Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-16T09:20:03.787Z Has data issue: false hasContentIssue false

Breaking physical dormancy of Cassia leptophylla and Senna macranthera (Fabaceae: Caesalpinioideae) seeds: water absorption and alternating temperatures

Published online by Cambridge University Press:  26 July 2012

Alexandre Souza de Paula
Affiliation:
Departamento de Botânica, Universidade Federal de Santa Catarina, Florianópolis88040-900, Brazil
Carolina Maria Luzia Delgado
Affiliation:
Departamento de Botânica, Universidade Federal de Santa Catarina, Florianópolis88040-900, Brazil
Maria Terezinha Silveira Paulilo
Affiliation:
Departamento de Botânica, Universidade Federal de Santa Catarina, Florianópolis88040-900, Brazil
Marisa Santos*
Affiliation:
Departamento de Botânica, Universidade Federal de Santa Catarina, Florianópolis88040-900, Brazil
*
*Correspondence Email: marint@mbox1.ufsc.br

Abstract

This study analysed the anatomical structure of the seed coats, identified the location of water uptake and evaluated the effects of alternating temperatures and heat treatment on the breaking of physical dormancy of two species of Fabaceae (Caesalpinioideae), Cassia leptophylla and Senna macranthera, from the Atlantic forest of Brazil. The seed coats of both species consisted of a cuticle (extra-hilar region) or remaining funicle region (hilar region), subcuticular layer, palisade layer with lignin, osteosclereids, sclerified parenchyma and white cells. The palisade layer was formed by elongated macrosclereids with a light line of callose. In thermally scarified seeds of C. leptophylla, water entered through the micropylar canal, and in S. macranthera the water entered through the lens. Alternating temperatures that ranged from 15 to 30°C did not break physical dormancy of either species; however, exposure to 50°C broke seed hardcoatedness, allowing the entrance of water in both species.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdo, M.T.V.N. and Paula, R.C. (2006) Seed germination of Croton floribundus – Spreng – Euphorbiaceae affected by temperature. Revista Brasileira de Sementes 28, 135140.CrossRefGoogle Scholar
Baskin, C.C. (2003) Breaking physical dormancy in seed – focusing on the lens. New Phytologist 158, 227238.CrossRefGoogle Scholar
Baskin, C.C. and Baskin, J.M. (2001) Seeds: ecology, biogeography and evolution of dormancy and germination. London, Academic Press.Google Scholar
Baskin, J.M., Baskin, C.C. and Li, X. (2000) Taxonomy, anatomy and evolution of physical dormancy in seeds. Plant Species Biology 15, 139152.CrossRefGoogle Scholar
Bevilacqua, L.R., Fossati, F. and Dondero, G. (1987) ‘Callose’ in the impermeable seed coat of Sesbania punicea. Annals of Botany 59, 335341.CrossRefGoogle Scholar
Bhalla, P.L. and Slaterry, H.D. (1984) Callose deposits make clover seeds impermeable to water. Annals of Botany 53, 125128.CrossRefGoogle Scholar
Bhattacharya, A. and Saha, P.K. (1990) Ultrastructure of seed coat and water uptake pattern of seeds during germination in Cassia sp. Seed Science and Technology 18, 97103.Google Scholar
Carvalho, P.E.R. (2006) Espécies arbóreas brasileiras. Brasília, Embrapa.Google Scholar
Costa, A.F. (1982) Farmacognosia. Lisboa, Fundação Calouste Gulbenkian.Google Scholar
Dell, B. (1980) Structure and function of the strophiolar plug in seeds of Albizia lophanta. American Journal of Botany 67, 556563.CrossRefGoogle Scholar
Deslow, J.S. (1980) Gap portioning among tropical rainforest trees. Biotropica 12, 4755.CrossRefGoogle Scholar
Fenner, M. and Thompson, K. (2005) The ecology of seeds. Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Franklin, G.L. (1945) Preparation of thin sections of synthetic resins and wood-resin composites, and a new macerating method for wood. Nature 155, 51.CrossRefGoogle Scholar
Gama-Arachchige, N.S., Baskin, J.M., Geneve, R.L. and Baskin, C.C. (2010) Identification and characterization of the water gap in physically dormant seeds of Geraniaceae, with special reference to Geranium carolinianum. Annals of Botany 105, 977990.CrossRefGoogle ScholarPubMed
Gerlach, D. (1984) Botanische mikrotechnik. Stuttgart, George Thieme Verlag.Google Scholar
Gunn, C.R. (1991) Fruits and seeds of genera in the subfamily Caesalpinioideae (Fabaceae). United States Department of Agriculture Technical Bulletin 1755, 1408.Google Scholar
Hu, X.W., Wang, Y.R., Wu, Y.P., Nan, Z.B. and Baskin, C.C. (2008) Role of the lens in physical dormancy in seeds of Sophora alopecuroides L. (Fabaceae) from north-west China. Australian Journal of Agricultural Research 59, 491497.CrossRefGoogle Scholar
Hu, X.W., Wang, Y.R., Wu, Y.P. and Baskin, C.C. (2009) Role of the lens in controlling water uptake in seeds of two Fabaceae (Papilionoideae) species treated with sulphuric acid and hot water. Seed Science Research 19, 7380.CrossRefGoogle Scholar
Jayasuriya, K.M.G.G., Baskin, J.M., Geneve, R.L. and Baskin, C.C. (2007) Morphology and anatomy of physical dormancy in Ipomoea lacunosa: identification of the water gap in seeds of Convolvulaceae (Solanales). Annals of Botany 100, 1321.CrossRefGoogle ScholarPubMed
Kondo, T. and Takahashi, K. (2004) Breaking of physical dormancy and germination ecology for seeds of Thermopsis lupinoides Link. Journal of the Japanese Society of Revegetation Technology 30, 163168.CrossRefGoogle Scholar
Kraus, J.E. and Arduin, M. (1997) Manual básico de métodos em morfologia vegetal. Rio de Janeiro, Universidade Rural do Rio de Janeiro.Google Scholar
Krischer, J.C. (2011) Tropical ecology. New Jersey, Princeton University Press.Google Scholar
Krzyzanowski, F.C., Neto, J.B.F., Mandarino, J.M.G. and Kaster, M. (2008) Evaluation of lignin content of soybean seed coat stored in a controlled environment. Revista Brasileira de Sementes 30, 220223.CrossRefGoogle Scholar
Ma, F., Cholewa, E., Mohamed, T., Peterson, C.A. and Jzen, M.J. (2004) Cracks in the palisade cuticle of soybean seed coats correlate with their permeability to water. Annals of Botany 94, 213228.CrossRefGoogle ScholarPubMed
Manning, J.C. and Van Staden, J. (1987) The role of the lens in seed imbibition and seedling vigour of Sesbania punicea (Cav.) Benth. (Leguminosae: Papilionoideae). Annals of Botany 59, 705713.Google Scholar
Morellato, L.P.C., Talora, D.C., Takahasi, A., Bencke, C.C., Romera, E. and Zipparro, V.P. (2000) Phenology of Atlantic rain forest trees: a comparative study. Biotropica 32, 811823.CrossRefGoogle Scholar
Morrison, D.A., McClay, K., Porter, C. and Rish, S. (1998) The role of the lens in controlling heat-induced breakdown of testa-imposed dormancy in native Australian legumes. Annals of Botany 82, 540.CrossRefGoogle Scholar
Mosele, M.M., Hansen, A.S., Schulz, M.H.A. and Martens, H.J. (2011) Proximate composition, histochemical analysis and microstructural localization of nutrients in immature and mature seeds of marama bean (Tylosema esculentum) – an underutilised food legume. Food Chemistry 127, 15551561.CrossRefGoogle Scholar
Myers, N., Mittermeier, R.A., Mittermeir, C.G., Fonseca, G.A. and Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature 403, 853858.CrossRefGoogle ScholarPubMed
O'Brien, T.P., Feder, N. and McCully, M.E. (1965) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59, 368373.CrossRefGoogle Scholar
Quinlivan, B.J. (1966) The relationship between temperature flutuations and the softening of hard seeds of some legumes species. Australian Journal of Agricultural Research 17, 625631.CrossRefGoogle Scholar
Rangaswany, N.S. and Nandakumar, L. (1985) Correlative studies on seed coat structure, chemical composition, and impermeability in the legume Rhynchosia minima. The Botanical Gazette 146, 501509.CrossRefGoogle Scholar
Ruzin, S.E. (1951) Plant microtechnique and microscopy. New York, Oxford University Press.Google Scholar
Serrato-Valenti, G., Cornara, L., Ferrando, M. and Modenesi, P. (1993) Structural and histochemical features of Stylosanthes scabra (Leguminosae; Papilionoideae) seed coat as related to water entry. Canadian Journal of Botany 71, 834840.CrossRefGoogle Scholar
Serrato-Valenti, G., De Vries, M. and Cornara, L. (1995) The hilar region in Leucaena leucocephala Lam. (De Wit) seed: structure, histochemistry and the role of the lens in germination. Annals of Botany 75, 569574.CrossRefGoogle Scholar
Smith, M., Wang, T., Ben, S.P. and Msanga, H.P. (2003) Dormancy and germination. pp. 149176in (Ed.) Tropical tree seed manual. Agriculture Handbook 721. Washington DC, USDA Forest Service.Google Scholar
Souza, F.H.D. and Marcos Filho, J. (2001) The seed coat as a modulator of seed–environment relationships in Fabaceae. Revista Brasileira de Botanica 24, 365375.Google Scholar
Souza, L.A. (1982) Estrutura do tegumento das sementes de Cassia cathartica Mart. (Leguminosae). Ciência e Cultura 34, 7174.Google Scholar
Souza, T.V., Voltolini, C.H., Santos, M. and Paulilo, M.T.S. (2012) Water absorption and dormancy-breaking requirements of physically dormant seeds of Schizolobium parahyba (Fabaceae – Caesalpinioideae). Seed Science Research 22, 169176.CrossRefGoogle Scholar
Torres, J.A.P., Santos, V.R., Schiavinato, M.A. and Maldonado, S. (2009) Biochemical, histochemical and ultrastructural characterization of Centrolobium robustum (Fabaceae) seeds. Hoehnea 36, 149160.CrossRefGoogle Scholar
Vázquez-Yanes, C. and Orozco-Segovia, A. (1982) Seed germination of a tropical rain forest pioneer tree (Heliocarpus donnellsmithii) in response to diurnal fluctuation of temperature. Physiologia Plantarum 56, 295298.CrossRefGoogle Scholar
Velloso, H.P., Rangel Filho, A.L.R. and Lima, J.C.A. (1991) Classificação da vegetação brasileira, adaptada a um sistema universal. Rio de Janeiro, IBGE/PROJETO RADAMBRASIL.Google Scholar
Villers, T.A. (1972) Seed dormancy. pp. 220282in (Ed.) Seed biology. New York, Academic Press.Google Scholar