lin, P. C., “Dynamic turning and running of a hexapod robot using a separated and laterally arranged two-leg model,” Bioinspir. Biomim. 18(3), 3 (2023).CrossRefGoogle ScholarPubMed
Chavez, A. and Alcantara, J., “Kinematic and Dynamic Modeling of the PhantomX AX Metal Hexapod Mark III Robot using Quaternions,” In: 10th International Conference on Control, Automation and Information Sciences, ICCAIS. 2021 - Proceedings (2021) pp. 595601.Google Scholar
Ouyang, W., Chi, H., Pang, J., Liang, W. and Ren, Q., “Adaptive locomotion control of a hexapod robot via bio-inspired learning,” Front. Neurorobot. 15, 627157 (2021).CrossRefGoogle ScholarPubMed
Zhang, Y., Gao, Y. and Sun, M., “Parameters Identification of Whole Body Dynamics for Hexapod Robot,” In: 2022 IEEE International Conference on Robotics and Biomimetics, ROBIO 2022 (2022) pp. 4045.Google Scholar
Liu, Y., Xing, B., Jiang, L., Liang, Z., Zhao, J. and Su, B., “Research on Foot Slippage Estimation of Insect Type Hexapod Robot,” In: Proceedings of the 33rd Chinese Control and Decision Conference, CCDC 2021 (2021) pp. 43264331.Google Scholar
He, G., Cao, Z., Li, Q., Zhu, D. and Aimin, J., “Influence of hexapod robot foot shape on sinking considering multibody dynamics,” J. Mech. Sci. Technol. 34(9), 38233831 (2020).CrossRefGoogle Scholar
Sun, Y., Zhan, J., Duan, W., Bai, L., Zheng, J. and Chen, X., “Influence of Gait Trajectory and Parameters on Energy Consumption of Hexapod Robot,” In: 2021 6th IEEE International Conference on Advanced Robotics and Mechatronics, ICARM 2021 (2021) pp. 436441.Google Scholar
Gao, Y., Wang, D., Wei, W., Yu, Q., Liu, X. and Wei, Y., “Constrained predictive tracking control for unmanned hexapod robot with tripod gait,” Drones 6(9), 246 (2022).CrossRefGoogle Scholar
Irawan, A. and Nonami, K., “Optimal impedance control based on body inertia for a hydraulically driven hexapod robot walking on uneven and extremely soft terrain,” J. Field Robot. 28(5), 690713 (2011).Google Scholar
Strohmer, B., Manoonpong, P. and Larsen, L. B., “Flexible spiking CPGs for online manipulation during hexapod walking,” Front. Neurorobot. 14, 41 (2020).CrossRefGoogle ScholarPubMed
Huynh, H., Duong-Trung, N., Nam, T., Nguyen, Q., Le, B. and Le, T., “Maneuverable autonomy of a six-legged walking robot: Design and implementation using deep neural networks and hexapod locomotion,” Int. J. Adv. Comput. Sci. Appl. 12(6), 830839 (2021).Google Scholar
Barrio, R., Lozano, Á., Martínez, M. A., Rodríguez, M. and Serrano, S., “Routes to tripod gait movement in hexapods,” Neurocomputing 461, 679695 (2021).CrossRefGoogle Scholar
Khazaee, M., Sadedel, M. and Davarpanah, A., “Behavior-based navigation of an autonomous hexapod robot using a hybrid automaton,” J. Intell. Robot. Syst. 102(2), 29 (2021).CrossRefGoogle Scholar
Rawat, P., Misra, T., Mitra, S. and Sinha, A., “Designing of an Amphibian Hexapod with Computer Vision for Rescue Operations,” In: 2020 6th International Conference on Control, Automation and Robotics (ICCAR) (2020) pp. 662668.CrossRefGoogle Scholar
Zhao, Y., Gao, F., Sun, Q. and Yin, Y., “Terrain classification and adaptive locomotion for a hexapod robot Qingzhui,” Front. Mech. Eng. 16(2), 271284 (2021).Google Scholar
Yin, Y., Zhao, Y., Xiao, Y. and Gao, F., “Footholds optimization for legged robots walking on complex terrain,” Front. Mech. Eng. 18(2), 26 (2023).CrossRefGoogle Scholar
Nelson, G. M. and Quinn, R. D., “Posture Control of a Cockroach-Like Robot,” In: Proceedings - IEEE International Conference on Robotics and Automation (1998) pp. 157162.Google Scholar
Tikam, M., Withey, D. and Theron, N. J., “Standing Posture Control for a Low-Cost Commercially Available Hexapod Robot,” In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2017) pp. 33793385.CrossRefGoogle Scholar
Liu, Y., Wang, C., Zhang, H. and Zhao, J., “Research on the posture control method of hexapod robot for rugged terrain,” Appl. Sci. 19(10), 6725 (2020).CrossRefGoogle Scholar
Zhang, H., Liu, Y., Zhao, J., Chen, J. and Yan, J., “Development of a bionic hexapod robot for walking on unstructured terrain,” J. Bionic Eng. 11(2), 176187 (2014).CrossRefGoogle Scholar
Kim, J. Y., Jun, B. H. and Park, I. W., “Six-legged walking of Little Crabster on uneven terrain,” Int. J. Precis. Eng. Manuf. 18(4), 509518 (2017).CrossRefGoogle Scholar
Celaya, E. and Porta, J. M., “A control structure for the locomotion of a legged robot on difficult terrain,” IEEE Robot. Autom. Mag. 5(2), 4351 (1998).Google Scholar
Yıldırım, Ş. and Arslan, E., “ODE (Open Dynamics Engine) based stability control algorithm for six legged robot,” Measurement 124, 367377 (2018).CrossRefGoogle Scholar
Murata, Y., Inagaki, S. and Suzuki, T., “Development of an Adaptive Hexapod Robot Based on Follow-the-Contact-Point Gait Control and Timekeeper Control,” In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2019) pp. 33213327.CrossRefGoogle Scholar
Cao, M., Yamashita, K., Kiyozumi, T. and Tada, Y., “Hexapod Robot with Ground Reaction Force Sensor on Rough Terrain,” In: 2021 IEEE International Conference on Mechatronics and Automation, ICMA 2021 (2021) pp. 10881093.Google Scholar
Chen, C., Guo, W., Wang, P., Sun, L., Zha, F., Shi, J. and Li, M., “Attitude trajectory optimization to ensure balance hexapod locomotion,” Sensors 20(21), 131 (2020).Google ScholarPubMed
Copot, C., Ionescu, C. M. and De Keyser, R., “Body Levelling of a Hexapod Robot Using the Concept of Sensor Fusion,” In: 2017 21st International Conference on System Theory, Control and Computing (ICSTCC) (2017) pp. 224229.Google Scholar
Sartoretti, G., Shaw, S., Lam, K., Fan, N., Travers, M. and Choset, H., “Central Pattern Generator with Inertial Feedback for Stable Locomotion and Climbing in Unstructured Terrain,” In: Proceedings - IEEE International Conference on Robotics and Automation (2018) pp. 57695775.Google Scholar
Zhang, L., Zhu, Y., Zhang, F. and Zhou, S., “Position-posture control of multilegged walking robot based on kinematic correction,” J. Robot. 2020, 8896396 (2020).Google Scholar
Coelho, J., Dias, B., Lopes, G., Ribeiro, F. and Flores, P., “Hexapod Posture Control for Navigation Across Complex Environments,” In: ROMANSY 24 - Robot Design, Dynamics and Control. ROMANSY 2022. CISM International Centre for Mechanical Sciences (2022) pp. 191198.Google Scholar
Faigl, J. and Čížek, P., “Adaptive locomotion control of hexapod walking robot for traversing rough terrains with position feedback only,” Robot. Auton. Syst. 116, 136147 (2019).CrossRefGoogle Scholar
Li, M., Wang, Z., Zhang, D., Jiao, X., Wang, J. and Zhang, M., “Accurate perception and representation of rough terrain for a hexapod robot by analyzing foot locomotion,” Measurement 193, 110904 (2022).CrossRefGoogle Scholar
Xia, H., Zhang, X. and Zhang, H., “A new foot trajectory planning method for legged robots and its application in hexapod robots,” Appl. Sci. 11(19), 9217 (2021).CrossRefGoogle Scholar
Chen, G., Jin, B. and Chen, Y., “Accurate position and posture control of a redundant hexapod robot,” Arab. J. Sci. Eng. 42(5), 20312042 (2017).Google Scholar
Chen, G., Jin, B. and Chen, Y., “Nonsingular fast terminal sliding mode posture control for six-legged walking robots with redundant actuation,” Mechatronics 50, 115 (2018).CrossRefGoogle Scholar
Bjelonic, M., Kottege, N. and Beckerle, P., “Proprioceptive Control of an Over-Actuated Hexapod Robot in Unstructured Terrain,” In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2016) pp. 20422049.CrossRefGoogle Scholar
Cizek, P., Zoula, M. and Faigl, J., “Design, construction, and rough-terrain locomotion control of novel hexapod walking robot with four degrees of freedom per leg,” IEEE Access 9, 1786617881 (2021).CrossRefGoogle Scholar
Azayev, T. and Zimmerman, K., “Blind hexapod locomotion in complex terrain with gait adaptation using deep reinforcement learning and classification,” J. Intell. Robot. Syst. 99(3-4), 659671 (2020).CrossRefGoogle Scholar
Flores, P., Leine, R. and Glocker, C., “Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach,” Multibody Syst. Dyn. 23(2), 165190 (2010).CrossRefGoogle Scholar
Moreau, J., “Unilateral Contact and Dry Friction in Finite Freedom Dynamics,” In: Nonsmooth Mechanics and Applications. International Centre for Mechanical Sciences, vol. 302 (1988) pp. 182.CrossRefGoogle Scholar
Stewart, D. and Trinkle, J. C., “An Implicit Time-Stepping Scheme for Rigid Body Dynamics with Coulomb Friction,” In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings, vol. 1 (2000) pp. 162169.Google Scholar
Anitescu, M. and Potra, F. A., “Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems,” Nonlinear Dyn. 14(3), 231247 (1997).CrossRefGoogle Scholar
Chakraborty, N., Berard, S., Akella, S. and Trinkle, J., “An implicit time-stepping method for quasi-rigid multibody systems with intermittent contact,” Int. J. Robot. Res. 32, 455464 (2007).Google Scholar
Coelho, J., Dias, B., Lopes, G., Ribeiro, F. and Flores, P., “Reactive Locomotion of a Hexapod for Navigation Across Irregular Ground,” In: Advances in Robot Kinematics 2022. ARK 2022 (2022) pp. 478485.CrossRefGoogle Scholar
Deng, H., Xin, G., Zahng, G. and Mistry, M., “Gait and trajectory rolling planning and control of hexapod robot for disaster rescue applications,” Robot. Auton. Syst. 95, 1324 (2017).CrossRefGoogle Scholar
You, B., Fan, Y. and Liu, D., “Fault-tolerant motion planning for a hexapod robot with single-leg failure using a foot force control method,” Int. J. Adv. Robot. Syst. 19(5), 17298806221121070 (2022).CrossRefGoogle Scholar
Asif, U. and Iqbal, J., “On the improvement of multi-legged locomotion over difficult terrains using a balance stabilization method,” Int. J. Adv. Robot. Syst. 9(1), 1 (2012).CrossRefGoogle Scholar