Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-19T12:20:33.686Z Has data issue: false hasContentIssue false

Effect of Herbicides on Field Violet (Viola arvensis) in Direct-Seeded Spring Wheat

Published online by Cambridge University Press:  20 January 2017

Rory F. Degenhardt*
Affiliation:
Agriculture, Food and Nutritional Science Department, University of Alberta, Edmonton, AB, Canada T6G 2P5
Dean Spaner
Affiliation:
Agriculture, Food and Nutritional Science Department, University of Alberta, Edmonton, AB, Canada T6G 2P5
K. Neil Harker
Affiliation:
Agriculture and Agri-Food Canada, Lacombe Research Centre, Lacombe, AB, Canada T4L 1W1
William R. Mcgregor
Affiliation:
Dow AgroSciences Canada Inc., Edmonton, AB, Canada T6E 5Z8
Linda M. Hall
Affiliation:
University of Alberta and Alberta Agriculture, Food and Rural Development, Edmonton, AB, Canada T6G 2P5
*
Corresponding author's E-mail: rfd014@mail.usasu.ca

Abstract

The agrestal field violet, a pervasive weed in Europe, has been identified in reduced-tillage cereal fields in Alberta. The efficacy of herbicides in direct-seeded spring wheat was assessed on natural field violet infestations in Alberta in 2002 and 2003. Only fluroxypyr + 2,4-D, applied postemergence, provided control of field violet in 2002 when rainfall was limiting. Over both years, this herbicide combination reduced biomass by 59 to 69% and plant density by 83 to 91%, relative to nontreated plots. The herbicides metsulfuron, sulfosulfuron, and thifensulfuron + tribenuron only suppressed weed growth under drought conditions in 2002 but controlled the weed in 2003 when rainfall was greater, reducing plant density by 82 to 92% and rendering remaining plants sterile. Suppression was also observed with MCPA + mecoprop + dicamba in 2002 and 2003 and with metribuzin only in 2003. Effective control of field violet was conferred by a pre–crop emergence application of glyphosate at 445 g ae/ha in 2003, the only year that this treatment was evaluated. Activity of herbicides on three- to four-leaf seedlings was also evaluated in a greenhouse dose– response assay. All herbicides had greater efficacy in the greenhouse, and those that provided control in situ reduced field violet dry weight by 85% at less than the recommended rate used in field experiments. Management of field violet is possible with herbicides registered for use on spring wheat in Alberta. However, the weed does not appear to cause significant crop production losses; hence, herbicide selection should be based on knowledge of all weed species present within the field.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Agriculture and Agri-Food Canada; Ecological Stratification Working Group. 1995. A National Ecological Framework for Canada. Ottawa, ON, Canada: Agriculture and Agri-Food Canada, Research Branch, Centre for Land and Biological Resources Research, and Environment Canada, State of the Environment Directorate, Ecozone Analysis Branch.Google Scholar
Agriculture and Agri-Food Canada. 1999. Canadian Ecodistrict Climate Normals 1961–1990: Web page: http://sis.agr.gc.ca/cansis/nsdb/ecostrat/district/climate.html. Accessed: January 11, 2003.Google Scholar
Alberta Soil Information Centre. 2001. AGRASID 3.0: Agricultural Region of Alberta Soil Inventory Database (Version 3.0):. Brierly, J. A., Martin, T. C., and Speiss, D. J., eds. Edmonton, AB, Canada: Research Branch, Agriculture and Agri-Food Canada and Conservation and Development Branch, Alberta Agriculture, Food and Rural Development.Google Scholar
Alex, J. F. and Switzer, C. M. 1976. Ontario Weeds: Descriptions, Illustrations and Keys to their Identification. Guelph, ON, Canada: Ontario Agricultural College. 200 p.Google Scholar
Ali, S. 2003. Crop Protection 2003. Agdex 606-1. Edmonton, AB, Canada: Alberta Agriculture, Food and Rural Development. 520 p.Google Scholar
Bachthaler, V. G., Neuner, F., and Kees, H. 1986. Development of the field pansy (Viola arvensis Murr.) in dependence of soil conditions and agricultural management. Nachrichtenbl. Pflanzenschutz DDR 38:3341.Google Scholar
Bailey, W. A. and Wilson, H. P. 2003. Control of Italian ryegrass (Lolium multiflorum) in wheat (Triticum aestivum) with postemergence herbicides. Weed Technol. 17:523542.CrossRefGoogle Scholar
Baskin, J. M. and Baskin, C. C. 1995. Variation in the annual dormancy cycle in buried seeds of the weedy winter annual Viola arvensis . Weed Res. 35:353362.CrossRefGoogle Scholar
Becker, R., Ulrich, A., Hedtke, C., and Honermeier, B. 2001. Impact of transgenic herbicide resistant rape on the agroecosystem. Bundesgesundheitsblatt-Gesundheitsforschung-Gesundheitsschutz 44:159167.CrossRefGoogle Scholar
Bedmar, F., Castano, J., Bacchiani, C., Barcelonna, M., Diharce, G., Perdigon, J., and Perez, G. 1995. Evaluation of herbicides for weed control in phalaris (Phalaris aquatica) seed production. Tests Agrochem. Cultiv. 16:3839.Google Scholar
Bedmar, F., Leaden, M. I., Castano, J., Gonzalez, G., Martoccia, M., and Ramos, G. 1996. Evaluation of sulfonylurea herbicides for weed control in cocksfoot (Dactylis glomerata). Tests Agrochem. Cultiv. 17:3233.Google Scholar
Blackshaw, R. E., Moyer, J. R., and Kozub, G. C. 1994. Efficacy of downy brome herbicides as influenced by soil properties. Can. J. Plant Sci. 74:177183.CrossRefGoogle Scholar
Blackshaw, R. E., Semach, G., and Entz, T. 1998. Postemergence control of foxtail barley (Hordeum jubatum) seedlings in spring wheat and flax. Weed Technol. 12:610616.CrossRefGoogle Scholar
Blackshaw, R. E., Semach, G., Li, X., Donovan, J. T O&apos, and Harker, K. N. 2000. Tillage, fertiliser and glyphosate timing effects on foxtail barley (Hordeum jubatum) management in wheat. Can. J. Plant Sci. 80:655660.CrossRefGoogle Scholar
Boström, U., Milberg, P., and Fogelfors, H. 2003. Yield loss in spring-sown cereals related to the weed flora in the spring. Weed Sci. 51:418424.CrossRefGoogle Scholar
Bouma, E., Van Der, W. R. Y., and Floot, H. W. G. 1996. Influence of weather parameters on efficacy of reduced dosages of herbicides in winter wheat. EPPO/OEPP Bull. 26:651657.CrossRefGoogle Scholar
Bourdot, G. W., Hurrell, G. A., and Saville, D. J. 1998. Weed flora of cereal crops in Canterbury, New Zealand. N. Z. J. Crop Hortic. Sci. 26:233247.CrossRefGoogle Scholar
Broome, M. L., Triplett, J. G. B., and Clarence, J. C. E. 2000. Vegetation control for no-tillage corn planted into warm-season perennial species. Agron. J. 92:12481255.CrossRefGoogle Scholar
Bruce, J. A., Boyd, J., Penner, D., and Kells, J. J. 1996. Effect of growth stage and environment on foliar absorption, translocation, metabolism, and activity of nicosulfuron in quackgrass (Elytrigia repens). Weed Sci. 44:447454.CrossRefGoogle Scholar
[CASCC] Canadian Agricultural Services Coordinating Committee. 1998. ECW/EDI ID: 98FV31ET. Research Report. Expert Committee on Weeds, Eastern Section. Ottawa, ON, Canada: Research Branch, Agriculture Canada.Google Scholar
Christie, M. S. and Cornwell, M. J. 1984. DPX-T6376—a new herbicide for broadleaf weed control in cereals. Proc. N. Z. Weed Pest Control Conf. 37:272273.Google Scholar
Das, T. K. and Aduraju, N. T. 2002. Optimization of metribuzin use for controlling isoproturon-resistant Phalaris minor Retz. in wheat. Pestic. Res. J. 14:4756.Google Scholar
Davies, D. H. K. and Wilson, G. W. 1997. Activity improvement in metsulfuron-methyl, triasulfuron and tribenuron-methyl with novel spray adjuvants. Asp. Appl. Biol. 48:129134.Google Scholar
Deshpande, S. and Hall, J. C. 2000. Auxinic herbicide resistance may be modulated at the auxin-binding site in wild mustard (Sinapis arvensis L.): a light scattering study. Pestic. Biochem. Physiol. 66:4148.CrossRefGoogle Scholar
Doohan, D. J. 1985. Cereal Weed Survey. Adaptive Research Reports: 7. Fredericton, NB, Canada: Department of Agriculture, Plant Industry Branch. Pp. 7677.Google Scholar
Doohan, D. J. and Monaco, T. J. 1992. The biology of Canadian weeds. 99. Viola arvensis Murr. Can. J. Plant Sci. 72:187201.CrossRefGoogle Scholar
Doohan, D. J., Monaco, T. J., and Sheets, T. J. 1991. Factors influencing germination of field violet (Viola arvensis). Weed Sci. 39:601606.CrossRefGoogle Scholar
Dovydaitis, V. 1997. Effect of the herbicides Satis 18 WP and Logran Ekstra 62 WG on spring barley weediness and yield. in Integrated Plant Protection: Achievements and Problems. Proceedings of the Scientific conference Devoted to the 70th Anniversary of Plant Protection Science in Lithuania. Kedainiai, Lithuania: Dotnuva Akademija. Pp. 192196.Google Scholar
Doyon, D., Bouchard, C. J., and Neron, R. 1986a. Inventaire des mauvaises herbes dans les cultures du Québec (1980–1984). Principales données des relevés floristiques et agronomiques des régions agricoles. Vol. 5. Québec City, PQ, Canada: MAPAQ, Service de Recherche en Phytotechnie de Québec. 140 p.Google Scholar
Doyon, D., Bouchard, C. J., and Neron, R. 1986b. Inventaire des mauvaises herbes dans les cultures du Québec (1980–1984). Principales données des relevés floristiques et agronomiques des régions agricoles. Vol. 3. Québec City, PQ, Canada: MAPAQ, Service de Recherche en Phytotechnie de Québec. 101 p.Google Scholar
Ervio, L. R. 1972. Growth of weeds in cereal populations. Ann. Agric. Fenn. 44:1928.Google Scholar
Froment, M. A. and Turley, D. 1998. Evaluation of herbicides for autumn broad-leaved weed control in winter linseed (Linum usitatissimum). Tests Agrochem. Cultiv. 19:2829.Google Scholar
Froud-Williams, R. J., Frennan, D. D. H., and Chancellor, R. J. 1983. Influence of cultivation regime on weed floras of arable cropping systems. J. Appl. Ecol. 20:187197.CrossRefGoogle Scholar
Gallaher, K. and Mueller, T. C. 1996. Effect of crop presence on persistence of atrazine, metribuzin, and clomazone in surface soil. Weed Sci. 44:698703.CrossRefGoogle Scholar
Gerowitt, B. and Bodendorfer, H. 1998. Long-term population development of Viola arvensis Murr. in a crop rotation. I. Field experiments. Z. Pflanzenkr. Pflanzenschutz. 105:641654.Google Scholar
Grundy, A. C., Froud-Williams, R. J., and Boatman, N. D. 1995. Maternal effects in progeny of field pansy (Viola arvensis) subjected to different herbicide and nitrogen rates. Ann. Appl. Biol. 127:343352.CrossRefGoogle Scholar
Hannan-Jones, M. A. 1998. The seasonal response of Lantana camara to selected herbicides. Weed Res. 38:413423.CrossRefGoogle Scholar
Heatherly, L. G., Elmore, C. D., and Spurlock, S. R. 1994. Effect of irrigation and weed control treatment on yield and net return from soybean (Glycine max). Weed Technol. 8:6976.CrossRefGoogle Scholar
Holm, L., Pancho, J. V., Herberger, J. P., and Plucknett, D. L. 1979. A Geographical Atlas of World Weeds. New York: J. Wiley. 391 p.Google Scholar
Jenneus, B. 1983. Dicot weeds in winter wheat, autumn spraying—comparisons between mecoprop and different herbicide mixtures. in Swedish Weed conference, Volume 25. Pp. 1519.Google Scholar
Johnson, E. N., Kirkland, K. J., and Stevenson, F. C. 2002. Timing of pre-seeding glyphosate application in direct-seeding systems. Can. J. Plant Sci. 82:611615.CrossRefGoogle Scholar
Kenward, M. G. and Roger, J. H. 1997. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53:983997.CrossRefGoogle ScholarPubMed
Ketel, D. H., Van Der Wielen, M. J. W., and Lotz, L. A. P. 1996. Prediction of a low dose herbicide effect from studies on binding of metribuzin to the chloroplasts of Chenopodium album L. Ann. Appl. Biol. 128:519531.CrossRefGoogle Scholar
Koscelny, J. A., Peeper, T. F., Solie, J. B., and Solomon, S. G. Jr. 1991. Seeding date, seeding rate, and row spacing affect wheat (Triticum aestivum) and cheat (Bromus secalinus). Weed Technol. 5:707712.CrossRefGoogle Scholar
Lake, R. L. 1974. Nortron improved weed control in sugar beet. in Agtec, Fisons Agricultural Technical Information. Cambridge, UK: Harston. Pp. 428.Google Scholar
Lundkvist, A. 1997. Predicting optimal application time for herbicides from estimated growth rate of weeds. Agric. Syst. 54:223242.CrossRefGoogle Scholar
Makepeace, F. J. 1978. Herbicide developments in a changing husbandry era and the new weeds emerging from it. in Hayes, W. A., ed. Advances in Agriculture: Proceedings of Section M, Agriculture, 139th Annual Meeting of the British Association for the Advancement of Science. Birmingham, UK: University of Aston. Pp 6270.Google Scholar
Makhteshim Agan UK Limited. 2002. Python© Product Label: Web page: http://www.mauk.co.uk/include.asp?sec=41&con=210&flt=1. Accessed: February 5, 2004.Google Scholar
Mallory-Smith, C. A. and Retzinger, E. J. 2003. Revised classification of herbicides by site of action for weed resistance management strategies. Weed Technol. 17:605619.CrossRefGoogle Scholar
Martin, S. G., Van Acker, R. C., and Friesen, L. F. 2001. Critical period of weed control in spring canola. Weed Sci. 49:326333.CrossRefGoogle Scholar
Mukula, J., Raatikainin, M., Lallukka, R., and Raatikainen, T. 1969. Weed species, frequencies and densities in winter cereals in Finland. Ann. Agric. Fenn. 8:59110.Google Scholar
Ontario Weed Committee. 1988. Guide to Weed Control. Publication 75. Toronto, ON, Canada: Ministry of Agriculture and Food. 200 p.Google Scholar
Raatikainen, M., Raatikainen, T., and Mukula, J. 1978. Weed species, frequencies and densities in winter cereals in Finland. Ann. Agric. Fenn. 11:100110.Google Scholar
Richardson, W. G. and West, T. M. 1985. The response of Viola arvensis and winter wheat to various herbicides, post-emergence. Tests Agrochem. Cultiv. 5:152153.Google Scholar
Roberts, H. A. and Bond, W. 1983. Evaluation of pyridate for weed control in drilled vegetable crops. Ann. Appl. Biol. 102:110111.Google Scholar
Roberts, H. A. and Bond, W. 1984. Evaluation of DPX-T6376 for weed control in drilled vegetables. Ann. Appl. Biol. 104:8283.Google Scholar
Roberts, J. R., Peeper, T. F., and Solie, J. B. 2001. Wheat (Triticum aestivum) row spacing, seeding rate, and cultivar affect interference from rye (Secale cereale). Weed Technol. 15:1925.CrossRefGoogle Scholar
Rosales, R. E., Chandler, J. M., Senseman, S. A., and Prostko, E. P. 1999. Influence of growth stage and herbicide rate on postemergence johnsongrass (Sorghum halepense) control. Weed Technol. 13:525529.CrossRefGoogle Scholar
Salonen, J. 1993. Reducing herbicide use in spring cereal production. Agric. Sci. Finl. 2:742.Google Scholar
Sanders, G. E. and Pallett, K. E. 1985a. The mode of action and selectivity of the hydroxybenzonitriles in selected weed species. Asp. Appl. Biol. 9:167178.Google Scholar
Sanders, G. E. and Pallett, K. E. 1985b. In vitro activity and binding characteristics of the hydroxybenzonitriles in chloroplasts isolated from Matricaria inodora and Viola arvensis . Pestic. Biochem. Physiol. 24:317325.CrossRefGoogle Scholar
Sanders, G. E. and Pallett, K. E. 1986. Studies into the differential activity of the hydroxybenzonitrile herbicides. I. Photosynthetic inhibition, symptom development, and ultrastructural changes in two contrasting species. Pestic. Biochem. Physiol. 26:116127.CrossRefGoogle Scholar
Sanders, G. E. and Pallett, K. E. 1987a. Studies into the differential activity of the hydroxybenzonitrile herbicides. II. Uptake, movement and metabolism in two contrasting species. Pestic. Biochem. Physiol. 28:163171.CrossRefGoogle Scholar
Sanders, G. E. and Pallett, K. E. 1987b. Comparison of the uptake, movement and metabolism of fluroxypyr in Stellaria media and Viola arvensis . Weed Res. 27:159166.CrossRefGoogle Scholar
[SAS] Statistical Analysis Systems. 1999. SAS/STAT® User's Guide, Version 8. Cary, NC: Statistical Analysis Systems Institute. Pp. 20852418.Google Scholar
Schroeder, D., Mueller-Schaerer, H., and Stinson, C. S. A. 1993. A European weed survey in 10 major crop systems to identify targets for biological control. Weed Res. 33:449458.CrossRefGoogle Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 9:218227.CrossRefGoogle Scholar
Semb, K. 1996a. Growth characteristics of spring barley and selected weeds. I. Effect of irradiance in growth chambers. Weed Res. 36:339352.CrossRefGoogle Scholar
Semb, K. 1996b. Growth characteristics of spring barley and selected weeds. II. Effect of temperature and irradiance in growth chambers. Weed Res. 36:353367.CrossRefGoogle Scholar
Semb, K. 1996c. Growth of spring barley (Hordeum vulgare L.) and five weed species under different irradiance levels outdoors. Norw. J. Agric. Sci. 10:289299.Google Scholar
Statistics Canada. 2002. 2001 Census of Agriculture: Web page: http://www.statcan.ca/english/freepub/95F0301XIE/index.htm. Accessed: January 1, 2003.Google Scholar
Steel, R. G. and Torrie, J. H. 1980. Principles and Procedures of Statistics: A Biometrical Approach. 2nd ed. New York: McGraw-Hill. 633 p.Google Scholar
Swanton, C. J. and Chandler, K. 1990. Control of wild-proso millet (Panicum miliaceum) with imazethapyr. Weed Technol. 4:446450.CrossRefGoogle Scholar
Swanton, C. J., Shrestha, A., Chandler, K., and Deen, W. 2000. An economic assessment of weed control strategies in no-till glyphosate-resistant soybean (Glycine max). Weed Technol. 14:755763.CrossRefGoogle Scholar
Tabachnick, B. G. and Fidell, L. S. 2001. Using Multivariate Statistics. 4th ed. Boston, MA: Allyn and Bacon. 966 p.Google Scholar
Thomas, A. G., Wise, R. F., Frick, B. L., and Juras, L. T. 1996. Saskatchewan Weed Survey of Cereal, Oilseed and Pulse Crops in 1995. Weed Survey Series Publication 96-1. Saskatoon, SK, Canada: Agriculture and Agri-Food Canada, Saskatoon Research Centre. 419 p.Google Scholar
West, T. M. 1994. The pre- and post-emergence activity and selectivity of the herbicide amidosulfuron (HOE 075032). Technical Report, Crop and Environmental Sciences Department 110. Bristol, UK: IACR—Long Ashton Research Station. 44 p.Google Scholar
Wiersema, J. H. and Leon, B. 1999. World Economic Plants: A Standard Reference. Boca Raton, FL: CRC. 749 p.CrossRefGoogle Scholar
Wilson, B. J. 1989. Predicting cereal yield loss from weeds. Long Ashton Research Station Technical Leaflet 89/4. Bristol, UK: IACR—Long Ashton Research Station. 7 p.Google Scholar
Wilson, B. J. and Wright, K. J. 1990. Predicting the growth and competitive effects of annual weeds in wheat. Weed Res. 30:201212.CrossRefGoogle Scholar
Wilson, B. J., Wright, K. J., Brain, P., Clements, M., and Stephens, E. 1995. Predicting the competitive effects of weed and crop density on weed biomass, weed seed production and crop yield in wheat. Weed Res. 35:265278.CrossRefGoogle Scholar
Xie, H. S., Hsiao, A. I., and Quick, W. A. 1997. Influence of drought on graminicide phytotoxicity in wild oat (Avena fatua L.) grown under different temperature and humidity conditions. J. Plant Growth Regul. 16:233237.CrossRefGoogle Scholar
Zheng, H. and Hall, J. C. 2001. Understanding auxinic herbicide resistance in wild mustard: physiological, biochemical, and molecular genetic approaches. Weed Sci. 49:276281.CrossRefGoogle Scholar