Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-03T07:57:25.978Z Has data issue: false hasContentIssue false

Evaluation of Legume Cover Crops and Weed Control Programs in Conservation-Tillage, Enhanced Glyphosate-Resistant Cotton

Published online by Cambridge University Press:  20 January 2017

Jason K. Norsworthy*
Affiliation:
Department of Crop, Soils, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
Marilyn McClelland
Affiliation:
Department of Crop, Soils, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
Griff Griffith
Affiliation:
Department of Crop, Soils, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
Sanjeev K. Bangarwa
Affiliation:
Department of Crop, Soils, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
Joshua Still
Affiliation:
Department of Crop, Soils, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
*
Corresponding author's E-mail: jnorswor@uark.edu.

Abstract

Research was conducted at Marianna, AR, for 2 yr to determine whether hairy vetch and Austrian winter pea cover crops would aid weed management programs in conservation-tilled, enhanced glyphosate-resistant cotton. Both cover crops were easily established and produced rapid growth in early spring, with biomass production of 435 to 491 g m−2 by Austrian winter pea and 415 to 438 g m−2 by hairy vetch. The effect of cover crops on weed control was short-lived in both years, with herbicide programs being the major determinant of weed control and seed-cotton yield. Averaged over cover crops, seed-cotton yields when the initial in-crop glyphosate application was delayed to the four-node cotton stage were up to 710 kg ha−1 less than in a PRE herbicide program. In 1 of 2 yr, seed-cotton yields were greater in PRE-treated plots compared with a program where initial weed management was delayed to the one-leaf stage of cotton. As a result of rapid decay of hairy vetch and Austrian winter pea biomass following cotton planting and the lack of adequate Palmer amaranth, pitted morningglory, and goosegrass control in the absence of herbicides, it appears there may be minimal weed management benefits from the use of hairy vetch and Austrian winter pea in Midsouth cotton production.

En Marianna, AR, se llevó al cabo una investigación de dos años para determinar si Vicia villosa y Pisum sativum utilizados como cultivos de cobertera, ayudarían en un programa de manejo de maleza en algodón mejorado resistente al glifosato, cultivado en labranza de conservación. Ambos cultivos de cobertera fueron fácilmente establecidos y tuvieron un rápido crecimiento al inicio de la primavera; Pisum sativum exhibió una producción de biomasa de 435 a 491 g m−2 y Vicia villosa de 415 a 438 g m−2. El efecto de cultivos de cobertera en el control de maleza tuvo una vida corta en ambos años, siendo los programas de herbicidas el factor determinante en el control de la maleza y en el rendimiento de semillas de algodón. Promediado a través de los cultivos de cobertera, cuando la aplicación inicial de glifosato en el algodón fue retrasada a la etapa del cuarto nudo, el rendimiento de sus semillas fue hasta 710 kg ha−1 menos que el observado en un programa utilizando herbicidas PRE. En uno de los dos años, los rendimientos de semilla de algodón fueron mayores en parcelas tratadas con PRE, en comparación con un programa donde el manejo inicial de la maleza fue retrasado a la etapa de una hoja de la planta. Como resultado de una rápida descomposición de la biomasa de Vicia villosa y Pisum sativum después de la siembra del algodón y de la carencia de un adecuado control de Amaranthus palmeri, Ipomoea lacunosa y Eleusine indica en ausencia de herbicidas, parece ser que hay mínimos beneficios en el manejo de la maleza con el uso de Vicia villosa y Pisum sativum, para la producción de algodón en la zona media-sur de los Estados Unidos.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Akemo, M. C., Regnier, E. E., and Bennett, M. A. 2000. Weed suppression in spring-sown rye (Secale cereal)–pea (Pisum sativum) cover crop mixes. Weed Technol 14:545549.Google Scholar
Ateh, C. M. and Doll, J. D. 1996. Spring-planted winter rye (Secale cereale) as a living mulch to control weeds in soybean (Glycine max). Weed Technol 10:347353.CrossRefGoogle Scholar
Barnes, J. P. and Putnam, A. R. 1987. Role of benzoxazinones in allelopathy by rye (Secale cereal L.). Chem. Ecol 13:889905.CrossRefGoogle Scholar
Barnes, J. P. and Putnam, A. R. 1986. Evidence for allelopathy by residues and aqueous extracts of rye (Secale cereale). Weed Sci 34:384390.Google Scholar
Bond, J. A., Oliver, L. R., and Stephenson, D. O. IV. 2006. Response of Palmer amaranth (Amaranthus palmeri) accessions to glyphosate, fomesafen, and pyrithiobac. Weed Technol 20:885892.CrossRefGoogle Scholar
Brennan, E. B. and Smith, R. F. 2005. Winter cover crop growth and weed suppression on the central coast of California. Weed Technol 19:10171024.Google Scholar
Burgos, N. R. and Talbert, R. E. 2000. Differential activity of allelochemicals from Secale cereal in seedling bioassays. Weed Sci 48:302310.Google Scholar
Clewis, S. B., Miller, D. K., Koger, C. H., Baughman, T. A., Price, A. J., Porterfield, D., and Wilcut, J. W. 2008. Weed management and crop response with glyphosate, S-metolachlor, trifloxysulfuron, prometryn, and MSMA in glyphosate-resistant cotton. Weed Technol 22:160167.Google Scholar
Collins, A. S., Chase, C. A., Stall, W. M., and Hutchinson, C. M. 2007. Competitiveness of three leguminous cover crops with yellow nutsedge (Cyperus esculentus) and smooth pigweed (Amaranthus hybridus). Weed Sci 55:613618.Google Scholar
Daniel, J. B., Abuye, A. O., Alley, M. M., Adcock, C. W., and Maitlans, J. C. 1999. Winter annual cover crops in a Virginia no-till cotton production system, I: biomass production, ground cover, and nitrogen accumulation. J. Cotton Sci 3:7483. http://journal.cotton.org.Google Scholar
Dhima, K. V., Vasilakoglou, I. B., Eleftherohorinos, I. G., and Lithourgidis, A. S. 2006. Allelopathic potential of winter cereals and their cover crop mulch effect on grass weed suppression and corn development. Crop Sci 46:345352.Google Scholar
Fast, B. J., Murdock, S. W., Farris, R. L., Willis, J. B., and Murray, D. S. 2009. Critical timing of Palmer amaranth (Amaranthus palmeri) removal in second-generation glyphosate-resistant cotton. J. Cotton Sci 13:3236.Google Scholar
Fisk, J. W., Hesterman, O. B., Shrestha, A., Kells, J. J., Harwood, R. R., Squire, J. M., and Sheaffer, C. C. 2001. Weed suppression by annual legume cover crops in no-tillage corn. Agron. J. 93:319325.Google Scholar
Griffin, J. L. and Dabney, S. M. 1990. Preplant–postemergence herbicides for legume cover-crop control in minimum tillage systems. Weed Technol 4:332336.CrossRefGoogle Scholar
Isik, D., Kaya, E., Ngouajio, M., and Mennan, H. 2009. Weed suppression in organic pepper (Capsicum annuum L.) with winter cover crops. Crop Prot 28:356363.Google Scholar
Krutz, L. J., Locke, M. A., and Steinriede, R. W. Jr. 2009. Interactions of tillage and cover crops on water, sediment, and pre-emergence herbicide loss in glyphosate-resistant cotton: implications for the control of glyphosate-resistant weed biotypes. J. Environ. Qual 38:12401247.Google Scholar
Main, C. L., Jones, M. A., and Murdock, E. C. 2007. Weed response and tolerance of enhanced glyphosate-resistant cotton to glyphosate. J. Cotton Sci 11:104109.Google Scholar
Mohler, C. L. and Teasdale, J. R. 1993. Response of weed emergence to rate of Vicia villosa Roth and Secale cereale L. residue. Weed Res 33:487499.Google Scholar
Molin, W. T. 2006. Contributions of tillage, rye cover crop and herbicide programs to weed control in glyphosate-tolerant cotton. Pages 171173. in Schwartz, R. C., Baumhardt, R. L., and Bell, J. M. eds. Proceedings of the 28th Southern Conservation Tillage Systems Conference. Bushland, TX: Conservation and Production Research Laboratory, U.S. Department of Agriculture–Agricultural Research Service Rep. 06-091. http://www.ag.auburn.edu/auxiliary/nsdl/scasc/. Accessed: August 4, 2009.Google Scholar
Möller, K. and Reents, H. 2009. Effects of various cover crops after peas on nitrate leaching and nitrogen supply to succeeding winter wheat or potato crops. J. Plant Nutr. Soil Sci 172:277287.Google Scholar
Nakhone, L. N. and Tabatabai, M. A. 2008. Nitrogen mineralization of leguminous crops in soils. J. Plant Nutr. Soil Sci 171:231241.Google Scholar
Nichols, R. L., Bond, J., Culpepper, A. S., et al. 2009. Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) spreads in the Southern United States. Resistant Pest Manag. Newsl 18 (2):810.Google Scholar
Norsworthy, J. K. 2004. Small-grain cover crop interaction with glyphosate-resistant corn (Zea mays). Weed Technol 18:5259.Google Scholar
Norsworthy, J. K. and Oliver, L. R. 2002. Effect of irrigation, soybean (Glycine max) density, and glyphosate on hemp sesbania (Sesbania exaltata) and pitted morningglory (Ipomoea lacunosa) interference in soybean. Weed Technol 16:717.CrossRefGoogle Scholar
Price, A. J., Monks, C. D., and Patterson, M. G. 2007. Early season pigweed control in conservation tillage cotton. Pages 1315. in. 2007 Cotton Research Report 32. Auburn, AL: Alabama Agricultural Experiment Station. http://www.ag.auburn.edu/aaes/communications/listsofpubs/researchreports31-35.htm#32. Accessed: May 6, 2009.Google Scholar
Reddy, K. N. 2001. Effects of cereal and legume cover crop residues on weeds, yield, and net return in soybean (Glycine max). Weed Technol 15:660668.Google Scholar
Reeves, D. W. 1997. The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Tillage Res 43:131167.Google Scholar
Reeves, D. W., Price, A. J., and Patterson, M. G. 2005. Evaluation of three winter cereals for weed control in conservation-tillage nontransgenic cotton. Weed Technol 19:731736.CrossRefGoogle Scholar
Sainju, U. M., Singh, B. P., and Whitehead, W. F. 2002. Long-term effects of tillage, cover crops, and nitrogen fertilization on organic carbon and nitrogen concentrations in sandy loam soils in Georgia, USA. Soil Tillage Res 63:167179.CrossRefGoogle Scholar
Schomberg, H. H., McDaniel, R. G., Mallard, E., Endale, D. M., Fisher, D. S., and Cabrera, M. L. 2006. Conservation tillage and cover crop influences on cotton production on a southeastern U.S. Coastal Plain soil. Agron. J. 98:12471256.Google Scholar
Stevens, G. and Dunn, D. 2008. Protecting cotton seedlings from blowing sand with winter cover crops. Columbia, MO: University of Missouri Extension Bulletin G4271. 4. http://extension.missouri.edu/publications/DisplayPub.aspx?P=G4262. Accessed: August 3, 2009.Google Scholar
Studebaker, G. 2009. Insecticide Recommendations for Arkansas—2009. Little Rock, AR: Arkansas Division of Agriculture Cooperative Extension Service MP144. 10.Google Scholar
Teasdale, J. R. 1996. Contribution of cover crops to weed management in sustainable agricultural systems. J. Prod. Agric 9:475479.Google Scholar
Teasdale, J. R., Beste, C. E., and Potts, W. E. 1991. Response of weeds to tillage and cover crop residue. Weed Sci 39:195199.Google Scholar
Teasdale, J. R. and Mohler, C. L. 2000. The quantitative relationship between weed emergence and the physical properties of mulches. Weed Sci 48:385392.CrossRefGoogle Scholar
Teasdale, J. R., Pillai, P., and Collins, R. T. 2005. Synergism between cover crop residue and herbicide activity on emergence and early growth of weeds. Weed Sci 53:521527.Google Scholar
Teasdale, J. R., Shelton, D. R., Sadeghi, A. M., and Isensee, A. R. 2003. Influence of hairy vetch residue on atrazine and metolachlor soil solution concentration and weed emergence. Weed Sci 51:628634.CrossRefGoogle Scholar
Vasilakoglou, I., Dhima, K., Eleftherohorinos, I., and Lithourgidis, A. 2006. Winter cereal cover crop mulches and inter-row cultivation effects on cotton development and grass weed suppression. Agron. J. 98:12901297.Google Scholar
White, R. H. and Worsham, A. D. 1990. Control of legume cover crops in no-till corn (Zea mays) and cotton (Gossypium hirsutum). Weed Technol 4:5762.CrossRefGoogle Scholar
White, R. H., Worsham, A. D., and Blum, U. 1989. Allelopathic potential of legume debris and aqueous extracts. Weed Sci 37:674679.Google Scholar
Yenish, J. P., Worsham, A. D., and York, A. C. 1996. Cover crops for herbicide replacement in no-tillage corn (Zea mays). Weed Technol 10:815821.Google Scholar
Zasada, I. A., Linder, H. M., and Coble, H. D. 1997. Initial weed densities affect to-tillage weed management with a rye (Secale cereale) cover crop. Weed Technol 11:473477.CrossRefGoogle Scholar