Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-02T01:49:04.741Z Has data issue: false hasContentIssue false

Influence of Herbicide Active Ingredient, Nozzle Type, Orifice Size, Spray Pressure, and Carrier Volume Rate on Spray Droplet Size Characteristics

Published online by Cambridge University Press:  20 January 2017

Cody F. Creech
Affiliation:
Department of Agronomy and Horticulture, West Central Research and Extension Center, University of Nebraska-Lincoln, North Platte, NE 69101
Ryan S. Henry
Affiliation:
Department of Agronomy and Horticulture, West Central Research and Extension Center, University of Nebraska-Lincoln, North Platte, NE 69101
Bradley K. Fritz
Affiliation:
Southern Plains Agricultural Research Center, United States Department of Agriculture, Agricultural Research Service, College Station, TX 77845
Greg R. Kruger*
Affiliation:
Department of Agronomy and Horticulture, West Central Research and Extension Center, University of Nebraska-Lincoln, North Platte, NE 69101
*
Corresponding author's E-mail: greg.kruger@unl.edu.

Abstract

Recent concerns regarding herbicide spray drift, its subsequent effect on the surrounding environment, and herbicide efficacy have prompted applicators to focus on methods to reduce off-target movement of herbicides. Herbicide applications are complex processes, and as such, few studies have been conducted that consider multiple variables that affect the droplet spectrum of herbicide sprays. The objective of this study was to evaluate the effects of nozzle type, orifice size, herbicide active ingredient, pressure, and carrier volume on the droplet spectra of the herbicide spray. Droplet spectrum data were collected on 720 combinations of spray-application variables, which included six spray solutions (five herbicides and water alone), four carrier volumes, five nozzles, two orifice sizes, and three operating pressures. The laboratory study was conducted using a Sympatec laser diffraction instrument to determine the droplet spectrum characteristics of each treatment combination. When averaged over each main effect, nozzle type had the greatest effect on droplet size. Droplet size rankings for nozzles, ranked smallest to largest using volume median diameter (Dv0.5) values, were the XR, TT, AIXR, AI, and TTI nozzle with 176% change in Dv0.5 values from the XR to the TTI nozzle. On average, increasing the nozzle orifice size from a 11003 orifice to a 11005 increased the Dv0.5 values 8%. When compared with the water treatment, cloransulam (FirstRate) did not change the Dv0.5 value. Clethodim (Select Max), glyphosate (Roundup PowerMax), lactofen (Cobra), and glufosinate (Ignite) all reduced the Dv0.5 value 5, 11, 11, and 18%, respectively, when compared with water averaged over the other variables. Increasing the pressure of AIXR, TT, TTI, and XR nozzles from 138 to 276 kPa and the AI nozzle from 276 to 414 kPa decreased the Dv0.5 value 25%. Increasing the pressure from 276 to 414 kPa and from 414 to 552 kPa for the same nozzle group and AI nozzle decreased the Dv0.5 value 14%. Carrier volume had the least effect on the Dv0.5 value. Increasing the carrier volume from 47 to 187 L ha−1 increased the Dv0.5 value 5%, indicating that droplet size of the herbicides tested were not highly dependent on delivery volume. The effect on droplet size of the variables examined in this study from greatest effect to least effect were nozzle, operating pressure, herbicide, nozzle orifice size, and carrier volume.

Recientemente ha habido preocupación por la deriva producto de la aplicación de herbicidas, su subsecuente efecto en el ambiente de los alrededores, y la eficacia del herbicida, lo que ha obligado a los aplicadores a enfocarse en métodos para reducir el movimiento de herbicidas a zonas fuera del objetivo deseado. Las aplicaciones de herbicidas son procesos complejos, y como tales, se han realizado pocos estudios que consideren múltiples variables que afectan el espectro de gotas producto de la aspersión del herbicida. Los objetivos de este estudio fueron elucidar los efectos del tipo de boquilla, el tamaño del orificio, el ingrediente activo del herbicida, la presión, y el volumen de aplicación sobre el espectro de gotas de la aspersión del herbicida. Los datos del espectro de gotas fueron colectados para 720 combinaciones de variables de aplicación-aspersión, las cuales incluyeron seis soluciones de aspersión (cinco herbicidas y agua sola), cuatro volúmenes de aplicación, cinco boquillas, dos tamaños de orificio, y tres presiones de operación. El estudio de laboratorio fue realizado usando un instrumento Sympactec de difracción láser para determinar las características del espectro de gotas para cada combinación de tratamientos. Al promediar los resultados por efecto principal, el tipo de boquilla tuvo el mayor efecto en el tamaño de gota. El ranking de tamaño de gota para boquillas, de más pequeña a más grande, usando valores de diámetro medio (Dv0.5), fue XR, TT, AIXR, AI, y TTI con 176% de cambio en los valores de Dv0.5. En promedio, el incrementar el tamaño del orificio de la boquilla de un orificio 11003 a uno 11005 aumentó los valores Dv0.5 en 8%. Cuando se comparó con el tratamiento con agua, cloransulam (FirstRate) no cambió el valor de Dv0.5. Clethodim (Select Max), glyphosate (Roundup PowerMax), lactofen (Cobra), y glufosinate (Ignite) redujeron los valores de Dv0.5 en 5, 11, 11, y 18%, respectivamente, cuando se compararon con agua al promediarse sobre las otras variables. El incrementar la presión de las boquillas AIXR, TT, TTI, y XR de 138 a 276 kPa y la boquilla AI de 276 a 414 kPa disminuyó el valor de Dv0.5 en 25%. El aumentar la presión de 276 a 414 kPa y de 414 a 552 kPa para el mismo grupo de boquillas y la boquilla AI disminuyó Dv0.5 en 14%. El volumen de aplicación tuvo el menor efecto en el valor de Dv0.5. Al aumentar el volumen de aplicación de 47 a 187 L ha−1 se incrementó el valor de Dv0.5 en 5%, indicando que el tamaño de gota de los herbicidas evaluados no fue altamente dependiente del volumen de aplicación. El efecto sobre el tamaño de gota de las variables examinadas en este estudio de mayor a menor efecto fue: boquilla, presión de operación, herbicida, tamaño del orificio de la boquilla, y el volumen de aplicación.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, NH, Hall, DJ, Western, NM (1983) The role of dynamic surface tension in spray retention. Page 576 in Proceedings of the 10th International Congress on Plant Protection [abstract]. Rome, Italy: IPPC Google Scholar
Arnold, AC (1983) Comparative droplet-size spectra for three different-angled flat fan nozzles. Crop Prot 2:193204 Google Scholar
[ASABE] American Society of Agricultural and Biological Engineers (2009) Spray nozzle classification by droplet spectra. St. Joseph, MI: ASABE Standard S572.1. Pp 13 Google Scholar
Benbrook, CM (2012) Impacts of genetically engineered crops on pesticide use in the US—the first sixteen years. Environ Sci Eur 24:113 Google Scholar
Bode, L (1987) Spray application technology. Pages 85110 in McWhorter, CG, Gebhardt, MR, eds. Methods of Applying Herbicides. Champaign, IL: WSSA Monograph 4Google Scholar
Bouse, LF, Kirk, IW, Bode, LE (1990) Effect of spray mixture on droplet size. Trans Am Soc Agric Eng 33:783788 Google Scholar
Brazes, RD, Reichard, DL, Bukovac, MJ, Fox, RD (1991) A partitioned energy transfer model for spray impaction on plants. J Agric Eng Res 50:1124 Google Scholar
Butler Ellis, MC, Swan, T, Miller, PCH, Waddelow, S, Bradley, A, Tuck, CR (2002) PM—power and machinery: design factors affecting spray characteristics and drift performance of air induction nozzles. Biosyst Eng 82:289296 Google Scholar
Combellack, JH, Westen, NM, Richardson, RG (1996) A comparison of the drift potential of a novel twin fluid nozzle with conventional low volume flat fan nozzles when using a range of adjuvants. Crop Prot 15:147152 Google Scholar
Czaczyk, Z, Kruger, G, Hewitt, A (2012) Droplet size classification of air induction flat fan nozzles. J Plant Prot Res 52:417420 Google Scholar
Ebert, T, Downer, R (2008) Insecticide application: the dose transfer process. Pages 19581974 in Capinera, JL, ed. Encyclopedia of Entomology. New York: Kluwer-Academic Google Scholar
Etheridge, RE, Womac, AR, Mueller, TC (1999) Characterization of the spray droplet spectra and patterns of four venturi-type drift reduction nozzles. Weed Technol 13:765770 Google Scholar
Fritz, BK, Hoffmann, WC, Bagley, WE, Kruger, G, Czaczyk, Z, Henry, R (2014) Measuring drop size of agricultural spray nozzles measurement distance and airspeed effects. Atomization Spray 24:747760 Google Scholar
Hall, FR, Chapple, AC, Downer, RA, Kirchner, LM, Thacker, JRM (1993) Pesticide application as affected by spray modifiers. Pestic Sci 38:123133 Google Scholar
Hartley, GS, Graham-Bryce, IK (1980) Physical Principles of Pesticide Behaviour. London: Academic Google Scholar
Johnson, AK, Roeth, FW, Martin, AR, Klein, RN (2006) Glyphosate spray drift management with drift-reducing nozzles and adjuvants. Weed Technol 20:893897 Google Scholar
Klein, RN, Johnson, AK (2002) Nozzle tip selection and its effect on drift and efficacy. Asp Appl Biol 66:217224 Google Scholar
Knoche, M (1994) Effect of droplet size and carrier volume on performance of foliage-applied herbicides. Crop Prot 13:163178 Google Scholar
Littell, RC (2006) SAS for Mixed Models. Cary, NC: SAS institute Google Scholar
Merritt, CR, Graham, B, Dar, W, Javed, Z (1989) Comparison of spray losses in laboratory and field situations. Asp Appl Biol 21:137146 Google Scholar
Miller, PCH, Tuck, CR (2006) Factors influencing the performance of spray delivery systems: a review of recent developments. Pages 133145 in Salyani, M, Lindner, G, eds. Pesticide Formulations and Delivery Systems, 25th Volume: Advances in Crop Protection Technologies. West Conshohocken, PA: ASTM Google Scholar
Miller, PCH, Butler Ellis, MC (2000) Effects of formulation on spray nozzle performance for applications from ground-based boom sprayers. Crop Prot 19:609615 Google Scholar
Nordby, A, Skuterud, R (1974) The effects of boom height, working pressure and wind speed on spray drift. Weed Res 14:385395 Google Scholar
Nuyttens, D, Baetens, K, De Schampheleire, M, Sonck, B (2007) Effect of nozzle type, size and pressure on spray droplet characteristics. Biosyst Eng 97:333345 Google Scholar
Nuyttens, D, Schampheleire, Md, Verboven, P, Brusselman, E, Dekeyser, D (2009) Droplet size and velocity characteristics of agricultural sprays. Trans Am Soc Agric Biol Eng 52:14711480 Google Scholar
Pimentel, D (2005) Environmental and economic costs of the application of pesticides primarily in the United States. Environ Dev Sustainabil 7:229252 Google Scholar
Reichard, DL (1988) Drop formation and impaction on the plant. Weed Technol 2:8287 Google Scholar
Spillman, JJ (1984) Spray impaction, retention and adhesion: an introduction to basic characteristics. Pestic Sci 15:97106 Google Scholar
Steel, RG, Torrie, JH (1980) Principles and Procedures of Statistics: A Biometrical Approach. New York: McGraw-Hill Google Scholar
Taylor, WA, Womac, AR, Miller, PCH, Taylor, BP (2004) An attempt to relate drop size to drift risk. Pages 210223 in Proceedings of the International Conference on Pesticide Application for Drift Management. Pullman, WA Washington State University Google Scholar
Van de Zande, JC, Porskamp, HA, Holterman, HJ (2002) Influence of reference nozzle choice on spray drift classification. Asp Appl Biol 66:4956 Google Scholar
van den Berg, F, Kubiak, R, Benjey, W, Majewski, M, Yates, SR, Reeves, G, Smelt, J, van der Linden, A (1999) Emission of pesticides into the air. Pages 195218 in Fate of Pesticides in the Atmosphere: Implications for Environmental Risk Assessment. New York: Springer Google Scholar
Whisenant, S, Bouse, L, Crane, R, Bovey, R (1993) Droplet size and spray volume effects on honey mesquite mortality with clopyralid. J Range Manag 46:257261 Google Scholar
Womac, AR, Goodwin, JC, Hart, WE (1997) Tip Selection for Precision Application of Herbicides. Knoxville, TN: University of Tennessee Agricultural Experiment Station Bulletin 695Google Scholar
Yates, W, Akesson, N, Bayer, D (1976) Effects of spray adjuvants on drift hazards. Trans Am Soc Agric Eng 19:4146 Google Scholar
Yates, W, Cowden, RE, Akesson, N (1985) Drop size spectra from nozzles in high-speed airstreams. Trans Am Soc Agric Eng 28:405410 Google Scholar