Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-13T21:28:30.080Z Has data issue: false hasContentIssue false

The language-of-thought as a working hypothesis for developmental cognitive science

Published online by Cambridge University Press:  28 September 2023

Melissa M. Kibbe*
Affiliation:
Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA kibbe@bu.edu https://www.bu.edu/cdl/developing-minds-lab/

Abstract

A science of prelinguistic infant cognition must take seriously the language-of-thought (LoT) hypothesis. I show how the LoT framework enables us to identify the representational and computational capacities of infant minds and the developmental factors that act on these capacities, and explain how Quilty-Dunn et al.'s take on LoT has important upshots for developmental theory-building.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baillargeon, R. (2004). Infants' physical world. Current Directions in Psychological Science, 13(3), 8994.CrossRefGoogle Scholar
Carey, S. (2009). Where our number concepts come from. The Journal of Philosophy, 106(4), 220254.CrossRefGoogle ScholarPubMed
Cesana-Arlotti, N., Martín, A., Téglás, E., Vorobyova, L., Cetnarski, R., & Bonatti, L. L. (2018). Precursors of logical reasoning in preverbal human infants. Science (New York, N.Y.), 359(6381), 12631266.CrossRefGoogle ScholarPubMed
Cheng, C., & Kibbe, M. M. (2023). Is non-symbolic arithmetic truly “arithmetic”? Examining the computational capacity of the approximate number system in young children. Cognition 47, e13299.CrossRefGoogle Scholar
Denison, S., & Xu, F. (2019). Infant statisticians: The origins of reasoning under uncertainty. Perspectives on Psychological Science, 14(4), 499509.CrossRefGoogle ScholarPubMed
Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307314.CrossRefGoogle ScholarPubMed
Kibbe, M. M. (2015). Varieties of visual working memory representation in infancy and beyond. Current Directions in Psychological Science, 24(6), 433439.CrossRefGoogle Scholar
Kushnir, T. (2022). Imagination and social cognition in childhood. Wiley Interdisciplinary Reviews: Cognitive Science, 13(4), e1603.Google ScholarPubMed
Leslie, A. M. (1987). Pretense and representation: The origins of “theory of mind”. Psychological Review, 94(4), 412.CrossRefGoogle Scholar
Leslie, A. M. (1994). ToMM, ToBy, and agency: Core architecture and domain specificity. In Hirschfeld, L. A. & Gelman, S. A. (Eds.), Mapping the mind: Domain specificity in cognition and culture (pp. 119148). Cambridge University Press.CrossRefGoogle Scholar
Piantadosi, S. T., Palmeri, H., & Aslin, R. (2018). Limits on composition of conceptual operations in 9-month-olds. Infancy, 23(3), 310324.CrossRefGoogle ScholarPubMed
Rabagliati, H., Ferguson, B., & Lew-Williams, C. (2019). The profile of abstract rule learning in infancy: Meta-analytic and experimental evidence. Developmental Science, 22(1), e12704.CrossRefGoogle ScholarPubMed
Spelke, E. S., & Kinzler, K. D. (2007). Core knowledge. Developmental Science, 10(1), 8996.CrossRefGoogle ScholarPubMed
Vasilyeva, M., & Lourenco, S. F. (2012). Development of spatial cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 3(3), 349362.Google ScholarPubMed
Wynn, K. (1992). Addition and subtraction by human infants. Nature, 358, 749750.CrossRefGoogle ScholarPubMed
Xu, F. (2019). Towards a rational constructivist theory of cognitive development. Psychological Review, 126(6), 841.CrossRefGoogle ScholarPubMed