Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-17T23:28:52.925Z Has data issue: false hasContentIssue false

Design-oriented dynamic model of deployable fin under time-varying elevated temperature environment

Published online by Cambridge University Press:  07 August 2023

H.Y. Ren
Affiliation:
China Academy of Launch Vehicle Technology, Beijing, China
Y. Wang*
Affiliation:
China Academy of Launch Vehicle Technology, Beijing, China
L. Wang
Affiliation:
China Academy of Launch Vehicle Technology, Beijing, China
J.B. Zhou
Affiliation:
China Academy of Launch Vehicle Technology, Beijing, China
H.J. Chang
Affiliation:
China Academy of Launch Vehicle Technology, Beijing, China
Y.P. Cai
Affiliation:
China Academy of Launch Vehicle Technology, Beijing, China
B. Lei
Affiliation:
China Academy of Launch Vehicle Technology, Beijing, China
*
Corresponding author: Y. Wang; Email: ywangcalt@163.com

Abstract

Coupling of clearance joint and harsh aerodynamic heating environment is an inevitable nonlinear factor in folding mechanism of the fin of high-speed aircrafts that remarkably modifies natural frequencies and modes of vibration from the initial design state. However, accurately predicting dynamic properties of deployable fin with full consideration of these effects is not common industry practice. A practical semi-analytical model based on Hertz contact theory and ESDU-78035 model is proposed in this study to investigate high-temperature connection stiffness of local hinged–locked mechanisms. Material property degradation and clearance variation caused by thermal expansion are comprehensively considered and quantified in this model. Vibration characteristics of the assembled deployable fin are then solved using finite element method (FEM). The real-time evolutionary process of thermal mode of the fin is discussed. And natural frequencies of fixed-value and time-varying connection stiffness are compared. The simulation results of this study demonstrate that the relative error of structure temperature between the sequential approach and fully coupled simulations is less than 6.98%. The connection stiffness (slope of the load-displacement curve) of the folding mechanism under high temperature conditions decreases by 3.52%, and the variation is mainly caused by the degradation of the elastic modulus of the material, while the clearance change due to the thermal expansion has no significant effect on the slope. The natural frequency of the deployable fin exhibits an inverse correlation with the temperature change trend, and the first three frequencies decrease by 1.67, 7.75, and 16.28 Hz compared to the initial value, respectively.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Song, H.X. and Jin, L. Dynamic modeling and stability control of folding wing aircraft, Chin. J. Mech., 2020, 52, (6), pp 15481559. (In Chinese)Google Scholar
Huang, R., Yang, Z.C., Yao, X.J., Zhao, Y.H. and Hu, H.Y. Parameterized modeling methodology for efficient aeroservoelastic analysis of a morphing wing, AIAA J., 2019, 57, (1), pp 110.CrossRefGoogle Scholar
Du, S.Y. High Temperature Solid Mechanics: Science Press, 2022, Beijing, China. (In Chinese)Google Scholar
Berry, S.A. and Berger, K.T. NASA Langley experimental aerothermodynamic contributions to slender and winged hypersonic vehicles, 53rd AIAA Aerospace Sciences Meeting, AIAA Paper 2015-0213, Kissimmee, Florida, 2015, pp 1–22.CrossRefGoogle Scholar
Uyanna, O. and Najafi, H. Thermal protection systems for space vehicles: A review on technology development, current challenges and future prospects, Acta Astronaut., 2020, 176, pp 341356.CrossRefGoogle Scholar
Fatemi, J. Coupled thermal-structural analysis of the EXPERT re-entry vehicle, 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, AIAA Paper 2011-2387, San Francisco, California, 2011, pp 1–10.CrossRefGoogle Scholar
Ren, H.Y., Wang, Y., Wang, L., Zhou, J.B., Chang, H.J., Cai, Y.P., Wang, L. and Lei, B. A dynamic model of hinged-locking structures based on contact theory, Struct. Environ. Eng., 2021, 48, (6), pp 3138. (In Chinese)Google Scholar
He, H.N., Yu, K.P., Tang, H., Li, J.Z., Zhou, Q.K. and Zhang, X.L. Vibration experiment and nonlinear modelling research on the folding fin with freeplay, Chin. J. Mech., 2019, 51, (5), pp 14761488. (In Chinese)Google Scholar
Chen, F., Liu, H. and Zhang, S.T. Time-adaptive loosely coupled analysis on fluid-thermal-structural behaviors of hypersonic wing structures under sustained aeroheating, Aerosp. Sci. Technol., 2018, 78, pp 620636.CrossRefGoogle Scholar
Shen, E.N., Guo, T.Q., Wu, J.P., Hu, J.L. and Zhang, G.J. Full-time coupling method and application of a hypersonic all-movable wing, Acta Aeronaut. Astronaut. Sin., 2021, 42, (8), pp 525773. (In Chinese)Google Scholar
Synder, H.T. and Kehoe, M.W. Determination of the effects of heating on modal characteristics of an aluminum plate with application to hypersonic vehicles, NASA Technical Report, NASA TM-4274, Edwards, CA, 1991, pp 1–24.Google Scholar
Kehoe, M.W. and Deaton, V.C. Correlation of analytical and experimental hot structure vibration results, NASA Technical Report, NASA TM-104269, Edwards, CA, 1993, pp 1–18.Google Scholar
Wu, D.F., Wang, Y.W., Pu, Y., Shang, L., Zhao, S.G. and Gao, G.T. Thermal modal test of composite wing structure in high-temperature environments up to 1100ºC for hypersonic flight vehicles, Acta Mater. Compos. Sin., 2015, 32, (2), pp 323331. (In Chinese)Google Scholar
Wu, D.F., Wang, Y.W., Shang, L., Wang, H.T. and Pu, Y. Experimental and computational investigations of thermal modal parameters for a plate-structure under 1200 °C high temperature environment, Measurement, 2016, 94, pp 8091.CrossRefGoogle Scholar
He, H.N., Tang, H., Yu, K.P., Li, J.Z., Yang, N. and Zhang, X.L. Nonlinear aeroelastic analysis of the folding fin with freeplay under thermal environment, Chin. J. Aeronaut., 2020, 33, (9), pp 23572371.CrossRefGoogle Scholar
Kang, P.C. and Wu, G.H. Preparation method of integrated inlaying of dissipative heat-protection composite material and metal material, Chin. Patent, CN106955988A, 2017, pp 18. (In Chinese)Google Scholar
Ren, H.Y, Wang, Y., Wang, L., Zhou, J.B, Chang, H.J., Cai, Y.P. and Lei, B. Mechanical model of locking mechanisms of folding wing for spacecraft, J. Aerosp. Power, 2023, pp 113. (In Chinese) https://kns.cnki.net/kcms/detail/11.2297.V.20220712.1117.001.html Google Scholar
Roark, R.J. and Young, W.C. Formulas for Stress and Strain, McGraw-Hill, 1975, New York.Google Scholar
Cirelli, M., Valentini, P.P. and Pennestrì, E. A study of the non-linear dynamic response of spur gear using a multibody contact based model with flexible teeth, J. Sound Vib., 2019, 445, (14), pp 148167.CrossRefGoogle Scholar
Koshy, C.S., Flores, P. and Lankarani, H.M. Study of the effect of contact force model on the dynamic response of mechanical systems with dry clearance joints: computational and experimental approaches, Nonlinear Dyn., 2013, 73, pp 325338.CrossRefGoogle Scholar
D’Souza, S.N., McGuire, K., Torricelli, A., Visser, S. and Hays, Z.B. Pterodactyl: Effects of 3D thermal analysis on thermal protection system design for a flap control system, AIAA SCITECH 2022 Forum, AIAA Paper 2022-0418, San Diego, 2022, pp 1–13.CrossRefGoogle Scholar
Liu, F.Q., Tu, J.Q., Sun, X.F., Tan, J. and Yang, H.J. Study of hypersonic aerodynamic heating environment for protuberance, Tac. Missile Technol., 2018, 188, (2), pp 4348. (In Chinese)Google Scholar
Cinosi, N., Walker, S.P., Bluck, M.J. and Issa, R. CFD simulation of turbulent flow in a rod bundle with spacer grids (MATIS-H) using STAR-CCM+, Nucl. Eng. Des., 2014, 279, pp 3749.CrossRefGoogle Scholar
Huang, S.K., Wang, X.C. and Ma, G.Q. Hydrodynamic, Ballistic, Loading, and Environment, China Astronautic Publishing House, 1991, Beijing, China. (In Chinese)Google Scholar