Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-14T04:21:08.762Z Has data issue: false hasContentIssue false

Effects of retrieval schedules on the acquisition of explicit, automatized-explicit, and implicit knowledge of L2 collocations

Published online by Cambridge University Press:  17 April 2024

Nan Fang*
Affiliation:
School of Foreign Studies, Shaoguan University, Shaoguan, China
Irina Elgort
Affiliation:
Centre for Academic Development and School of Linguistics and Applied Language Studies, Victoria University of Wellington, Wellington, New Zealand
Zhuo Chen
Affiliation:
Department of General Courses, Guangzhou Panyu Polytechnic, Guangzhou, China
*
Corresponding author: Nan Fang; Email: fnfangnan@sgu.edu.cn

Abstract

This study investigates the effects of retrieval schedules on the acquisition of second language (L2) collocations. Chinese learners of English first studied 36 target verb-noun collocations using flashcards and form-meaning matching practice. Subsequently, the participants practiced retrieving the target collocations from memory, following either a massed (consecutive) or spaced schedule. After each retrieval attempt, corrective feedback was provided. The acquisition of L2 collocations was measured by near-immediate and 1-week delayed posttests that assessed explicit knowledge with an offline form recall task, automatized explicit knowledge using an online acceptability judgment task, and implicit knowledge with an online collocation priming (lexical decision) task. Results showed equal learning effects of massed and spaced retrieval at both posttests of explicit knowledge and the near-immediate posttest of automatized explicit knowledge. The spacing effect was observed for the implicit knowledge across the two posttests and the automatized explicit knowledge at the delayed posttest.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anthony, L. (2014). AntWordProfiler. Waseda University. https://www.laurenceanthony.net/softwareGoogle Scholar
Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59, 390412.CrossRefGoogle Scholar
Balota, D. A., Duchek, J. M., Sergent-Marshall, S. D., & Roediger, H. L. (2006). Does expanded retrieval produce benefits over equal-interval spacing? Explorations of spacing effects in healthy aging and early stage Alzheimer’s disease. Psychology and Aging, 21, 1931.CrossRefGoogle ScholarPubMed
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 148.CrossRefGoogle Scholar
Bjork, R. A. (1994). Memory and metamemory considerations in the training of human beings. In Metcalfe, J. & Shimamura, A. (Eds.), Metacognition: Knowing about knowing (pp. 185205). MIT Press.CrossRefGoogle Scholar
BNC Consortium. BNC XML edition. (2007). British National Corpus. http://www.natcorp.ox.ac.uk/Google Scholar
Boers, F., Dang, T.C.T., & Strong, B. (2017). Comparing the effectiveness of phrase-focused exercises: A partial replication of Boers, Demecheleer, Coxhead, and Webb (2014). Language Teaching Research, 21, 362380.CrossRefGoogle Scholar
Boers, F., Demecheleer, M., Coxhead, A., & Webb, S. (2014). Gauging the effects of exercises on verb–noun collocations. Language Teaching Research, 18, 5474.CrossRefGoogle Scholar
Cepeda, N. J., Vul, E., Rohrer, D., Wixted, J. T., & Pashler, H. (2008). Spacing effects in learning: A temporal ridgeline of optimal retention. Psychological Science, 19, 10951102.CrossRefGoogle ScholarPubMed
Chen, H., Cohen, P., & Chen, S. (2010). How big is a big odds ratio? Interpreting the magnitudes of odds ratios in epidemiological studies. Communications in Statistics - Simulation and Computation, 39, 860864.CrossRefGoogle Scholar
Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Routledge.Google Scholar
Craik, F.I.M., & Lockhart, R. S. (1972). Levels of processing: A framework for memory research. Journal of Verbal Learning and Verbal Behavior, 11, 671684.CrossRefGoogle Scholar
Craik, F.I.M., & Tulving, E. (1975). Depth of processing and the retention of words in episodic memory. Journal of Experimental Psychology, 104, 268294.CrossRefGoogle Scholar
Farvardin, M. T. (2019). Effects of spacing techniques on EFL learners’ recognition and production of lexical collocations. Indonesian Journal of Applied Linguistics, 9, 395403.CrossRefGoogle Scholar
Garnier, M. M., & Schmitt, N. (2015). The PHaVE List: A pedagogical list of phrasal verbs and their most frequent meaning senses. Language Teaching Research, 19, 645666.CrossRefGoogle Scholar
Hamann, S. (1990). Level of processing effects in conceptually driven implicit tasks. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16, 970977.Google Scholar
Hintzman, D. L. (1976). Repetition and memory. In Bower, G. H. (Ed.), Psychology of learning and motivation (Vol. 10, pp. 4791). Academic Press.CrossRefGoogle Scholar
Howarth, P. A. (1998). Phraseology and second language proficiency. Applied Linguistics, 19, 2444.CrossRefGoogle Scholar
Isbell, D. R., & Rogers, J. (2021). Measuring implicit and explicit learning and knowledge. In Winke, P. M. & Brunfaut, T. (Eds.), The Routledge handbook of second language acquisition and language testing (pp. 304313). Routledge, Taylor & Franics Group.Google Scholar
Jakubíček, M., Kilgarriff, A., Kovář, V., Rychlỳ, P., & Suchomel, V. (2013). The Tenten corpus family. In The 7th International Corpus Linguistics Conference CL (pp. 125127).Google Scholar
Jeong, H., & DeKeyser, R. (2023). Development of automaticity in processing L2 collocations: The roles of L1 collocational knowledge and practice condition. Studies in Second Language Acquisition, 45, 930954. https://doi.org/10.1017/S0272263122000547CrossRefGoogle Scholar
Jiang, N. (2012). Conducting reaction time research in second language studies. Routledge.Google Scholar
Karatas, N. B., Özemir, O., Lovelett, J. T., Demir, B., Erkol, K., Veríssimo, J., et al. (2021). Improving second language vocabulary learning and retention by leveraging memory enhancement techniques: A multidomain pedagogical approach. Language Teaching Research. Advance online publication. https://doi.org/10.1177/13621688211053525CrossRefGoogle Scholar
Karpicke, J. D., & Roediger, H. L. (2007). Expanding retrieval practice promotes short-term retention, but equally spaced retrieval enhances long-term retention. Journal of Experimental Psychology. Learning, Memory, and Cognition, 33, 704719.CrossRefGoogle ScholarPubMed
Keuleers, E., & Brysbaert, M. (2010). Wuggy: A multilingual pseudoword generator. Behavior Research Methods, 42, 627633.CrossRefGoogle ScholarPubMed
Kim, S. K., & Webb, S. (2022). The effects of spaced practice on second language learning: A meta-analysis. Language Learning, 72, 269319.CrossRefGoogle Scholar
Koval, N. G. (2022). Testing the reminding account of the lag effect in L2 vocabulary learning. Applied Psycholinguistics, 43, 140.CrossRefGoogle Scholar
Laufer, B., & Girsai, N. (2008). Form-focused instruction in second language vocabulary learning: A case for contrastive analysis and translation. Applied Linguistics, 29, 694716.CrossRefGoogle Scholar
Laufer, B., & Waldman, T. (2011). Verb‐noun collocations in second language writing: A corpus analysis of learners’ English. Language Learning, 61, 647672.Google Scholar
Lemhöfer, K., & Broersma, M. (2012). Introducing LexTALE: A quick and valid lexical test for advanced learners of English. Behavior Research Methods, 44, 325343.CrossRefGoogle ScholarPubMed
Lenth, R., Singmann, H., Love, J., Buerkner, P., & Herve, M. (2018). Emmeans: Estimated marginal means, aka least-squares means. R package. https://CRAN.R-project.org/package=emmeansGoogle Scholar
Lightbown, P. M. (2007). Transfer appropriate processing as a model for classroom second language acquisition. In Han, Z. (Ed.), Understanding second language process (pp. 2744). Multilingual Matters.CrossRefGoogle Scholar
Macis, M., Sonbul, S., & Alharbi, R. (2021). The effect of spacing on incidental and deliberate learning of L2 collocations. System, 103, 102649. https://doi.org/10.1016/j.system.2021.102649CrossRefGoogle Scholar
Matuschek, H., Kliegl, R., Vasishth, S., Baayen, H., & Bates, D. (2017). Balancing Type I error and power in linear mixed models. Journal of Memory and Language, 94, 305315.CrossRefGoogle Scholar
McIntosh, C. (Ed.) (2015). Oxford collocations dictionary (English-Chinese edition). Oxford University Press (China) / Foreign Language Teaching and Research Press.Google Scholar
McLaughlin, B. (1987). Theories of second-language learning. Routledge.Google Scholar
McNamara, T. P. (2005). Semantic priming: Perspectives from memory and word recognition. Psychology Press.CrossRefGoogle Scholar
Morris, C. D., Bransford, J. D., & Franks, J. J. (1977). Levels of processing versus transfer appropriate processing. Journal of Verbal Learning and Verbal Behavior, 16, 519533.CrossRefGoogle Scholar
Nakata, T., & Elgort, I. (2021). Effects of spacing on contextual vocabulary learning: Spacing facilitates the acquisition of explicit, but not tacit, vocabulary knowledge. Second Language Research, 37, 233260.CrossRefGoogle Scholar
Nakata, T., & Suzuki, Y. (2019). Effects of massing and spacing on the learning of semantically related and unrelated words. Studies in Second Language Acquisition, 41, 287311.CrossRefGoogle Scholar
Nation, I. S. P. (2012). The BNC/COCA word family lists. http://www.victoria.ac.nz/lals/about/staff/paul-nationGoogle Scholar
Nesselhauf, N. (2003). The use of collocations by advanced learners of English and some implications for teaching. Applied Linguistics, 24, 223242.CrossRefGoogle Scholar
Newell, B. R., & Andrews, S. (2004). Levels of processing effects on implicit and explicit memory tasks: Using question position to investigate the lexical-processing hypothesis. Experimental Psychology, 51, 132144.CrossRefGoogle ScholarPubMed
Northbrook, J., Allen, D., & Conklin, K. (2022). ‘Did you see that?’—The role of repetition and enhancement on lexical bundle processing in English learning materials. Applied Linguistics, 43, 453472.CrossRefGoogle Scholar
Obermeier, A., & Elgort, I. (2020). Deliberate and contextual learning of L2 idioms: The effect of learning conditions on online processing. System, 102428.Google Scholar
Öksüz, D., Brezina, V., & Rebuschat, P. (2021). Collocational processing in L1 and L2: The effects of word frequency, collocational frequency, and association. Language Learning, 71, 5598.CrossRefGoogle Scholar
Plonsky, L., & Derrick, D. J. (2016). A meta-analysis of reliability coefficients in second language research. The Modern Language Journal, 100, 538553.CrossRefGoogle Scholar
Roediger, H. L., & Karpicke, J. D. (2006). The power of testing memory: Basic research and implications for educational practice. Perspectives on Psychological Science, 1, 181210.CrossRefGoogle ScholarPubMed
Roediger, H. L., & Karpicke, J. D. (2011). Intricacies of spaced retrieval: A resolution. In Successful remembering and successful forgetting: A festschrift in honor of Robert A. Bjork (pp. 2347). Psychology Press.Google Scholar
Roediger, H. L., Weldon, M. S., & Challis, B. H. (1989). Explaining dissociations between implicit and explicit measures of retention: A processing account. In Varieties of memory and consciousness: Essays in honour of Endel Tulving (pp. 341). Lawrence Erlbaum Associates, Inc.Google Scholar
Rogers, J. (2023). Spacing effects in task repetition research. Language Learning, 73(2), 445474.CrossRefGoogle Scholar
Siyanova-Chanturia, A., & Van Lancker Sidtis, D. (2019). What online processing tells us about formulaic language. In Siyanova-Chanturia, A. & Pellicer-Sánchez, A. (Eds.), Understanding formulaic language: A second language acquisition perspective (pp. 3861). Routledge.Google Scholar
Schmidt, R. A., & Bjork, R. A. (1992). New conceptualizations of practice: Common principles in three paradigms suggest new concepts for training. Psychological Science, 3, 207218.CrossRefGoogle Scholar
Schmitt, N. (1998). Tracking the incremental acquisition of second language vocabulary: A longitudinal study. Language Learning, 48, 281317.CrossRefGoogle Scholar
Schmitt, N. (2022). Norbert Schmitt’s essential bookshelf: Formulaic language. Language Teaching, 56, 420431. https://doi.org/10.1017/S0261444822000039CrossRefGoogle Scholar
Soderstrom, N. C., & Bjork, R. A. (2015). Learning versus performance: An integrative review. Perspectives on Psychological Science, 10, 176199.CrossRefGoogle ScholarPubMed
Sonbul, S., & Schmitt, N. (2013). Explicit and implicit lexical knowledge: Acquisition of collocations under different input conditions. Language Learning, 63, 121159.CrossRefGoogle Scholar
Stengers, H., & Boers, F. (2015). Exercises on collocations: A comparison of trial-and-error and exemplar-guided procedures. Journal of Spanish Language Teaching, 2, 152164.CrossRefGoogle Scholar
Strong, B., & Boers, F. (2019a). The error in trial and error: Exercises on phrasal verbs. TESOL Quarterly, 53, 289319.CrossRefGoogle Scholar
Strong, B., & Boers, F. (2019b). Weighing up exercises on phrasal verbs: Retrieval versus trial-and-error practices. The Modern Language Journal, 103, 562579.CrossRefGoogle Scholar
Suzuki, Y. (2017). Validity of new measures of implicit knowledge: Distinguishing implicit knowledge from automatized explicit knowledge. Applied Psycholinguistics, 38, 12291261.CrossRefGoogle Scholar
Suzuki, Y., & DeKeyser, R. (2017). Effects of distributed practice on the proceduralization of morphology. Language Teaching Research, 21, 166188.CrossRefGoogle Scholar
Suzuki, Y., Nakata, T., & Dekeyser, R. (2019a). Optimizing second language practice in the classroom: Perspectives from cognitive psychology. The Modern Language Journal, 103, 551561.CrossRefGoogle Scholar
Suzuki, Y., Nakata, T., & Dekeyser, R. (2019b). The desirable difficulty framework as a theoretical foundation for optimizing and researching second language practice. The Modern Language Journal, 103, 713720.CrossRefGoogle Scholar
Szudarski, P., & Carter, R. (2016). The role of input flood and input enhancement in EFL learners’ acquisition of collocations. International Journal of Applied Linguistics, 26, 245265.CrossRefGoogle Scholar
Toomer, M., & Elgort, I. (2019). The development of implicit and explicit knowledge of collocations: A conceptual replication and extension of Sonbul and Schmitt (2013). Language Learning, 69, 783783.CrossRefGoogle Scholar
Tsai, M.-H. (2020). The effects of explicit instruction on L2 learners’ acquisition of verb–noun collocations. Language Teaching Research, 24, 138162.CrossRefGoogle Scholar
Ullman, M. T., & Lovelett, J. T. (2018). Implications of the declarative/procedural model for improving second language learning: The role of memory enhancement techniques. Second Language Research, 34, 3965.CrossRefGoogle Scholar
Van den Broek, G. S. E., Takashima, A., Segers, E., & Verhoeven, L. (2018). Contextual richness and word learning: Context enhances comprehension but retrieval enhances retention. Language Learning, 68, 546585.CrossRefGoogle Scholar
Veltre, M. T., Cho, K. W., & Neely, J. H. (2015). Transfer-appropriate processing in the testing effect. Memory, 23, 12291237.CrossRefGoogle ScholarPubMed
Webb, S., & Kagimoto, E. (2009). The effects of vocabulary learning on collocation and meaning. TESOL Quarterly, 43, 5577.CrossRefGoogle Scholar
Webb, S., & Kagimoto, E. (2011). Learning collocations: Do the number of collocates, position of the node word, and synonymy affect learning? Applied Linguistics, 32, 259276.CrossRefGoogle Scholar
Webb, S., Sasao, Y., & Ballance, O. (2017). The updated Vocabulary Levels Test: Developing and validating two new forms of the VLT. ITL - International Journal of Applied Linguistics, 168, 3369.CrossRefGoogle Scholar
Wolter, B., & Yamashita, J. (2018). Word frequency, collocational frequency, L1 congruency, and proficiency in L2 collocational processing: What accounts for L2 performance? Studies in Second Language Acquisition, 40, 395416.CrossRefGoogle Scholar
Wray, A. (2002). Formulaic language and the lexicon. Cambridge University Press.CrossRefGoogle Scholar
Yamagata, S., Nakata, T., & Rogers, J. (2023). Effects of distributed practice on the acquisition of verb-noun collocations. Studies in Second Language Acquisition, 45, 291317. https://doi.org/10.1017/S0272263122000225CrossRefGoogle Scholar
Yamashita, J., & Jiang, N. (2010). L1 Influence on the acquisition of L2 collocations: Japanese ESL users and EFL learners acquiring English collocations. TESOL Quarterly, 44, 647668.CrossRefGoogle Scholar
Supplementary material: File

Fang et al. supplementary material

Fang et al. supplementary material
Download Fang et al. supplementary material(File)
File 29.2 KB