Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-02T04:18:43.363Z Has data issue: false hasContentIssue false

Shape-controllable inverse kinematics of hyper-redundant robots based on the improved FABRIK method

Published online by Cambridge University Press:  07 November 2023

Pingan Niu
Affiliation:
School of Electrical Engineering and Automation, Hefei University of Technology, Hefei, China
Liang Han*
Affiliation:
School of Electrical Engineering and Automation, Hefei University of Technology, Hefei, China
Yunzhi Huang
Affiliation:
School of Electrical Engineering and Automation, Hefei University of Technology, Hefei, China
Lei Yan
Affiliation:
School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, China
*
Corresponding author: Liang Han; Email: lianghan@hfut.edu.cn

Abstract

Hyper-redundant robots have good prospects for applications in confined space due to their high flexibility and slim body size. However, the super-redundant structure brings great challenges for its inverse kinematics with shape constraints. Unfortunately, traditional Jacobian pseudo-inverse-based inverse kinematics method and forward and backward reaching inverse kinematics (FABRIK) method are difficult to constrain the arm shape and realize trajectory tracking in confined spaces. To solve this problem, we propose a shape-controllable FABRIK method to satisfy the given path and shape constraints. Firstly, the kinematic model of the hyper-redundant robot is established, and the canonical FABRIK method is introduced. Based on the preliminary works, the single-layer improved FABRIK method is developed to solve the position and pointing inverse kinematics considering path environment and joint angle constraints instead of two-layer geometric iterations. For tracking the desired end roll angles, the polygonal virtual arm is designed. The real arm roll angle is achieved by controlling its winding on the virtual arm. In this way, the shape can be controlled. Finally, we compare the proposed method with other three approaches by simulations. Results show that the proposed method is more efficient and the arm shape is controllable.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Liu, T., Xu, W., Yang, T. and Li, Y., “A hybrid active and passive cable-driven segmented redundant manipulator: Design, kinematics, and planning,” IEEE/ASME Trans. Mechatron. 26(2), 930942 (2021).CrossRefGoogle Scholar
Yang, C., Xu, H., Li, X. and Yu, F., “Kinematic modeling and solution of rigid-flexible and variable-diameter underwater continuous manipulator with load,” Robotica 40(4), 10201035 (2022).CrossRefGoogle Scholar
Kolpashchikov, D. Y., Laptev, N. V., Danilov, V. V., Skirnevskiy, I. P., Manakov, R. A. and Gerget, O. M., “Fabrik-based Inverse Kinematics for Multi-section Continuum Robots,” 2018 18th International Conference on Mechatronics - Mechatronika (ME) (2018) pp. 18.Google Scholar
Kolachalama, S., Lakshmanan, S., “Continuum robots for manipulation applications: A survey,” J. Robot. 2020, 19 (2020). https://doi.org/10.1155/2020/4187048.Google Scholar
Walker, I. D., “Continuous backbone “continuum” robot manipulators,” Int. Scholarly Res. Not. 2013, 119 (2013). https://doi.org/10.5402/2013/726506.Google Scholar
Rolf, M. and Steil, J. J., “Constant Curvature Continuum Kinematics as Fast Approximate Model for the Bionic Handling Assistant,” 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (2012) pp. 34403446.Google Scholar
Huang, L.-S. and Jiang, R.-K., “A New Method of Inverse Kinematics Solution for Industrial 7dof Robot,” Proceedings of the 32nd Chinese Control Conference (2013) pp. 60636065.Google Scholar
Yang, J., Jin, L., Han, Z., Zhao, D. and Hu, M., “Sensitivity analysis of factors affecting motion reliability of manipulator and fault diagnosis based on kernel principal component analysis,” Robotica 40(8), 25472566 (2022).CrossRefGoogle Scholar
Xu, W., Liu, T. and Li, Y., “Kinematics, dynamics, and control of a cable-driven hyper-redundant manipulator,” IEEE/ASME Trans. Mechatron. 23(4), 16931704 (2018).CrossRefGoogle Scholar
Wang, C., Frazelle, C. G., Wagner, J. R. and Walker, I. D., “Dynamic control of multisection three-dimensional continuum manipulators based on virtual discrete-jointed robot models,” IEEE/ASME Trans. Mechatron. 26(2), 777788 (2020).CrossRefGoogle Scholar
Nuelle, K., Sterneck, T., Lilge, S., Xiong, D., Burgner-Kahrs, J. and Ortmaier, T., “Modeling, calibration, and evaluation of a tendon-actuated planar parallel continuum robot,” IEEE Robot. Autom. Lett. 5(4), 58115818 (2020).CrossRefGoogle Scholar
Huang, X., Zou, J. and Gu, G., “Kinematic modeling and control of variable curvature soft continuum robots,” IEEE/ASME Trans. Mechatron. 26(6), 31753185 (2021).CrossRefGoogle Scholar
Dalvand, M. M., Nahavandi, S. and Howe, R. D., “An analytical loading model for $n$ -tendon continuum robots,” IEEE Trans. Robot. 34(5), 12151225 (2018).CrossRefGoogle Scholar
Neumann, M. and Burgner-Kahrs, J., “Considerations for Follow-the-Leader Motion of Extensible Tendon-Driven Continuum Robots,” 2016 IEEE International Conference on Robotics and Automation (ICRA) (2016) pp. 917923.Google Scholar
Liu, T., Mu, Z., Xu, W., Yang, T., You, K., Fu, H. and Li, Y., “Improved Mechanical Design and Simplified Motion Planning of Hybrid Active and Passive Cable-Driven Segmented Manipulator with Coupled Motion,” 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2019) pp. 59785983.Google Scholar
Mu, Z., Yuan, H., Xu, W., Liu, T. and Liang, B., “A segmented geometry method for kinematics and configuration planning of spatial hyper-redundant manipulators,” IEEE Transactions on Systems, Man, and Cybernetics: Systems 50(5), 17461756 (2020).CrossRefGoogle Scholar
Kleff, S. and Li, N., “Robust motion planning in dynamic environments based on sampled-data hamilton–jacobi reachability,” Robotica 38(12), 21512172 (2020).CrossRefGoogle Scholar
Chirikjian, G. S., “A Continuum Approach to Hyper-Redundant Manipulator Dynamics,” Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’93), vol. 2 (1993) pp. 10591066.Google Scholar
Chirikjian, G. S. and Burdick, J. W., “A modal approach to hyper-redundant manipulator kinematics,” IEEE Trans. Robot. Autom. 10(3), 343354 (1994).CrossRefGoogle Scholar
Fahimi, F., Ashrafiuon, H. and Nataraj, C., “An improved inverse kinematic and velocity solution for spatial hyper-redundant robots,” IEEE Trans. Robot. Autom. 18(1), 103107 (2002).CrossRefGoogle Scholar
Fahimi, F., Ashrafiuon, H. and Nataraj, C., “Obstacle avoidance for spatial hyper-redundant manipulators using harmonic potential functions and the mode shape technique,” J. Field Robot. 20(1), 2333 (2003).Google Scholar
Sheng, L., Yiqing, W., Qingwei, C. and Weili, H., “A New Geometrical Method for the Inverse Kinematics of the Hyper-Redundant Manipulators,” 2006 IEEE International Conference on Robotics and Biomimetics (2006) pp. 13561359.Google Scholar
Mohamed, H. A. F., Samer Yahya, M. M. and Yang, S. S., “A New Inverse Kinematics Method for Three Dimensional Redundant Manipulators,” 2009 ICCAS-SICE (2009) pp. 15571562.Google Scholar
Aristidou, A. and Lasenby, J., “Fabrik: A fast, iterative solver for the inverse kinematics problem,” Graph Models 73(5), 243260 (2011).CrossRefGoogle Scholar
Liu, T., Yang, T., Xu, W., Mylonas, G. and Liang, B., “Efficient inverse kinematics and planning of a hybrid active and passive cable-driven segmented manipulator,” IEEE Trans. Syst. Man Cybern. Syst. 52(7), 42334246 (2022).CrossRefGoogle Scholar
Yuqi, W., Jinjiang, C., Ranran, G., Lei, Z. and Lei, W., “Study on the design and control method of a wire-driven waist rehabilitation training parallel robot,” Robotica 40(10), 34993513 (2022).CrossRefGoogle Scholar
Zhang, P.-Y., , T.-S. and Song, L.-B., “RBF networks-based inverse kinematics of 6r manipulator,” Int. J. Adv. Manuf. Technol. 26(1-2), 144147 (2005).CrossRefGoogle Scholar
Bin, Z., Rong, X. and Jun, W., “Kinematics Analysis of a Novel 7-dof Humanoid Manipulator for Table Tennis,” 2011 International Conference on Electronics, Communications and Control (ICECC) (2011) pp. 15241528.Google Scholar