Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-15T21:20:22.904Z Has data issue: false hasContentIssue false

Emphasis on trap activity in AlGaN/GaN HEMTs through temperature dependent pulsed I-V characteristics

Published online by Cambridge University Press:  15 November 2013

Alain Agboton
Affiliation:
IEMN-CNRS, UMR-8520, 59652 Villeneuve d’Ascq, France
Nicolas Defrance*
Affiliation:
IEMN-CNRS, UMR-8520, 59652 Villeneuve d’Ascq, France
Philippe Altuntas
Affiliation:
IEMN-CNRS, UMR-8520, 59652 Villeneuve d’Ascq, France
François Lecourt
Affiliation:
IEMN-CNRS, UMR-8520, 59652 Villeneuve d’Ascq, France
Yannick Douvry
Affiliation:
IEMN-CNRS, UMR-8520, 59652 Villeneuve d’Ascq, France
Virginie Hoel
Affiliation:
IEMN-CNRS, UMR-8520, 59652 Villeneuve d’Ascq, France
Ali Soltani
Affiliation:
IEMN-CNRS, UMR-8520, 59652 Villeneuve d’Ascq, France
Jean-Claude De Jaeger
Affiliation:
IEMN-CNRS, UMR-8520, 59652 Villeneuve d’Ascq, France
Get access

Abstract

This paper reports on the temperature dependent threshold voltage analysis of AlGaN/GaN High electron mobility transistors (HEMTs) in order to investigate the trap effects occurring in these devices. Measurements are performed in pulse configuration to emphasize the gate-lag and drain-lag effects involving current collapses. A quantitative extraction of the interface traps density is performed through the observation of the pinch-off voltage shifts in cold bias conditions. Additionally, a thermally activated energy level of 0.25 eV is evaluated whatever the bias condition. It is also shown that the trap density increases drastically when the drain is biased, limiting the performance of AlGaN/GaN devices through drain-lag effect.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wu, Y.F., Saxler, A., Moore, M., Smith, R.P., Sheppard, S., Chavarkar, P.M., Wisleder, T., Mishra, U.K., Parikh, P., IEEE Electron Device Lett. 25, 117 (2004)CrossRef
Ducatteau, D., Minko, A., Hoel, V., Morvan, E., Delos, E., Grimbert, B., Lahreche, H., Bove, P., Gaquiere, C., De Jaeger, J.C., Delage, S., Electron. Lett. 43, 71 (2007)
Binari, S.C., Ikossi, K., Roussos, J.A., Kruppa, W., Park, D., Dietrich, H.B., Koleske, D.D., Wickenden, A.E., Henry, R.L., IEEE Trans. Electron Devices 48, 465 (2001)CrossRef
Mizutani, T., Okino, T., Kawada, K., Ohno, Y., Kishimoto, S., Maezawa, K., Phys. Status Solidi A 200, 195 (2003)CrossRef
Schroder, D.K., Semiconductor Material and Device Charaterization, 3rd edn. (John Wiley & Sons, Inc., Hoboken, New Jersey, 2006)Google Scholar
Ambacher, O., Smart, J., Shealy, J.R., Weimann, N.G., Chu, K., Murphy, M., Schaff, W.J., Eastman, L.F., Dimitrov, R., Wittmer, L., Stutzmann, M., Rieger, W., Hilsenbeck, J., J. Appl. Phys. 85, 3222 (1999)CrossRef
Nepal, N., Li, J., Nakarmi, M.L., Lin, J.Y., Jianga, H.X., Appl. Phys. Lett. 87, 242104 (2005)CrossRef
Kordoš, P., Donoval, D., Florovič, M., Kovč, J., Gregušov, D., Appl. Phys. Lett. 92, 152113 (2008)CrossRef
Varshni, Y.P., Physica (Utrecht) 34, 149 (1967)CrossRef
Arehart, A.R., Corrion, A., Poblenz, C., Speck, J.S., Mishra, U.K., Ringel, S.A., Appl. Phys. Lett. 93, 112101 (2008)CrossRef
Fang, Z.Q., Look, D.C., Polenta, L., J. Phys.: Condens. Matter 14, 13061 (2002)
Soh, C.B., Chua, S.J., Lim, H.F., Chi, D.Z., Liu, W., Tripathy, S., J. Phys.: Condens. Matter 16, 6305 (2004)
Tokuda, Y., Matsuoka, Y., Ueda, H., Ishiguro, O., Soejima, N., Kachi, T., Superlattice Microstruct. 40, 268 (2006)CrossRef