Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-13T11:18:35.213Z Has data issue: false hasContentIssue false

Gene expression and target-site mutations are associated with resistance to ALS inhibitors in annual sedge (Cyperus compressus) biotypes from Georgia

Published online by Cambridge University Press:  26 August 2020

Jialin Yu
Affiliation:
Professor, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
Patrick E. McCullough*
Affiliation:
Professor, Crop and Soil Sciences Department, University of Georgia, Griffin, GA, USA
J. Scott McElroy
Affiliation:
Professor, Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, USA
David Jespersen
Affiliation:
Assistant Professor, Crop and Soil Sciences Department, University of Georgia, Griffin, GA, USA
Donn G. Shilling
Affiliation:
Professor, Crop and Soil Sciences Department, University of Georgia, Athens, GA, USA
*
Author for correspondence: Patrick E. McCullough, Crop and Soil Sciences Department, University of Georgia, 1109 Experiment Street, Griffin, GA30223. (Email: pmccull@uga.edu)

Abstract

Annual sedge (Cyperus compressus L.) populations with resistance to halosulfuron were identified in turfgrass at two new locations in Georgia. Research was conducted to evaluate (1) resistance levels to two acetolactate synthase (ALS) inhibitors, (2) ALS enzyme susceptibility, (3) genetic differences associated with resistance, and (4) differential levels of ALS gene expression in these biotypes. In dose–response experiments, the biotypes were >160 times resistant to halosulfuron but only 12 times more resistant to imazaquin compared with a susceptible biotype. In vitro enzyme assays indicated that resistant (R) biotypes required 6.1-fold greater concentrations of imazaquin to reduce ALS activity 50% compared with the susceptible (S) biotype. Both R biotypes had a similar Pro-197-Ser amino acid substitution in the ALS gene that confers resistance to sulfonylureas. Compared with the S biotype, R biotypes had 4.4 times higher ALS gene expression than the S biotype. No differences in gene copy number were found between any biotypes for the ALS gene. Overall, ALS-resistant C. compressus selected by halosulfuron use in turfgrass may be exhibiting partial susceptibility to imazaquin but complete resistance to sulfonylureas. Differential levels of susceptibility to ALS inhibitors for these biotypes are associated with the Pro-197-Ser substitution and enhanced expression of the ALS gene.

Type
Research Article
Copyright
© Weed Science Society of America, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Vipan Kumar, Kansas State University

References

Anonymous (2008) Dismiss® South herbicide product label. Philadelphia, PA: FMC Corporation Agricultural Products Group. 5 pGoogle Scholar
Anonymous (2011a) Pennant Magnum® herbicide product label. Greensboro, NC: Syngenta Crop Protection, LLC. 54 pGoogle Scholar
Anonymous (2011b) Ronstar® 50 WSP herbicide product label. Research Triangle Park, NC: Bayer Environmental Science. 9 pGoogle Scholar
Anonymous (2015) Bentazon 4 herbicide product label. Durham, NC: Tacoma Ag, LLC. 21 pGoogle Scholar
Blum, RR, Isgrigg, J, Yelverton, FH (2000) Purple (Cyperus rotundus) and yellow nutsedge (C. esculentus) control in bermudagrass (Cynodon dactylon) turf. Weed Sci 14:357365Google Scholar
Busi, R, Vidotto, F, Fischer, AJ, Osuna, MD, DePrado, R, Ferrero, A (2006) Patterns of resistance to ALS herbicides in smallflower umbrella sedge (Cyperus difformis) and ricefield bulrush (Schoenpolectus mucronatus). Weed Technol 20:10041014CrossRefGoogle Scholar
Charest, PJ, Hattori, J, DeMoor, J, Iyer, VN, Miki, BL (1990) In vitro study of transgenic tobacco expressing Arabidopsis wild type and mutant acetohydroxyacid synthase genes. Plant Cell Rep 8:643646CrossRefGoogle ScholarPubMed
Christopher, JT, Powles, SB, Holtum, JAM (1992) Resistance to acetolactate synthase-inhibiting herbicides in annual ryegrass (Lolium rigidum) involves at least two mechanisms. Plant Physiol 100:19091913CrossRefGoogle ScholarPubMed
Corbett, CL, François, JT (2006) Detection of resistance to acetolactate synthase inhibitors in weeds with emphasis on DNA-based techniques: a review. Pest Manag Sci 62:584597CrossRefGoogle ScholarPubMed
Dayan, FE, Owens, DK, Corniani, N, Silva, FML, Watson, SB, Howell, J, Shaner, DL (2015) Biochemical markers and enzyme assays for herbicide mode of action and resistance studies. Weed Sci 63:2363CrossRefGoogle Scholar
D’Haene, B, Vandesompele, J, Hellemans, J (2010) Accurate and objective copy number profiling using real-time quantitative PCR. Methods 50:262270CrossRefGoogle ScholarPubMed
Eberlein, CV, Guttieri, MJ, Berger, PH, Fellman, JK, Belknap, WR (1999) Physiological consequences of mutation for ALS-inhibitor resistance. Weed Sci 47:383392CrossRefGoogle Scholar
Gaines, TA, Barker, AL, Patterson, EL, Westra, P, Westra, EP, Wilson, RG, Jha, P, Kumar, V, Kniss, AR (2016) EPSP gene copy number and whole-plant glyphosate resistance level in Kochia scoparia. PLoS ONE 11(12): e0168295CrossRefGoogle Scholar
Gaines, TA, Zhang, W, Wang, D, Bukun, B, Chisholm, ST, Shaner, DL, Nissen, SJ, Patzoldt, WL, Tranel, PJ, Culpepper, AS, Grey, TL, Webster, TM, Vencill, WK, Sammons, RD, Jiang, J, et al. (2010) Gene amplification confers glyphosate resistance in Amaranthus palmeri. Proc Natl Acad Sci USA 107:10291034CrossRefGoogle ScholarPubMed
Guttieri, MJ, Eberlein, CV, Thill, DC (1995) Diverse mutations in the acetolactate synthase gene confer chlorsulfuron resistance in kochia (Kochia scoparia) biotypes. Weed Sci 43:175178CrossRefGoogle Scholar
Heap, I (2015) The International Survey of Herbicide Resistant Weeds. www.weedscience.com. Accessed May 5, 2020Google Scholar
Jin, T, Liu, J, Huan, Z, Wu, C, Bi, Y, Wang, J (2011) Molecular basis for resistance to tribenuron in shepherd’s purse. Pestic Biochem Physiol 100:160164CrossRefGoogle Scholar
Kamrozzaman, MM, Khan, MAH, Ahmed, S, Quddus, AF (2016) Effect of herbicide in controlling broadleaf and sedge weeds in wheat (Triticum aestivum L.). The Agriculturists 13:5461CrossRefGoogle Scholar
Kuhlemeier, C (1992) Transcriptional and post-transcriptional regulation of gene expression in plants. Pages 114in Schilperoort, RA, Dure, L, eds. 10 Years Plant Molecular Biology. Dordrecht, Netherlands: SpringerGoogle Scholar
Kuk, YI, Kim, KH, Kwon, OD, Lee, DJ, Burgos, NR, Jung, S, Guh, JO (2004) Cross- resistance pattern and alternative herbicides for Cyperus difformis resistant to sulfonylurea herbicides in Korea. Pest Manag Sci 60:8594CrossRefGoogle ScholarPubMed
Legere, A, Stevenson, FC, Beckie, HJ, Warwick, SI, Johnson, EN, Hrynewich, B, Lozinski, C (2013) Growth characterization of kochia (Kochia scoparia) with substitutions at Pro197 or Trp574 conferring resistance to acetolactate synthase–inhibiting herbicides. Weed Sci 61:267276CrossRefGoogle Scholar
Li, M, Uy, Q, Han, H, Vila-Aiub, M, Powles, SB (2012) ALS herbicide resistance mutations in Raphanus raphanistrum: evaluation of pleiotropic effects on vegetative growth and ALS activity. Pest Manag Sci 69:689695CrossRefGoogle ScholarPubMed
Liu, W, Yuan, G, Du, L, Guo, W, Li, L, Bi, Y, Wang, J (2015) A novel Pro197Glu substitution in acetolactate synthase (ALS) confers broad-spectrum resistance across ALS inhibitors. Pest Biochem Physiol 117:3138CrossRefGoogle ScholarPubMed
McCullough, PE, de Barreda, DG, Reed, TV, Yu, J, Waltz, FC (2014) Sod harvesting intervals of four warm-season turfgrasses for halosulfuron and sulfentrazone. Weed Technol 28:4757CrossRefGoogle Scholar
McCullough, PE, McElroy, JS, Yu, J, Zhang, H, Miller, TB, Chen, S, Johnston, CR, Czarnota, MA (2016b) ALS-resistant spotted spurge (Chamaesyce maculata) confirmed in Georgia. Weed Sci 64:216222CrossRefGoogle Scholar
McCullough, PE, Yu, J, Brosnan, JT, Breeden, GK (2012) Relative tolerance of perennial ryegrass (Lolium perenne) and tall fescue (Festuca arundinacea) to flucarbazone. Weed Technol 26:673678CrossRefGoogle Scholar
McCullough, PE, Yu, J, McElroy, JS, Chen, S, Zhang, H, Grey, TL, Czarnota, MA (2016a) ALS-resistant annual sedge (Cyperus compressus) confirmed in turfgrass. Weed Sci 64:3341CrossRefGoogle Scholar
Merotto, A, Jasieniuk, M, Fischer, AJ (2010) Distribution and cross-resistance patterns of ALS-inhibiting herbicide resistance in smallflower umbrella sedge (Cyperus difformis). Weed Sci 58:2229CrossRefGoogle Scholar
Merotto, A Jr, Jasieniuk, M, Osuna, MD, Vidotto, F, Ferrero, A, Fisher, AJ (2009) Cross-resistance to herbicides of five ALS-inhibiting groups and sequencing of the ALS gene in Cyperus difformis. J Agric Food Chem 57:13891398CrossRefGoogle ScholarPubMed
Ortiz, A, Torres, S, Quintana, Y, Lopez, A (2015) Primer reporte de resistencia de Cyperus odoratus al herbicida pirazosulfuron-etilo. Bioagro 27:4550Google Scholar
Panozzo, S, Scarabel, L, Tranel, PJ, Sattin, M (2013) Target-site resistance to ALS inhibitors in the polyploid species Echinochloa crus-galli. Pestic Biochem Physiol 105:93101CrossRefGoogle Scholar
Powles, SB, Yu, Q (2010) Evolution in action: plants resistant to herbicides. Annu Rev Plant Biol 61:317347CrossRefGoogle ScholarPubMed
Reddi, CS, Reddi, NS (2009) Pollen production in some anemophilous angiosperms. Grana 25:5561CrossRefGoogle Scholar
Riar, DS, Norsworthy, JK, Srivastava, V, Nandula, V, Bond, JA, Scott, RC (2013) Physiological and molecular basis of acetolactate synthase-inhibiting herbicide resistance in barnyardgrass (Echinochloa crus-galli). J Agric Food Chem 61:278289CrossRefGoogle Scholar
Riar, DS, Tehranchian, P, Norsworthy, JK, Nandula, V, McElroy, S, Srivastava, V, Chen, S, Bond, JA, Scott, RC (2015) Acetolactate synthase-inhibiting herbicide resistant rice flatsedge (Cyperus iria): cross resistance and molecular mechanisms of resistance. Weed Sci 63:748757CrossRefGoogle Scholar
Saari, LL, Cotterman, JC, Primiani, MM (1990) Mechanism of sulfonylurea herbicide resistance in the broadleaf weed, Kochia scoparia. Plant Physiol 93:5561CrossRefGoogle ScholarPubMed
Schmittgen, TD, Livak, KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nature Protocols 3:11011108CrossRefGoogle Scholar
Shaner, DL (1999) Resistance to acetolactate synthase (ALS) inhibitors in the United States: history, occurrence, detection, and management. J Weed Sci Technol 44:405411CrossRefGoogle Scholar
Sharma, OP, Shiam, R (1981) Inflorescence anatomy of cyprerus compressus. Curr Sci 50:10001001Google Scholar
Sidhu, SS, Yu, J, McCullough, PE (2014) Nicosulfuron absorption, translocation, and metabolism in annual bluegrass and four turfgrass species. Weed Sci 62:433440CrossRefGoogle Scholar
Tal, A, Rubin, B (2004) Occurrence of resistant Chrysanthemum coronarium to ALS inhibiting herbicides in Israel. Resistant Pest Management Newsletter 13:3133Google Scholar
Tehranchian, P, Norsworthy, JK, Bagavathiannan, MV, Riar, DS (2015a) ALS-inhibitor resistant in yellow nutsedge: II-physiognomy and photoperiodic response. Weed Sci 63:819827CrossRefGoogle Scholar
Tehranchian, P, Norsworthy, JK, Nandula, V, McElroy, S, Chen, S, Scott, RC (2014) First report of resistance to acetolactate-synthase-inhibiting herbicides in yellow nutsedge (Cyperus esculentus): confirmation and characterization. Pest Manag Sci 71:12741280CrossRefGoogle ScholarPubMed
Tehranchian, P, Riar, DS, Norsworthy, JK, Nandula, V, McElroy, S, Chen, S, Scott, R (2015b) ALS-resistant smallflower umbrella sedge in Arkansas rice: physiological and molecular basis of resistance. Weed Sci 63:561568CrossRefGoogle Scholar
Teuton, TC, Main, CL, Sorochan, JC, McElroy, JS, Hart, WE, Sams, CE, Mueller, TC (2008) Hybrid bermudagrass tolerance to preemergence and postemergence herbicides. Weed Technol 22:240244CrossRefGoogle Scholar
Tranel, PJ, Wright, TR (2002) Resistance of weeds to ALS-inhibiting herbicides: what have we learned. Weed Sci 50:700712CrossRefGoogle Scholar
Tranel, PJ, Wu, C, Sadeque, A (2017) Target-site resistances to ALS and PPO inhibitors are linked in waterhemp (Amaranthus tuberculatus). Weed Sci 65:48CrossRefGoogle Scholar
Uchino, A, Watanabe, H (2002) Mutations in the acetolactate synthase genes of sulfonylurea-resistant biotypes of Lindernia spp. Weed Biol Mang 2:104109CrossRefGoogle Scholar
Untergasser, A, Cutcutache, L, Koressaar, T, Ye, J, Faircloth, BC, Remm, M, Rozen, SG (2012) Primer3–new capabilities and interfaces. Nucleic Acid Res 40:e115CrossRefGoogle ScholarPubMed
Vencill, WK, Richburg, JS III, Wilcut, JW, Hawf, LR (1995) Effect of MON-12037 on purple (C. rotundus) and yellow (C. esculentus) nutsedge. Weed Technol 9:148152CrossRefGoogle Scholar
Volenberg, DS, Stoltenberg, DE (2002) Giant foxtail outcrossing and inheritance of resistance to acetyl-coenzyme A carboxylase inhibitors. Weed Sci 50:622627CrossRefGoogle Scholar
Wang, Q, Ge, L, Zhao, N, Zhang, L, You, L, Wang, D, Liu, W, Wang, J (2019). A Trp-574-Leu mutation in the acetolactate synthase (ALS) gene of Lithospermum arvense L. confers broad-spectrum resistance to ALS inhibitors. Pest Biochem Physiol 158:1217CrossRefGoogle ScholarPubMed
Webster, TM, Grey, TL (2014) Halosulfuron reduced purple nutsedge tuber production and viability. Weed Sci 62:637646CrossRefGoogle Scholar
Whaley, CM, Wilson, HP, Westwood, JH (2006) ALS resistance in several smooth pigweed biotypes. Weed Sci 54:828832CrossRefGoogle Scholar
Wiersma, PA, Schiemann, MG, Condi, JA, Crosby, WL, Molone, MM (1989) Isolation, expression, and phylogenetic inheritance of an acetolactate synthase gene from Brassica napus. Mol Gen Genet 219:413420CrossRefGoogle ScholarPubMed
Wise, AM, Grey, TL, Prostko, EP, Vencill, WK (2009) Establishing the geographical distribution and level of acetolactate synthase resistance of Palmer amaranth (Amaranthus palmeri) accessions in Georgia. Weed Sci 23:214220Google Scholar
Yang, Q, Deng, W, Wang, S, Liu, H, Li, X, Zheng, M (2018) Effects of resistance mutations of pro197, asp376 and trp574 on the characterization of acetohydroxyacid synthase (AHAS) isozymes. Pest Manag Sci 74:10.1002/PS.4889CrossRefGoogle Scholar
Yu, J, Boyd, NS (2017) Weed control with and strawberry tolerance to herbicides applied through drip irrigation. Weed Technol 31:870876CrossRefGoogle Scholar
Yu, J, Sharpe, SS, Boyd, NS (2020) PRE herbicides and POST halosulfuron for purple nutsedge control in tomato grown in plasticulture systems. Weed Technol, 10.1017/wet.2020.24CrossRefGoogle Scholar
Yu, Q, Han, H, Powles, SB (2008) Mutations of the ALS gene endowing resistance to ALS-inhibiting herbicides in Lolium rigidum populations. Pest Manag Sci 64:12291236CrossRefGoogle ScholarPubMed
Yu, Q, Nelson, JK, Zheng, MQ, Jackson, M, Powles, SB (2007) Molecular characterisation of resistance to ALS-inhibiting herbicides in Hordeum leporinum biotypes. Pest Manag Sci 63:918927CrossRefGoogle ScholarPubMed
Yu, Q, Powles, SB (2014) Resistance to AHAS inhibitor herbicides: current understanding. Pest Manag Sci 70:13401350CrossRefGoogle ScholarPubMed
Yu, Q, Zhang, XQ, Hashem, A, Walsh, MJ, Powles, SB (2003) ALS gene proline (197) mutation confer ALS herbicide resistance in eight separated wild radish populations. Weed Sci 51:831838CrossRefGoogle Scholar
Yuan, JS, Tranel, PJ, Stewart, CN (2007) Non-target-site herbicide resistance: a family business. Trends Plant Sci 12:613CrossRefGoogle ScholarPubMed
Zhang, Y, Xu, Y, Wang, S, Li, X, Zheng, (2018) Resistance mutations of pro197, asp376 and trp574 in the acetohydroxyacid synthase (AHAS) affect pigments, growths, and competitiveness of Descurainia sophia. Sci Rep 7:16380CrossRefGoogle Scholar
Zheng, DM, Kruger, GR, Singh, S, Davis, VM, Tranel, PJ, Weller, SC, Johnson, WG (2011) Cross-resistance of horseweed (Conyza canadensis) populations with three different ALS mutations. Pest Mang Sci 67:14861492CrossRefGoogle ScholarPubMed
Supplementary material: File

Yu et al. supplementary material

Tables S1 and S2

Download Yu et al. supplementary material(File)
File 14.3 KB