Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-02T02:44:54.734Z Has data issue: false hasContentIssue false

Chapter 15 - The Role of Rapid-Acting Antidepressants in Suicidal Crisis Management

Published online by Cambridge University Press:  01 February 2024

Andrea Fiorillo
Affiliation:
University of Campania “L. Vanvitelli”, Naples
Peter Falkai
Affiliation:
Ludwig-Maximilians-Universität München
Philip Gorwood
Affiliation:
Sainte-Anne Hospital, Paris
Get access

Summary

Suicide has been a feature of the human species ever since the beginning of written history and even much earlier, often marking the peak of human suffering – both for the individual that died from it and those left questioning why it happened and how it could have been prevented. However, despite profuse investments in suicide prevention programs and striking advances in psychiatry in past decades, suicide mortality still represents the second most common cause of death in youth worldwide [1]. A recent estimate of the prevalence of past-year suicidal ideation (SI), planning, and attempts in adolescents reached 17% in low- and middle-income countries [2]. Though outnumbered by other causes of death in older age, suicide rates tend to increase with age [3], making it one of the key causes of death worldwide that could theoretically be prevented.

Type
Chapter
Information
Mental Health Research and Practice
From Evidence to Experience
, pp. 259 - 276
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

WHO. Global Health Observatory data repository. 2020. https://apps.who.int/gho/data/node.main.A1039?lang=en.Google Scholar
Uddin, R, Burton, NW, Maple, M, Khan, SR, Khan, A. Suicidal ideation, suicide planning, and suicide attempts among adolescents in 59 low-income and middle-income countries: A population-based study. Lancet Child Adolesc Health. 2019;3(4):223–33.CrossRefGoogle ScholarPubMed
Conejero, I, Olié, E, Courtet, P, Calati, R. Suicide in older adults: Current perspectives. Clin Interv Aging. 2018;13:691–9.CrossRefGoogle ScholarPubMed
John Mann, J, Rizk, MM. A brain-centric model of suicidal behavior. Am J Psychiatry. 2020;177(10):902–16.Google Scholar
Kleiman, EM, Turner, BJ, Fedor, S, et al. Examination of real-time fluctuations in suicidal ideation and its risk factors: Results from two ecological momentary assessment studies. J Abnorm Psychol. 2017;126(6):726–38.CrossRefGoogle ScholarPubMed
Franklin, JC, Ribeiro, JD, Fox, KR, et al. Risk factors for suicidal thoughts and behaviors: A meta-analysis of 50 years of research. Psychol Bull. 2017;143(2):187232.CrossRefGoogle ScholarPubMed
Belsher, BE, Smolenski, DJ, Pruitt, LD, et al. Prediction models for suicide attempts and deaths. JAMA Psychiatry. 2019;20910:111.Google Scholar
Zalsman, G, Hawton, K, Wasserman, D, et al. Suicide prevention strategies revisited: 10-year systematic review. Lancet Psychiatry. 2016;3(7):646–59.CrossRefGoogle ScholarPubMed
Stanley, B, Brown, GK, Brenner, LA, et al. Comparison of the safety planning intervention with follow-up vs usual care of suicidal patients treated in the emergency department. JAMA Psychiatry. 2018;75(9):894900.CrossRefGoogle ScholarPubMed
Doupnik, SK, Rudd, B, Schmutte, T, et al. Association of suicide prevention interventions with subsequent suicide attempts, linkage to follow-up care, and depression symptoms for acute care settings: A systematic review and meta-analysis. JAMA Psychiatry. 2020;77(10):1021–30.CrossRefGoogle ScholarPubMed
Méndez-Bustos, P, Calati, R, Rubio-Ramírez, F, et al. Effectiveness of psychotherapy on suicidal risk: A systematic review of observational studies. Front Psychol. 2019;10:110.CrossRefGoogle Scholar
Leon, AC, Solomon, DA, Li, C, et al. Antidepressants and risks of suicide and suicide attempts: A 27-year observational study. J Clin Psychiatry. 2011;72(5):580–6.CrossRefGoogle ScholarPubMed
Forte, A, Pompili, M, Imbastaro, B, et al. Effects on suicidal risk: Comparison of clozapine to other newer medicines indicated to treat schizophrenia or bipolar disorder. J Psychopharmacol. 2021;35(9):1074–80.CrossRefGoogle ScholarPubMed
Lengvenyte, A, Olié, E, Strumila, R, et al. Immediate and short-term efficacy of suicide-targeted interventions in suicidal individuals: A systematic review. World J Biol Psychiatry. 2021;21:116.Google Scholar
Bahji, A, Vazquez, GH, Zarate, CA. Comparative efficacy of racemic ketamine and esketamine for depression: A systematic review and meta-analysis. J Affect Disord. 2021;278:542–55.CrossRefGoogle ScholarPubMed
Kadriu, B, Greenwald, M, Henter, ID, et al. Ketamine and serotonergic psychedelics: Common mechanisms underlying the effects of rapid-acting antidepressants. Int J Neuropsychopharmacol. 2021;24(1):821.CrossRefGoogle ScholarPubMed
Nagele, P, Palanca, BJ, Gott, B, et al. A phase 2 trial of inhaled nitrous oxide for treatment-resistant major depression. Sci Transl Med. 2021;13(597):eabe1376.CrossRefGoogle ScholarPubMed
Schou Pedersen, H, Fenger-Grøn, M, Bech, BH, Erlangsen, A, Vestergaard, M. Frequency of health care utilization in the year prior to completed suicide: A Danish nationwide matched comparative study. Plos One. 2019;14(3):e0214605.CrossRefGoogle ScholarPubMed
Luoma, JB, Martin, CE, Pearson, JL. Contact with mental health and primary care providers before suicide: A review of the evidence. Am J Psychiatry. 2002;159(6):909–16.CrossRefGoogle ScholarPubMed
Geulayov, G, Casey, D, Bale, L, et al. Suicide following presentation to hospital for non-fatal self-harm in the Multicentre Study of Self-harm: A long-term follow-up study. Lancet Psychiatry. 2019;6(12):1021–30.CrossRefGoogle ScholarPubMed
Lengvenyte, A, Conejero, I, Courtet, P, Olié, E. Biological bases of suicidal behaviours: A narrative review. Eur J Neurosci. 2019;(July):122.Google ScholarPubMed
Chung, DT, Ryan, CJ, Hadzi-Pavlovic, D, et al. Suicide rates after discharge from psychiatric facilities. JAMA Psychiatry. 2017;74(7):694702.CrossRefGoogle ScholarPubMed
Lizardi, D, Stanley, B. Treatment engagement: A neglected aspect in the psychiatric care of suicidal patients. Psychiatr Serv Wash DC. 2010;61(12):1183–91.Google ScholarPubMed
Lopez-Castroman, J, Jaussent, I, Gorwood, P, Courtet, P. Suicidal depressed patients respond less well to antidepressants in the short term. Depress Anxiety. 2016;33(6):483–94.CrossRefGoogle ScholarPubMed
Griffiths, JJ, Zarate, CA, Rasimas, JJ. Existing and novel biological therapeutics in suicide prevention. Am J Prev Med. 2014;47(3):S195203.CrossRefGoogle ScholarPubMed
Rhodes, AE, Sinyor, M, Boyle, MH, et al. Emergency department presentations and youth suicide: A case-control study. Can J Psychiatry. 2019;64(2):8897.CrossRefGoogle ScholarPubMed
Unick, GJ, Kessell, E, Woodard, EK, et al. Factors affecting psychiatric inpatient hospitalization from a psychiatric emergency service. Gen Hosp Psychiatry. 2011;33(6):618–25.CrossRefGoogle ScholarPubMed
Brodsky, BS, Spruch-Feiner, A, Stanley, B. The zero suicide model: Applying evidence-based suicide prevention practices to clinical care. Front Psychiatry. 2018;9(FEB):33.CrossRefGoogle ScholarPubMed
Chesney, E, Goodwind, GM, Fazel, S. Risks of all-cause and suicide mortality in mental disorders: A meta-review. World Psychiatry. 2014;13:153–60.CrossRefGoogle ScholarPubMed
Oquendo, MA, Baca-Garcia, E. Suicidal behavior disorder as a diagnostic entity in the DSM-5 classification system: Advantages outweigh limitations. World Psychiatry. 2014;13(2):128–30.CrossRefGoogle ScholarPubMed
Demesmaeker, A, Chazard, E, Vaiva, G, Amad, A. A pharmacoepidemiological study of the association of suicide reattempt risk with psychotropic drug exposure. J Psychiatr Res. 2021;138:256–63.CrossRefGoogle ScholarPubMed
FDA. Spravato® (esketamine) summary of product characteristics [pdf]. 2020. www.accessdata.fda.gov/drugsatfda_docs/label/2020/211243s004lbl.pdf#page=42.Google Scholar
Liu, R-J, Duman, C, Kato, T, et al. GLYX-13 produces rapid antidepressant responses with key synaptic and behavioral effects distinct from ketamine. Neuropsychopharmacol. 2017;42(6):1231–42.CrossRefGoogle ScholarPubMed
Gerhard, DM, Pothula, S, Liu, RJ, et al. GABA interneurons are the cellular trigger for ketamine’s rapid antidepressant actions. J Clin Invest. 2020;130(3):1336–49.CrossRefGoogle ScholarPubMed
Adaikkan, C, Taha, E, Barrera, I, David, O, Rosenblum, K. Calcium/calmodulin-dependent protein kinase II and eukaryotic elongation factor 2 kinase pathways mediate the antidepressant action of ketamine. Biol Psychiatry. 2018;84(1):6575.CrossRefGoogle ScholarPubMed
Aguilar-Valles, A, De Gregorio, D, Matta-Camacho, E, et al. Antidepressant actions of ketamine engage cell-specific translation via eIF4E. Nature. 2021;590(7845):315–19.CrossRefGoogle ScholarPubMed
Beurel, E, Song, L, Jope, RS. Inhibition of glycogen synthase kinase-3 is necessary for the rapid antidepressant effect of ketamine in mice. Mol Psychiatry. 2011 ;16(11):1068–70.CrossRefGoogle ScholarPubMed
Zanos, P, Thompson, SM, Duman, RS, Zarate, CA, Gould, TD. Convergent mechanisms underlying rapid antidepressant action. CNS Drugs. 2018 ;32(3):197227.CrossRefGoogle ScholarPubMed
Suzuki, K, Monteggia, LM. The role of eEF2 kinase in the rapid antidepressant actions of ketamine. Adv Pharmacol San Diego Calif. 2020;89:7999.Google ScholarPubMed
Deyama, S, Bang, E, Wohleb, ES, et al. Role of neuronal VEGF signaling in the prefrontal cortex in the rapid antidepressant effects of ketamine. Am J Psychiatry. 2019;176(5):388400.CrossRefGoogle ScholarPubMed
Lin, P-Y, Ma, ZZ, Mahgoub, M, Kavalali, ET, Monteggia, LM. A synaptic locus for TrkB signaling underlying ketamine rapid antidepressant action. Cell Rep. 2021;36(7):109513.CrossRefGoogle ScholarPubMed
Yang, C, Yang, J, Luo, A, Hashimoto, K. Molecular and cellular mechanisms underlying the antidepressant effects of ketamine enantiomers and its metabolites. Transl Psychiatry [Internet]. 2019 ;9. www.ncbi.nlm.nih.gov/pmc/articles/PMC6838457/.Google ScholarPubMed
Treccani, G, Ardalan, M, Chen, F, et al. S-ketamine reverses hippocampal dendritic spine deficits in Flinders sensitive line rats within 1 h of administration. Mol Neurobiol. 2019;56(11):7368–79.CrossRefGoogle ScholarPubMed
Duman, RS, Aghajanian, GK, Sanacora, G, Krystal, JH. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med. 2016;22(3):238–49.CrossRefGoogle ScholarPubMed
Dwivedi, Y. Brain-derived neurotrophic factor and suicide pathogenesis. Ann Med. 2010;42(2):8796.CrossRefGoogle ScholarPubMed
Duman, RS, Deyama, S, Fogaça, MV. Role of BDNF in the pathophysiology and treatment of depression: Activity-dependent effects distinguish rapid-acting antidepressants. Eur J Neurosci. 2021;53(1):126–39.CrossRefGoogle ScholarPubMed
Kavalali, ET, Monteggia, LM. Targeting homeostatic synaptic plasticity for treatment of mood disorders. Neuron. 2020;106(5):715–26.CrossRefGoogle ScholarPubMed
Lin, P-Y, Kavalali, ET, Monteggia, LM. Genetic dissection of presynaptic and postsynaptic BDNF-TrkB signaling in synaptic efficacy of CA3-CA1 synapses. Cell Rep. 2018;24(6):1550–61.CrossRefGoogle ScholarPubMed
Aleksandrova, LR, Aleksandrova, LR, Wang, YT et al. Ketamine and its metabolite, (2 R,6 R)-HNK, restore hippocampal LTP and long-term spatial memory in the Wistar-Kyoto rat model of depression. Mol Brain. 2020;13(1):92.CrossRefGoogle Scholar
Casarotto, PC, Girych, M, Fred, SM, et al. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell. 2021;184(5):12991313.e19.CrossRefGoogle ScholarPubMed
Yang, Y, Cui, Y, Sang, K, et al. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nat Publ Group. 2018;554(7692):317–22.Google ScholarPubMed
Gass, N, Becker, R, Reinwald, J, et al. Differences between ketamine’s short-term and long-term effects on brain circuitry in depression. Transl Psychiatry. 2019;9(1):172.CrossRefGoogle ScholarPubMed
Wu, M, Minkowicz, S, Dumrongprechachan, V, Hamilton, P, Kozorovitskiy, Y. Ketamine rapidly enhances glutamate-evoked dendritic spinogenesis in medial prefrontal cortex through dopaminergic mechanisms. Biol Psychiatry. 2021;89(11):1096–105.CrossRefGoogle ScholarPubMed
Wang, Y, Xie, L, Gao, C, et al. Astrocytes activation contributes to the antidepressant-like effect of ketamine but not scopolamine. Pharmacol Biochem Behav. 2018;170(April):18.CrossRefGoogle Scholar
Klein, ME, Chandra, J, Sheriff, S, Malinow, R. Opioid system is necessary but not sufficient for antidepressive actions of ketamine in rodents. Proc Natl Acad Sci U S A. 2020;117(5):2656–62.CrossRefGoogle Scholar
Matveychuk, D, Thomas, RK, Swainson, J, et al. Ketamine as an antidepressant: overview of its mechanisms of action and potential predictive biomarkers. Ther Adv Psychopharmacol. 2020;10:204512532091665.CrossRefGoogle ScholarPubMed
Lengvenyte, A, Olié, E, Courtet, P. Suicide has many faces, so does ketamine: A narrative review on ketamine’s antisuicidal actions. Curr Psychiatry Rep. 2019;21(12):132.CrossRefGoogle ScholarPubMed
Hosanagar, A, Schmale, A, LeBlanc, A. Ketamine’s rapid antisuicidal effects are not attenuated by Buprenorphine. J Affect Disord. 2021;282:252–4.CrossRefGoogle Scholar
Friesner, ID, Martinez, E, Zhou, H, et al. Ketamine normalizes high-gamma power in the anterior cingulate cortex in a rat chronic pain model. Mol Brain. 2020;13(1). https://pubmed.ncbi.nlm.nih.gov/32967695/.CrossRefGoogle Scholar
Gould, TD, Georgiou, P, Brenner, LA, et al. Animal models to improve our understanding and treatment of suicidal behavior. Transl Psychiatry. 2017;7(4):e1092.CrossRefGoogle ScholarPubMed
Scheggi, S, De Montis, MG, Gambarana, C. Making sense of rodent models of anhedonia. Int J Neuropsychopharmacol. 2018;21(11):1049–65.CrossRefGoogle ScholarPubMed
Ma, H, Li, C, Wang, J, et al. Amygdala-hippocampal innervation modulates stress-induced depressive-like behaviors through AMPA receptors. Proc Natl Acad Sci USA. 2021;118(6):e2019409118.CrossRefGoogle ScholarPubMed
McEwen, BS, Eiland, L, Hunter, RG, Miller, MM. Stress and anxiety: Structural plasticity and epigenetic regulation as a consequence of stress. Neuropharmacology. 2012;62(1):312.CrossRefGoogle ScholarPubMed
Duman, RS, Voleti, B. Signaling pathways underlying the pathophysiology and treatment of depression: Novel mechanisms for rapid-acting agents. Trends Neurosci. 2012;35(1):4756.CrossRefGoogle ScholarPubMed
Yuen, EY, Wei, J, Liu, W, et al. Repeated stress causes cognitive impairment by suppressing glutamate receptor expression and function in prefrontal cortex. Neuron. 2012;73(5):962–77.CrossRefGoogle ScholarPubMed
Krishnan, V, Nestler, EJ. The molecular neurobiology of depression. Nature. 2008;455(7215):894902.CrossRefGoogle ScholarPubMed
Li, N, Liu, R-J, Dwyer, JM, et al. Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry. 2011;69(8):754–61.CrossRefGoogle ScholarPubMed
Tornese, P, Sala, N, Bonini, D, et al. Chronic mild stress induces anhedonic behavior and changes in glutamate release, BDNF trafficking and dendrite morphology only in stress vulnerable rats. The rapid restorative action of ketamine. Neurobiol Stress. 2019;10:100160.CrossRefGoogle ScholarPubMed
Moda-Sava, RN, Murdock, MH, Parekh, PK, et al. Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation. Science. 2019;364(6436). www.ncbi.nlm.nih.gov/pubmed/30975859.CrossRefGoogle ScholarPubMed
Elhussiny, MEA, Carini, G, Mingardi, J, et al. Modulation by chronic stress and ketamine of ionotropic AMPA/NMDA and metabotropic glutamate receptors in the rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry. 2021;104:110033.CrossRefGoogle ScholarPubMed
Johnston, JN, Thacker, JS, Desjardins, C, et al. Ketamine rescues hippocampal reelin expression and synaptic markers in the repeated-corticosterone chronic stress paradigm. Front Pharmacol. 2020:11.CrossRefGoogle Scholar
Zhang, J, Qu, Y, Chang, L, Pu, Y, Hashimoto, K. (R)-ketamine rapidly ameliorates the decreased spine density in the medial prefrontal cortex and hippocampus of susceptible mice after chronic social defeat stress. Int J Neuropsychopharmacol. 2019;22(10):675–9.CrossRefGoogle ScholarPubMed
Song, T, Wu, H, Li, R, et al. Repeated fluoxetine treatment induces long-lasting neurotrophic changes in the medial prefrontal cortex of adult rats. Behav Brain Res. 2019;365:114–24.CrossRefGoogle ScholarPubMed
Fraga, DB, Camargo, A, Olescowicz, G, et al. Ketamine, but not fluoxetine, rapidly rescues corticosterone-induced impairments on glucocorticoid receptor and dendritic branching in the hippocampus of mice. Metab Brain Dis. 2021;36(8):2223–33.CrossRefGoogle Scholar
Brachman, RA, McGowan, JC, Perusini, JN, et al. Ketamine as a prophylactic against stress-induced depressive-like behavior. Biol Psychiatry. 2016;79(9):776–86.CrossRefGoogle ScholarPubMed
Amat, J, Dolzani, SD, Tilden, S, et al. Previous ketamine produces an enduring blockade of neurochemical and behavioral effects of uncontrollable stress. J Neurosci Off J Soc Neurosci. 2016;36(1):153–61.CrossRefGoogle ScholarPubMed
Rincón-Cortés, M, Grace, AA. Antidepressant effects of ketamine on depression-related phenotypes and dopamine dysfunction in rodent models of stress. Behav Brain Res. 2020;379:112367.CrossRefGoogle ScholarPubMed
Belujon, P, Grace, AA. Restoring mood balance in depression: Ketamine reverses deficit in dopamine-dependent synaptic plasticity. Biol Psychiatry. 2014;76(12):927–36.CrossRefGoogle ScholarPubMed
Rincón-Cortés, M, Grace, AA. Sex-dependent effects of stress on immobility behavior and VTA dopamine neuron activity: Modulation by ketamine. Int J Neuropsychopharmacol. 2017;20(10):823–32.CrossRefGoogle ScholarPubMed
Krishnan, V, Han, M-H, Graham, DL, et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell. 2007;131(2):391404.CrossRefGoogle ScholarPubMed
Donahue, RJ, Muschamp, JW, Russo, SJ, Nestler, EJ, Carlezon, WA. Effects of striatal ΔFosB overexpression and ketamine on social defeat stress-induced anhedonia in mice. Biol Psychiatry. 2014;76(7):550–8.CrossRefGoogle ScholarPubMed
Dong, C, Zhang, J-C, Yao, W, et al. Rapid and sustained antidepressant action of the mGlu2/3 receptor antagonist MGS0039 in the social defeat stress model: Comparison with ketamine. Int J Neuropsychopharmacol. 2017;20(3):228–36.Google ScholarPubMed
Newman, EL, Covington, HE, Suh, J, et al. Fighting females: Neural and behavioral consequences of social defeat stress in female mice. Biol Psychiatry. 2019;86(9):657–68.CrossRefGoogle ScholarPubMed
Wang, W, Liu, L, Yang, X, et al. Ketamine improved depressive-like behaviors via hippocampal glucocorticoid receptor in chronic stress induced- susceptible mice. Behav Brain Res. 2019;364:7584.CrossRefGoogle ScholarPubMed
Wickens, MM, Bangasser, DA, Briand, LA. Sex differences in psychiatric disease: A focus on the glutamate system. Front Mol Neurosci. 2018;11:197.CrossRefGoogle ScholarPubMed
Fitzgerald, PJ, Kounelis-Wuillaume, SK, Gheidi, A, et al. Sex- and stress-dependent effects of a single injection of ketamine on open field and forced swim behavior. Stress Amst Neth. 2021:19.CrossRefGoogle Scholar
Dossat, AM, Wright, KN, Strong, CE, Kabbaj, M. Behavioral and biochemical sensitivity to low doses of ketamine: Influence of estrous cycle in C57BL/6 mice. Neuropharmacology. 2018;130:3041.CrossRefGoogle ScholarPubMed
Zanos, P, Moaddel, R, Morris, PJ, et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature. 2016;533(7604):481–6.CrossRefGoogle ScholarPubMed
Okine, T, Shepard, R, Lemanski, E, Coutellier, L. Sex differences in the sustained effects of ketamine on resilience to chronic stress. Front Behav Neurosci. 2020; 14.CrossRefGoogle ScholarPubMed
Wang, S-M, Kim, N-Y, Na, H-R, et al. Rapid onset of intranasal esketamine in patients with treatment resistant depression and major depression with suicide ideation: A meta-analysis. Clin Psychopharmacol Neurosci. 2021;19(2):341–54.CrossRefGoogle ScholarPubMed
Marcantoni, WS, Akoumba, BS, Wassef, M, et al. A systematic review and meta-analysis of the efficacy of intravenous ketamine infusion for treatment resistant depression: January 2009–January 2019. J Affect Disord. 2020;277:831–41.CrossRefGoogle Scholar
Jones, JL, Mateus, CF, Malcolm, RJ, Brady, KT, Back, SE. Efficacy of ketamine in the treatment of substance use disorders: A systematic review. Front Psychiatry. 2018;9(JUL). www.frontiersin.org/article/10.3389/fpsyt.2018.00277/full.CrossRefGoogle ScholarPubMed
Martinotti, G, Chiappini, S, Pettorruso, M, et al. Therapeutic potentials of ketamine and esketamine in obsessive–compulsive disorder (OCD), substance use disorders (SUD) and eating disorders (ED): A review of the current literature. Brain Sci. 2021;11(7):856.CrossRefGoogle ScholarPubMed
Nock, MK, Hwang, I, Sampson, NA, Kessler, RC. Mental disorders, comorbidity and suicidal behavior: Results from the National Comorbidity Survey Replication. Mol Psychiatry. 2010;15(8):868–76.CrossRefGoogle ScholarPubMed
Witt, K, Potts, J, Hubers, A, et al. Ketamine for suicidal ideation in adults with psychiatric disorders: A systematic review and meta-analysis of treatment trials. Aust N Z J Psychiatry. 2020;54(1):2945.CrossRefGoogle ScholarPubMed
Canuso, CM, Singh, JB, Fedgchin, M, et al. Efficacy and safety of intranasal esketamine for the rapid reduction of symptoms of depression and suicidality in patients at imminent risk for suicide: Results of a double-blind, randomized, placebo-controlled study. Am J Psychiatry. 2018;175(7):620–30.CrossRefGoogle ScholarPubMed
Ionescu, DF, Fu, D-J, Qiu, X, et al. Esketamine nasal spray for rapid reduction of depressive symptoms in patients with major depressive disorder who have active suicide ideation with intent: Results of a phase 3, double-blind, randomized study (ASPIRE II). Int J Neuropsychopharmacol. 2020;24(1):2231.CrossRefGoogle Scholar
Fu, D-J, Ionescu, DF, Li, X, et al. Esketamine nasal spray for rapid reduction of major depressive disorder symptoms in patients who have active suicidal ideation with intent. J Clin Psychiatry. 2020;81(3):516–24.CrossRefGoogle ScholarPubMed
Olié, E, Nobile, B, Courtet, P. The antisuicidal effect of esketamine should be further investigated. J Clin Psychiatry. 2020;81(6):20l13482.CrossRefGoogle ScholarPubMed
Grunebaum, MF, Galfalvy, HC, Choo, T-HH, et al. Ketamine for rapid reduction of suicidal thoughts in major depression: A midazolam-controlled randomized clinical trial. Am J Psychiatry. 2018;175(4):327–35.CrossRefGoogle ScholarPubMed
Murrough, JW, Soleimani, L, DeWilde, KE, et al. Ketamine for rapid reduction of suicidal ideation: A randomized controlled trial. Psychol Med. 2015;45(16):3571–80.CrossRefGoogle ScholarPubMed
Ionescu, DF, Bentley, KH, Eikermann, M, et al. Repeat-dose ketamine augmentation for treatment-resistant depression with chronic suicidal ideation: A randomized, double blind, placebo controlled trial. J Affect Disord. 2019;243:516–24.CrossRefGoogle ScholarPubMed
Feeney, A, Hock, RS, Freeman, MP, et al. The effect of single administration of intravenous ketamine augmentation on suicidal ideation in treatment-resistant unipolar depression: Results from a randomized double-blind study. Eur Neuropsychopharmacol. 2021;49:122–32.CrossRefGoogle ScholarPubMed
McIntyre, RS, Rodrigues, NB, Lee, Y, et al. The effectiveness of repeated intravenous ketamine on depressive symptoms, suicidal ideation and functional disability in adults with major depressive disorder and bipolar disorder: Results from the Canadian Rapid Treatment Center of Excellence. J Affect Disord. 2020;274:903–10.CrossRefGoogle ScholarPubMed
Can, AT, Hermens, DF, Dutton, M, et al. Low dose oral ketamine treatment in chronic suicidality: An open-label pilot study. Transl Psychiatry. 2021;11(1):101.CrossRefGoogle ScholarPubMed
Domany, Y, Shelton, RC, McCullumsmith, CB. Ketamine for acute suicidal ideation. An emergency department intervention: A randomized, double‐blind, placebo‐controlled, proof‐of‐concept trial. Depress Anxiety. 2019;da.22975–da.22975.CrossRefGoogle Scholar
Domany, Y, McCullumsmith, CB. Single, fixed-dose intranasal ketamine for alleviation of acute suicidal ideation. An emergency department, trans-diagnostic approach: A randomized, double-blind, placebo-controlled, proof-of-concept trial. Arch Suicide Res. 2021;116.CrossRefGoogle Scholar
Henter, ID, Park, LT, Zarate, CA. Novel glutamatergic modulators for the treatment of mood disorders: Current status. CNS Drugs. 2021;35(5):527–43.CrossRefGoogle ScholarPubMed
Davis, AK, Barrett, FS, May, DG, et al. Effects of psilocybin-assisted therapy on major depressive disorder. JAMA Psychiatry. 2021;78(5):19.Google Scholar
Palhano-Fontes, F, Barreto, D, Onias, H, et al. Rapid antidepressant effects of the psychedelic ayahuasca in treatment-resistant depression: A randomized placebo-controlled trial. Psychol Med. 2019;49(4):655–63.CrossRefGoogle ScholarPubMed
Ross, S, Bossis, A, Guss, J, et al. Rapid and sustained symptom reduction following psilocybin treatment for anxiety and depression in patients with life-threatening cancer: A randomized controlled trial. J Psychopharmacol. 2016;30(12):1165–80.CrossRefGoogle ScholarPubMed
Carhart-Harris, R, Giribaldi, B, Watts, R, et al. Trial of psilocybin versus escitalopram for depression. N Engl J Med. 2021 Apr 15;384(15):1402–11.CrossRefGoogle ScholarPubMed
Ross, S, Agin-Liebes, G, Lo, S, et al. Acute and sustained reductions in loss of meaning and suicidal ideation following psilocybin-assisted psychotherapy for psychiatric and existential distress in life-threatening cancer. ACS Pharmacol Transl Sci. 2021;4(2):553–62.CrossRefGoogle ScholarPubMed
Ho, TC, Walker, JC, Teresi, GI, et al. Default mode and salience network alterations in suicidal and non-suicidal self-injurious thoughts and behaviors in adolescents with depression. Transl Psychiatry. 2021;11(1):38.CrossRefGoogle ScholarPubMed
Ordaz, SJ, Goyer, MS, Ho, TC, Singh, MK, Gotlib, IH. Network basis of suicidal ideation in depressed adolescents. J Affect Disord. 2018;226(July):92–9.CrossRefGoogle ScholarPubMed
Chin Fatt, CR, Jha, MK, Minhajuddin, A, et al. Dysfunction of default mode network is associated with active suicidal ideation in youths and young adults with depression: Findings from the T-RAD study. J Psychiatr Res. 2021;142:258–62.CrossRefGoogle Scholar
Auerbach, RP, Pagliaccio, D, Allison, GO, Alqueza, KL, Alonso, MF. Neural correlates associated with suicide and nonsuicidal self-injury in youth. Biol Psychiatry. 2020; https://pubmed.ncbi.nlm.nih.gov/32782140/.Google Scholar
Schwartz, J, Ordaz, SJ, Ho, TC, Gotlib, IH. Longitudinal decreases in suicidal ideation are associated with increases in salience network coherence in depressed adolescents. J Affect Disord. 2019;245:545–52.CrossRefGoogle ScholarPubMed
Geugies, H, Opmeer, EM, Marsman, JBC, et al. Decreased functional connectivity of the insula within the salience network as an indicator for prospective insufficient response to antidepressants. NeuroImage Clin. 2019;24:102064.CrossRefGoogle ScholarPubMed
Abdallah, CG, Ahn, K-H, Averill, LA, et al. A robust and reproducible connectome fingerprint of ketamine is highly associated with the connectomic signature of antidepressants. Neuropsychopharmacol. 2021;46(2):478–85.CrossRefGoogle ScholarPubMed
Evans, JW, Szczepanik, J, Brutsché, N, et al. Default mode connectivity in major depressive disorder measured up to 10 days after ketamine administration. Biol Psychiatry. 2018 Oct;84(8):582–90.CrossRefGoogle ScholarPubMed
Gärtner, M, Aust, S, Bajbouj, M, et al. Functional connectivity between prefrontal cortex and subgenual cingulate predicts antidepressant effects of ketamine. Eur Neuropsychopharmacol. 2019;29(4):501–8.CrossRefGoogle ScholarPubMed
Holmes, SE, Hinz, R, Conen, S, et al. Elevated translocator protein in anterior cingulate in major depression and a role for inflammation in suicidal thinking: A positron emission tomography study. Biol Psychiatry. 2018;83(1):61–9.CrossRefGoogle Scholar
Lewis, CP, Port, JD, Blacker, CJ, et al. Altered anterior cingulate glutamatergic metabolism in depressed adolescents with current suicidal ideation. Transl Psychiatry. 2020;10(1).CrossRefGoogle ScholarPubMed
Nugent, AC, Farmer, C, Evans, JW, et al. Multimodal imaging reveals a complex pattern of dysfunction in corticolimbic pathways in major depressive disorder. Hum Brain Mapp. 2019;40(13):3940–50.CrossRefGoogle ScholarPubMed
Morris, LS, Costi, S, Tan, A, et al. Ketamine normalizes subgenual cingulate cortex hyper-activity in depression. Neuropsychopharmacology. 2020;45(6):975–81.CrossRefGoogle ScholarPubMed
Dai, D, Lacadie, CM, Holmes, SE, et al. Ketamine normalizes the structural alterations of inferior frontal gyrus in depression. Chronic Stress. 2020;4: 2470547020980681.CrossRefGoogle ScholarPubMed
Chen, M-H, Lin, W-C, Tu, P-C, et al. Antidepressant and antisuicidal effects of ketamine on the functional connectivity of prefrontal cortex-related circuits in treatment-resistant depression: A double-blind, placebo-controlled, randomized, longitudinal resting fMRI study. J Affect Disord. 2019;259:1520.CrossRefGoogle ScholarPubMed
Gilbert, JR, Ballard, ED, Galiano, CS, Nugent, AC, Zarate, CA. Magnetoencephalographic correlates of suicidal ideation in major depression. Biol Psychiatry Cogn Neurosci Neuroimaging. 2020;5(3):354–63.Google ScholarPubMed
Cepeda, MS, Kern, DM, Canuso, CM. At baseline patients treated with esketamine have higher burden of disease than other patients with treatment resistant depression: Learnings from a population based study. Depress Anxiety. 2021;38(5):521–7.CrossRefGoogle ScholarPubMed
Fazel, S, Runeson, B. Suicide. N Engl J Med. 2020;382(3):266–74.CrossRefGoogle ScholarPubMed
Réus, GZ, Nacif, MP, Abelaira, HM, et al. Ketamine ameliorates depressive-like behaviors and immune alterations in adult rats following maternal deprivation. Neurosci Lett. 2015;584:83–7.CrossRefGoogle ScholarPubMed
Chen, M-H, Li, C-T, Lin, W-C, et al. Rapid inflammation modulation and antidepressant efficacy of a low-dose ketamine infusion in treatment-resistant depression: A randomized, double-blind control study. Psychiatry Res. 2018 Nov;269(August):207–11.CrossRefGoogle ScholarPubMed
Galvão-Coelho, NL, de Menezes Galvão, AC, de Almeida, RN, et al. Changes in inflammatory biomarkers are related to the antidepressant effects of Ayahuasca. J Psychopharmacol. 2020;34(10):1125–33.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×