Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-02T09:44:35.664Z Has data issue: false hasContentIssue false

Chapter 13 - Miscellaneous Skeletal and Connective Tissue Disorders

Published online by Cambridge University Press:  26 January 2024

David R. Gambling
Affiliation:
University of California, San Diego
M. Joanne Douglas
Affiliation:
University of British Columbia, Vancouver
Grace Lim
Affiliation:
University of Pittsburgh
Get access

Summary

This chapter discusses a variety of miscellaneous conditions found during pregnancy, each with different degrees of rarity. It focuses on the pathophysiologic changes that occur with each disease in order to highlight the impact on both anesthetic and obstetric management. However, as some of the conditions described have a wide and varied organ involvement, firm management conclusions cannot be made. Each case should be assessed individually and may necessitate a multidisciplinary approach involving obstetricians, anesthesiologists, and neonatologists.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gorlin, RJ, Goltz, RW. Multiple nevoid basal cell epithelioma, jaw cysts and bifid ribs: a syndrome. N Engl J Med 1960;262:908912.Google Scholar
Bree, AF, Shah, MR, BCNS Colloquium Group. Consensus statement from the first international colloquium on basal cell nevus syndrome. Am J Med Genet A 2011;155A:20912097.Google Scholar
Lin, MJ, Dubin, DP, Khorasani, H, et al. Basal cell nevus syndrome: from DNA to therapeutics. Clin Dermatol 2020;38:467476.Google Scholar
John, AM, Schwartz, RA. Basal cell naevus syndrome: an update on genetics and treatment. Br J Dermatology 2016;174:6876.Google Scholar
Bagga, R, Garg, S, Muthyala, T, et al. Gorlin syndrome presenting with primary infertility and bilateral calcified ovarian fibromas. J Obstet Gynaecol 2019;39:874876.Google Scholar
Ono, M, Nishijima, S, Amagata, T, et al. Two consecutive births after ovarian preservation in a Gorlin syndrome patient. J Obstet Gynaecol 2015;35:9697.Google Scholar
Muzio, LL. Nevoid basal cell carcinoma syndrome (Gorlin syndrome). Orphanet J Rare Diseases 2008;3:32. https://doi.org/10.1186/1750-1172-3-32Google Scholar
Southwick, GJ, Schwartz, RA. The basal cell nevus syndrome. Disasters occurring among a series of 36 patients. Cancer 1979;44:22942305.Google Scholar
Yoshizumi, J, Vaughan, RS, Jasani, B. Pregnancy associated with Gorlin’s syndrome. Anaesthesia 1990;45:10461048.Google Scholar
Fox, R, Eckford, S, Hirschowitz, L, et al. Refractory gestational hypertension due to a renin secreting ovarian fibrothecoma associated with Gorlin’s syndrome. Br J Obstet Gynaecol 1994;101:10151017.Google Scholar
Dasari, K, Clayton, RA. An obstetric patient with Gorlin syndrome, Meigs’ syndrome and peripartum cardiomyopathy. Anaesthesia Cases 2015;3:5052.Google Scholar
Noonan, JA, Ehmke, DA. Associated non cardiac malformations in children with congenital heart disease. J Pediatr 1963;63:468470.Google Scholar
Van der Burgh, I. Noonan syndrome. Orphanet J Rare Diseases 2007;2:4. https://doi.org/10.1186/1750-1172-2-4Google Scholar
Turner, AM. Noonan syndrome. J Paediatr Child Health 2014;50:e1420.Google Scholar
Linglart, L, Gelb, BD. Congenital heart defects in Noonan syndrome: diagnosis, management, and treatment. Am J Med Genet 2020;184C:7380.Google Scholar
Briggs, BJ, Dickerman, JD. Bleeding disorders in Noonan Syndrome. Pediatr Blood Cancer 2012;58:167172.Google Scholar
Lee, CK, Chang, BS, Hong YM, et al. Spinal deformities in Noonan syndrome: a clinical review of sixty cases. J Bone Joint Surg 2001;83:14951502.Google Scholar
Berkowitz, ID, Raja, SN, Bender, KS, et al. Dwarfs: pathophysiology and anesthetic implications. Anesthesiology 1990;73:739759.Google Scholar
Asahi, Y, Fujii, R, Usui, N, et al. Repeated general anesthesia in patient with Noonan syndrome. Anesth Prog 2015;62:7173.Google Scholar
Singh Bajwa, SJ, Gupta, S, Kaur, J, et al. Anesthetic considerations and difficult airway management in a case of Noonan syndrome. Saudi J Anaesth 2011;5:345347.Google Scholar
Dadabhoy, ZP, Winnie, AP. Regional anesthesia for cesarean section in a parturient with Noonan’s syndrome. Anesthesiology 1988;68:636638.Google Scholar
McLure, HA, Yentis, SM. General anaesthesia for Caesarean section in a parturient with Noonan’s syndrome. Br J Anaesth 1996;77:665668.Google Scholar
Magboul, MM. Anaesthetic management of emergency caesarean section in a patient with Noonan’s syndrome. Middle East J Anaesth 2000;15:611617.Google Scholar
Cullimore, AJ, Smedstad, KG, Brennan, BG. Pregnancy in women with Noonan syndrome: report of two cases. Obstet Gynecol 1999;5:813815.Google Scholar
Grange, CS, Heid, R, Lucas, SB, et al. Anaesthesia in a parturient with Noonan’s syndrome. Can J Anaesth 1998;45:332336.Google Scholar
Chase, CJ, Holak, EJ, Pagel, PS. Anesthetic implications of emergent Cesarean section in a parturient with Noonan syndrome and bacterial endocarditis. J Clin Anesth 2013;25:403406.Google Scholar
Siegrist, KK, Deegan, RJ, Dumas, SD, et al. Severe cardiopulmonary disease in a parturient with Noonan Syndrome. Semin Cardiothorac Vasc Anesth 2020;24:364368.Google Scholar
Evans, DG, Howard, E, Giblin, C, et al. Birth incidence and prevalence of tumor prone syndromes: estimates from a UK family register service. Am J Med Genet A 2010;152A:327332.Google Scholar
Gutmann, DH, Ferner, RE, Listernick, RH, et al. Neurofibromatosis type 1. Nat Rev Dis Primers 2017;3:17004. https://doi.org/10.1038/nrdp.2017.4. PMID: 28230061Google Scholar
Gutmann, DH, Aylsworth, A, Carey, JC, et al. The diagnostic evaluation and multidisciplinary management of neurofibromatosis 1 and neurofibromatosis 2. JAMA 1997;278:5157.Google Scholar
Parsons, CM, Canter, RJ, Khatri, VP. Surgical management of neurofibromatosis. Surg Oncol Clin N Am 2009;18:175196.Google Scholar
Mahdi, J, Goyal, MS, Griffith, J, et al. Non optic pathway tumors in children with neurofibromatosis type 1. Neurology 2020;95:e10521059.Google Scholar
Ferner, RE, Gutman, DH. International consensus statement on malignant peripheral nerve sheath tumors in neurofibromatosis. Cancer Res 2002;62:15731577.Google Scholar
Yap, YS, Munusamy, P, Lim, C, et al. Breast cancer in women with neurofibromatosis type 1 (NF1): a comprehensive case series with molecular insights into its aggressive phenotype. Breast Cancer Res Treat 2018;171:719735.Google Scholar
Uusitalo, E, Rantanen, M, Kallionpaa, RA, et al. Distinctive cancer associations in patients with neurofibromatosis type 1. J Clin Oncol 2016;34:19781986.Google Scholar
Smith, MJ, Bowers, NL, Bulman, M, et al. Revisiting neurofibromatosis type 2 diagnostic criteria to exclude LZTR1-related schwannomatosis. Neurology 2017;88:8792.Google Scholar
Evans, DGR. Neurofibromatosis type 2 (NF2): a clinical and molecular review. Orphanet J Rare Dis 2009;4:16. https://doi.org/10.1186/1750-1172-4-16Google Scholar
Evans, DG, Bowers, NL, Tobi, S, et al. Schwannomatosis: a genetic and epidemiological study. J Neurol Neurosurg Psychiatry 2018;89 :1215–1219.Google Scholar
Kenborg, L, Boschini, C, Bidstrup, PE, et al. Pregnancy outcome in women with neurofibromatosis 1: a Danish population-based cohort study. J Med Genet 2022;59:237242.Google Scholar
Kjaer, TK, Anderson, EW, Olsen, M, et al. Forming and ending marital or co-habiting relationships in a Danish population-based cohort of individuals with neurofibromatosis 1. Eur J Hum Genet 2020;28:10281033.Google Scholar
Cesaretti, C, Melloni, G, Quagliarini, D, et al. Neurofibromatosis type 1 and pregnancy: maternal complications and attitudes about prenatal diagnosis. Am J Med Genet Part A 2013;161A:386388.Google Scholar
Ramos-Zúñiga, R, Saldaña-Koppel, D. Neurofibromatosis type 1 and pregnancy: the transformation of a nodular to cystic neurofibroma in the cervical region. Surg Neurol Int 2015;6:s487489.Google Scholar
Xiong, M, Gilchrest, BA, Obayan, OK. Eruptive neurofibromatosis in pregnancy. JAAD Case Rep 2015;1:2324.Google Scholar
Yahya, H, Sani, H. Eruptive neurofibromas in pregnancy. Ann Afr Med 2020;19:150152.Google Scholar
Geller, M, Mezitis, SGE, Nunes, FP, et al. Progesterone and estrogen receptors in neurofibromas in patients with NF1.Clin Med Path 2008;1:9397.Google Scholar
Well, L, Jaeger, A, Kehrer-Sawatzki, H, et al. The effect of pregnancy on growth-dynamics of neurofibromas in Neurofibromatosis type 1. PLoS One 2020;15:e0232031.Google Scholar
Jett, K, Friedman, JM. Clinical and genetic aspects of neurofibromatosis 1. Genet Med 2010;12:111.Google Scholar
Leppävirta, J, Kallionpää, RA, Uusitalo, E, et al. The pregnancy in neurofibromatosis 1: a retrospective register-based total population study. Am J Med Genet A 2017;173: 26412648.Google Scholar
Terry, AR, Barker, Ii FG, Leffert, L. Neurofibromatosis type 1 and pregnancy complications: a population-based study. Am J Obstet Gynecol 2013;209:46.el–8. https://doi.org/10.1016/j.ajog.2013.03.029Google Scholar
Nelson, DB, Greer, L, Wendel, G. Neurofibromatosis and pregnancy: a report of maternal cardiopulmonary compromise. Obstet Gynecol 2010;116:507509.Google Scholar
Cecchi, R. Frati, P, Capri, O, et al. A rare case of sudden death due to hypotension during caesarean section in a woman suffering from pheochromocytoma and neurofibromatosis. J Forensic Sci 2013;58:16361639.Google Scholar
Dounas, M, Mercier, FJ, Lhuissier, C, et al. Epidural analgesia for labor in a parturient with neurofibromatosis. Can J Anaesth 1995;42:420424.Google Scholar
Sakai, T, Vallejo, MC, Shannon, KT. A parturient with neurofibromatosis type 2: anesthetic and obstetric considerations for delivery. Int J Obstet Anesth 2005;14:332335.Google Scholar
Spiegel, JE, Hapgood, A, Hess, PE. Epidural anesthesia in a parturient with neurofibromatosis type 2 undergoing cesarean section. Int J Obstet Anesth 2005;14: 336339.Google Scholar
Govil, N, Adabala, V. Anesthesia management in a case of Von Recklinghausen neurofibromatosis. Korean J Anesthesiol 2019;72:194195.Google Scholar
Fox, CJ, Tomajian, S, Kaye, AJ, et al. Perioperative management of neurofibromatosis type 1. Ochsner J 2012;12:111121.Google Scholar
Mendonça, FT, de Moura, IB, Pellizzaro, D, et al. Anesthetic management in a patient with neurofibromatosis: a case report and literature review. Acta Anaesthesiol Belg 2016;67:4852.Google Scholar
Esler, MD, Durbridge, J, Kirby, S. Epidural haematoma after dural puncture in a parturient with neurofibromatosis. Br J Anaesth 2001;87:932934.Google Scholar
Glavan, JM, Hofkamp, MP. Usefulness of intrapartum magnetic resonance imaging for a parturient with neurofibromatosis type 1 during induction of labor for preeclampsia. Proc (Bayl Univ Med Cent) 2018;31:9293.Google Scholar
Remón-Ruiz, P, Aliaga-Verdugo, A, Guerrero-Vázquez, R. Pheochromocytoma in neurofibromatosis type 1 during pregnancy. Gynecol Endocrinol 2017;33:9395.Google Scholar
Hirsch, NP, Murphy, A, Radcliffe, JJ. Neurofibromatosis: clinical presentations and anaesthetic implications. Br J Anaesth 2001;86:555564.Google Scholar
Moorthy, S, Radpour, S, Weisberger, EC. Anesthetic management of a patient with tracheal neurofibroma. J Clin Anesth 2005;17:290292.Google Scholar
Nishizawa, T, Tsuchiya, T, Terasawa, Y, et al. Neurofibromatosis type 1 with subarachnoid haemorrhage from the left vertebral arteriovenous fistula: case presentation and literature review. BMJ Case Reports 2021;14:e239880.Google Scholar
Richard, S, Gardie, B, Couvé, S, et al. Von Hippel–Lindau, : how a rare disease illuminates cancer biology. Semin Cancer Biol 2013;23:2637.Google Scholar
Lonser, RR, Glenn, GM, Walther, M, et al. von Hippel-Lindau disease. Lancet 2003;361;20592067.Google Scholar
Wanebo, JE, Lonser, RR, Glenn, GM, et al. The natural history of hemangioblastomas of the central nervous system in patients with von Hippel-Lindau disease. J Neurosurg 2003;98:8294.Google Scholar
Huang, JS, Huang, CJ, Chen, SK, et al. Associations between VHL genotype and clinical phenotype in familial von Hippel-Lindau disease. Eur J Clin Invest 2007;37:492500.Google Scholar
Li, SR, Nicholson, KJ, Mccoy, KL, et al. Clinical and biochemical features of pheochromocytoma characteristic of Von Hippel-Lindau syndrome. World J Surg 2020;44:570577.Google Scholar
Plu, I, Sec, I, Barrès, D, et al. Pregnancy, cesarean, and pheochromocytoma: a case report and literature review. J Forensic Sci 2013;58:10751079.Google Scholar
Adekola, H, Soto, E, Lam, J, et al. von Hipple Lindau disease and pregnancy: what an obstetrician should know. Obstet Gynecol Surv 2013;68:655662.Google Scholar
Ye, DY, Bakhtian, KD, Asthagiri, AR, et al. Effect of pregnancy on hemangioblastoma development and progression in von Hippel-Lindau disease. J Neurosurg 2012;117:818824.Google Scholar
Laviv, Y, Wang, JL, Anderson, MP, et al. Accelerated growth of hemangioblastoma in pregnancy: the role of proangiogenic factors and upregulation of hypoxia-inducible factor (HIF) in a non-oxygen-dependent pathway. Neurosurg Rev 2019;42:209226.Google Scholar
Frantzen, C, Kruizinga, RC, Van Asselt, SJ, et al. Pregnancy-related hemangioblastoma progression and complications in Von Hippel-Lindau disease. Neurology 2012;79: 793796.Google Scholar
Delisle, M-F, Valimohamed, F, Money, D, et al. Central nervous system complications of von Hippel-Lindau disease: case report and literature review. J Matern Fetal Medicine 2000;9:242247.Google Scholar
Othmane, IS, Shields, C, Singh, A, et al. Postpartum cerebellar herniation in von Hippel-Lindau syndrome. Am J Ophthalmol 1999;128:387389.Google Scholar
Ortega-Martínez, M, Cabezudo, JM, Fernández-Portales, I, et al. Multiple filum terminale hemangioblastomas symptomatic during pregnancy. J Neurosurg Spine 2007;7:254258.Google Scholar
Hayden, MG, Gebhart, R, Kalanithi, P, et al. Von Hippel-Lindau disease in pregnancy: a brief review. J Clin Neurosci 2009;16:611613.Google Scholar
Berl, M, Dubois, L, Belkacem, H, et al. Von Hippel–Lindau disease and obstetric anaesthesia: 3 case reports. Ann Fr Anaesth Reanim 2003;22:356362.Google Scholar
McCarthy, T, Leighton, R, Mushambi, M. Spinal anaesthesia for caesarean section in a patient with von Hippel Lindau disease. Int J Obstetric Anesth 2010;19:461462.Google Scholar
Wang, A, Sinatra, RS. Epidural anesthesia for cesarean section in a patient with von Hippel-Lindau disease and multiple sclerosis. Anesth Analg 1999;88:10831084.Google Scholar
Burnette, MS, Mann, TS, Berman, DJ, et al. Brain tumor, pheochromocytoma, and pregnancy: a case report of a cesarean delivery in a patient with Von Hippel-Lindau disease. A & A Practice 2019;13:289291.Google Scholar
Malfait, F, Francomano, C, Byers, P, et al. The 2017 International Classification of the Ehlers-Danlos Syndrome. Am J Med Genet Part C Semin Med Genet 2017;175C:826.Google Scholar
Jobling, R, D’Souza, R, Baker, N, et al. The collagenopathies: review of clinical phenotypes and molecular correlations. Curr Rheumatol Rep 2014;16:394. https://doi.org/10.1007/s11926-013-0394-3Google Scholar
Christophersen, C, Adams, JE. Ehlers-Danlos syndrome. J Hand Surg Am 2014;39:25422544.Google Scholar
Khalil, H, Rafi, J, Hla, TT. A case report of obstetrical management of a pregnancy with hypermobile Ehlers-Danlos syndrome and literature review. Obstet Med 2013;6:8082.Google Scholar
Shalhub, S, Byers, PH, Hicks, KL, et al. A multi-institutional experience in the aortic and arterial pathology in individuals with genetically confirmed vascular Ehlers-Danlos syndrome. J Vasc Surg 2019;70:15431554.Google Scholar
Pepin, MG, Schwarze, U, Rice, KM, et al. Survival is affected by mutation type and molecular mechanism in vascular Ehlers-Danlos syndrome (EDS type IV). Genet Med 2014;16:881888.Google Scholar
Lind, J, Wallenburg, HCS. Pregnancy and the Ehlers-Danlos syndrome: a retrospective study in a Dutch population. Acta Obstet Gynecol Scand 2002;81:293300.Google Scholar
Murray, ML, Pepin, M, Peterson, S, et al. Pregnancy-related deaths and complications in women with vascular Ehlers-Danlos syndrome. Genet Med 2014;16:874880.Google Scholar
Regitz-Zagrosek, V, Roos-Hesselink, JW, Bauersachs, J, et al. 2018 ESC Guidelines for the management of cardiovascular diseases during pregnancy. EUR Heart J 2018;39:31653241.Google Scholar
Kang, J, Hanif, M, Mirza, E, et al. Ehlers-Danlos syndrome: a review. Eur J Obstet Gynecol Reprod Biol 2020;255:118123.Google Scholar
Sundelin, HEK, Stephansson, O, Johansson, K, et al. Pregnancy outcome in joint hypermobility syndrome and Ehlers-Danlos syndrome. Acta Obstet Gynecol Scand 2016;96:114119.Google Scholar
Spiegel, E, Nicholls-Dempsey, L, Czuzoj-Shulman, N, et al. Pregnancy outcomes in Ehlers-Danlos syndrome. J Matern Neonatal Med 2020;2020:17. https://doi.org/10.1080/14767058.2020.1767574Google Scholar
Karthikeyan, A, Venkat-Raman, N. Hypermobile Ehlers-Danlos syndrome and pregnancy. Obstet Med 2018;11:104109.Google Scholar
Castori, M, Morlino, S, Dordoni, C, et al. Gynecologic and obstetric implications of the joint hypermobility syndrome (a.k.a Ehlers-Danlos Syndrome Hypermobility Type) in 82 Italian patients. Am J Med Genet A 2012;158A:21762182.Google Scholar
Volkov, N, Nisenbalt, V, Ohel, G, et al. Ehlers-Danlos syndrome: insights on obstetric aspects. Obstet Gynecol Surv 2007;62:5157.Google Scholar
Anstey, A, Mayne, K, Winter, M, et al. Platelet and coagulation studies in Ehlers-Danlos syndrome. Br J Dermatol 1991;125:155163.Google Scholar
Wiesmann, T, Castori, M, Malfait, F, et al. Recommendations for anesthesia and perioperative management in patients with Ehlers-Danlos syndrome(s). Orphanet J Rare Dis 2014;9:109. https://doi.org/10.1186/s13023-014-0109-5Google Scholar
Carness, JM, Lenart, MJ. Spinal anaesthesia for Cesarean section in a patient with vascular type Ehlers-Danlos syndrome. Case Rep Anesthesiol 2018;2018:1924725. https://doi.org/10.1155/2018/1924725Google Scholar
Campbell, N, Rosaeg, OP. Anesthetic management of a parturient with Ehlers-Danlos syndrome type IV. Can J Anaesth 2002;49:493496.Google Scholar
Fedoruk, K, Chong, K, Sermer, M, et al. Anesthetic management of a parturient with hypermobility phenotype but possible vascular genotype Ehlers-Danlos syndrome. Can J Anesth 2015;62:13081312.Google Scholar
Brighouse, D, Guard, B. Anaesthesia for caesarean section in a patient with Ehlers-Danlos syndrome type IV. Br J Anaesth 1992;69:517519.Google Scholar
Hakim, AJ, Grahame, R, Norris, P, et al. Local anaesthetic failure in joint hypermobility syndrome. J R Soc Med 2005;98:8485.Google Scholar
Schubart, JR, Schaefer, E, Janicki, P, et al. Resistance to local anesthesia in people with the Ehlers-Danlos Syndromes presenting for dental surgery. J Dent Anesth Pain Med 2019;19:261270.Google Scholar
Glynn, JC, Yentis, SM. Epidural analgesia in a parturient with classic type Ehlers-Danlos syndrome. Int J Obstet Anesth 2004;14:7879.Google Scholar
Zhou, Z, Rewari, A, Shanthanna, H. Management of chronic pain in Ehlers-Danlos syndrome. Two case reports and a review of the literature. Medicine (Baltimore) 2018;97:45.e13115. https://doi.org/10.1097/MD.0000000000013115Google Scholar
Halko, GJ, Cobb, R, Abeles, M. Patients with type IV Ehlers-Danlos syndrome may be predisposed to atlantoaxial subluxation. J Rheumatol 1995;22:21522155.Google Scholar
Sood, V, Robinson, DA, Suri, I. Difficult intubation during rapid sequence induction in a parturient with Ehlers-Danlos syndrome, hypermobility type. Int J Obstet Anesth 2009;18:408412.Google Scholar
Jones, TL, Ng, C. Anaesthesia for caesarean section in a patient with Ehlers Danlos syndrome associated with postural orthostatic tachycardia syndrome. Int J Obstet Anesth 2008;17:365369.Google Scholar
Northrup, H, Aronow, ME, Bebin, EM, et al. Updated international tuberous sclerosis complex diagnostic criteria and surveillance and management recommendations. Pediatr Nephrol 2021;123:5066.Google Scholar
Tyburczy, ME, Dies, KA, Glass, J, et al. Mosaic and intronic mutations in TSC1/TSC2 explain the majority of TSC patients with no mutation identified by conventional testing. PLoS Genet 2015;11:p.e1005637.Google Scholar
Randell, E, McNamara, R, Davies, DM, et al. The use of everolimus in the treatment of neurocognitive problems in tuberous sclerosis (TRON): study protocol for a randomised controlled trial. Trials 2016;17:110.Google Scholar
Randle, SC. Tuberous sclerosis complex: a review. Pediatr Ann 2017;46:e166e171.Google Scholar
de Waele, L, Lagae, L, Mekahli, D. Tuberous sclerosis complex: the past and the future. Pediatr Nephrol 2015;30:17711780.Google Scholar
von Ranke, FM, Zanetti, G, Silva, JLP, et al. Tuberous sclerosis complex: state-of-the-art review with a focus on pulmonary involvement. Lung 2015;193:619627.Google Scholar
Franz, DN, Krueger, DA. mTOR inhibitor therapy as a disease modifying therapy for tuberous sclerosis complex. Am J Med Genet Semin Med Genet 2018;178:365373.Google Scholar
Bissler, JJ, McCormack, FX, Young, LR, et al. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N Engl J Med 2008;358:140151.Google Scholar
McCormack, FX, Gupta, N, Finlay, GR, et al. Official American Thoracic Society/Japanese Respiratory Society Clinical Practice Guidelines: Lymphangioleiomyomatosis Diagnosis and Management. Am J Respir Crit Care Med 2016;194:748761.Google Scholar
Zhan, Y, Shen, L, Xu, W, et al. Functional improvements in patients with lymphangioleiomyomatosis after sirolimus: an observational study. Orphanet J Rare Dis 2018;13:18.Google Scholar
Weidman, DR, Pole, JD, Bouffet, E, et al. Dose-level response rates of mTOR inhibition in tuberous sclerosis complex-related subependymal giant cell astrocytoma. Pediatr Blood Cancer 2015;62:17541760.Google Scholar
Yamamura, M, Kojima, T, Koyama, M, et al. Everolimus in pregnancy: case report and literature review. J Obstet Gynaecol Res 2017;43:13501352.Google Scholar
Zapardiel, I, Delafuente-Valero, J, Bajo-Arenas, JM. Renal angiomyolipoma during pregnancy: review of the literature. Gynecol Obstet Invest 2011;72:217219.Google Scholar
Bowditch, J, Russell, R, McCready, S. General anaesthesia for caesarean section in a woman with tuberous sclerosis. Int J Obstet Anesth 2017;31:110111.Google Scholar
Phillips, WD, Vincent, A. Pathogenesis of myasthenia gravis: update on disease types, models, and mechanisms. 2016 F1000Research, 5. https://doi.org/10.12688/f1000research.8206.1Google Scholar
Casetta, I, Groppo, E, Gennaro, R, et al. Myasthenia gravis: a changing pattern of incidence. J Neurol 2010;257:20152019.Google Scholar
Hopkins, AN, Alshaeri, T, Akst, SA, et al. Neurologic disease with pregnancy and considerations for the obstetric anesthesiologist. Semin Perinatol 2014;38:359369.Google Scholar
Berrih-Aknin, S, Frenkian-Cuvelier, M, Eymard, B. Diagnostic and clinical classification of autoimmune myasthenia gravis. J Autoimmun 2014;48:143148.Google Scholar
McGrogan, A, Sneddon, S, de Vries, CS. The incidence of myasthenia gravis: a systematic literature review. Neuroepidemiology 2010;34:171183.Google Scholar
Gilhus, NE, Skeie, GO, Romi, F, et al. Myasthenia gravis – autoantibody characteristics and their implications for therapy. Nat Rev Neurol 2016;12:259268.Google Scholar
Gilhus, NE, Verschuuren, JJ. Myasthenia gravis: subgroup classification and therapeutic strategies. Lancet Neurol 2015:14:10231036.Google Scholar
Jaretzki, A, Barohn, RJ, Ernstoff, RM, et al. Myasthenia gravis: recommendations for clinical research standards. Task Force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America. Neurology 2000;55:1623.Google Scholar
Mao, Z-F, Mo, X-A, Qin, C, et al. Course and prognosis of myasthenia gravis: a systematic review. Eur J Neurol 2010;17:913921.Google Scholar
Gilhus, NE. Myasthenia gravis can have consequences for pregnancy and the developing child. Front Neurol 2020;11:554. https://doi.org/10.3389/fneur.2020.00554Google Scholar
Sanders, DB, Wolfe, GI, Benatar, M, et al. International consensus guidance for management of myasthenia gravis. Neurology 2016;87:419425.Google Scholar
Narayanaswami, P, Sanders, DB, Wolfe, G, et al. International consensus guidance for management of myasthenia gravis. Neurology 2021;96:114122.Google Scholar
Wolfe, GI, Kaminski, HJ, Aban, IB, et al. Randomized trial of thymectomy in myasthenia gravis. N Engl J Med 2016;375:511522.Google Scholar
Almeida, C, Coutinho, E, Moreira, D, et al. Myasthenia gravis and pregnancy: anaesthetic management – a series of cases. Eur J Anaesthesiol 2010;27:985990.Google Scholar
Ducci, RD, Lorenzoni, PJ, Kay, CSK, et al. Clinical follow-up of pregnancy in myasthenia gravis patients. Neuromuscul Disord 2017;27:352357.Google Scholar
Norwood, F, Dhanjal, M, Hill, M, et al. Myasthenia in pregnancy: best practice guidelines from a UK multispecialty working group. J Neurology, Neurosurg Psychiatry 2014;85:538543.Google Scholar
Madi, A, Bransburg-Zabary, S, Maayan-Metzger, A, et al. Tumor-associated and disease-associated autoantibody repertoires in healthy colostrum and maternal and newborn cord sera. J Immunol 2015;194:52725281.Google Scholar
Blichfeldt-Lauridsen, L, Hansen, BD. Anesthesia and myasthenia gravis. Acta Anaesthesiol Scand 2012;56:1722.Google Scholar
Tanovska, N, Novotni, G, Sazdova-Burneska, S, et al. Myasthenia gravis and associated diseases. Open Access Maced J Med Sci 2018;6:472478.Google Scholar
Sheikh, S, Alvi, U, Soliven, B, et al. Clinical medicine drugs that induce or cause deterioration of myasthenia gravis: an update. J Clin Med 2021;10:120.Google Scholar
Muckler, VC, O’Brien, JM, Matson, SE, et al. Perianesthetic implications and considerations for myasthenia gravis. J Perianesth Nurs 2019;34:415.Google Scholar
Ammundsen, HB, Sørensen, MK, Gätke, MR. Succinylcholine resistance. Br J Anaesth 2015;115:818821.Google Scholar
Mouri, H, Jo, T, Matsui, H, et al. Effect of sugammadex on postoperative myasthenic crisis in myasthenia gravis patients. Anesth Analg 2020;130:367373.Google Scholar
Tsukada, S, Shimizu, S, Fushimi, K. Rocuronium reversed with sugammadex for thymectomy in myasthenia gravis. Eur J Anaesthesiol 2021;38:850855.Google Scholar
Schulz, JB, Boesch, S, Bürk, K, et al. Diagnosis and treatment of Friedreich ataxia: a European perspective. Nat Rev Neurol 2009;5:222234.Google Scholar
Vankan, P. Prevalence gradients of Friedreich’s Ataxia and R1b haplotype in Europe co-localize, suggesting a common Palaeolithic origin in the Franco-Cantabrian ice age refuge. J Neurochem 2013;126:1120.Google Scholar
Dürr, A, Cossee, M, Agid, Y, et al. Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med 1996;335:11691175.Google Scholar
Patel, M, Isaacs, CJ, Seyer, L, et al. Progression of Friedreich ataxia: quantitative characterization over 5 years. Ann Clin Transl Neurol 2016;3:684694.Google Scholar
Weidemann, F, Störk, S, Liu, D, et al. Cardiomyopathy of Friedreich ataxia. J Neurochem 2013;126:8893.Google Scholar
Cnop, M, Mulder, H, Igoillo-Esteve, M. Diabetes in Friedreich ataxia. J Neurochem 2013;126:94102.Google Scholar
Kearney, M, Orrell, RW, Fahey, M, et al. Pharmacological treatments for Friedreich ataxia. Cochrane Database Syst Revi 2016;8:CD007791.Google Scholar
Friedman, LS, Paulsen, EK, Schadt, KA, et al. Pregnancy with Friedreich ataxia: a retrospective review of medical risks and psychosocial implications. Am J Obstet Gynecol 2010;203:e15.Google Scholar
Ruys, TPE, Roos-Hesselink, JW, Pijuan-Domènech, A, et al. Is a planned caesarean section in women with cardiac disease beneficial? Heart 2015;101:530536.Google Scholar
Bruner, JP, Yeast, JD. Pregnancy associated with Friedreich ataxia. Obstet Gynecol 1990;76:976977.Google Scholar
Arendt, KW, Lindley, KJ. Obstetric anesthesia management of the patient with cardiac disease. Int J Obstet Anesth 2019;37:7385.Google Scholar
Guclu, Yildirim. Using sugammadex in a patient with Friedreich ataxia: a case report. J Med Case Rep 2014;5:232233.Google Scholar
Groth, KA, Hove, H, Kyhl, K, et al. Prevalence, incidence, and age at diagnosis in Marfan Syndrome. Orphanet J Rare Dis 2015;10:110.Google Scholar
von Kodolitsch, Y, de Backer, J, Schüler, H, et al. Perspectives on the revised Ghent criteria for the diagnosis of Marfan syndrome. Appl Clin Genet 2015;8:137155.Google Scholar
Dietz, HC, Cutting, CR, Pyeritz, RE, et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 1991;352:337339.Google Scholar
Zeyer, KA, Reinhardt, DP. Fibrillin-containing microfibrils are key signal relay stations for cell function. J Cell Commun Signal 2015;9:309325.Google Scholar
Pyeritz, RE. Recent progress in understanding the natural and clinical histories of the Marfan syndrome. Trends Cardiovasc Med 2016;26:423428.Google Scholar
Dietz, HC. Potential phenotype–genotype correlation in Marfan Syndrome. Circ Cardiovasc Genet 2015;8:256260.Google Scholar
Kole, A, Faurisson, F. The voice of 12,000 patients: experiences and expectations of rare disease patients on diagnosis and care in Europe. EURORDIS-Rare Diseases 2009. Available from: www.eurordis.org/publications/the-voice-of-12000-patients/ [last accessed September 21, 2022].Google Scholar
Loeys, BL, Dietz, HC, Braverman, AC, et al. The revised Ghent nosology for the Marfan syndrome. J Med Genet 2010;47:476485.Google Scholar
Sheikhzadeh, S, Kusch, ML, Rybczynski, M, et al. A simple clinical model to estimate the probability of Marfan syndrome. QJM 2012;105:527–35.Google Scholar
Lacro, RV, Dietz, HC, Sleeper, LA, et al. Atenolol versus losartan in children and young adults with Marfan’s syndrome. N Engl J Med 2014;371:20612071.Google Scholar
Radke, RM, Baumgartner, H. Diagnosis and treatment of Marfan syndrome: an update. Heart 2014;100:13821391.Google Scholar
Kuperstein, R, Cahan, T, Yoeli-Ullman, R, et al. Risk of aortic dissection in pregnant patients with the Marfan syndrome. Am J Cardiol 2017;119:132137.Google Scholar
Curry, R, Gelson, E, Swan, L, et al. Marfan syndrome and pregnancy: maternal and neonatal outcomes. BJOG 2014;121:610617.Google Scholar
Goland, S, Elkayam, U. Pregnancy and Marfan syndrome. Ann Cardiothorac Surg 2017;6: 642653.Google Scholar
Kim, SY, Wolfe, DS, Taub, CC. Cardiovascular outcomes of pregnancy in Marfan’s syndrome patients: a literature review. Congenit Heart Dis 2018;13:203209. https://doi.org/https://dx.doi.org/10.1111/chd.12546Google Scholar
Waterman, AL, Feezor, RJ, Lee, WA, et al. Endovascular treatment of acute and chronic aortic pathology in patients with Marfan syndrome. J Vasc Surg 2012;55:12341241.Google Scholar
Grabenwöger, M, Alfonso, F, Bachet, J, et al. Thoracic endovascular aortic repair (TEVAR) for the treatment of aortic diseases: a position statement from the European Association for Cardio-Thoracic Surgery (EACTS) and the European Society of Cardiology (ESC), in collaboration with the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur J Cardiothorac Surg 2012;42:15581563.Google Scholar
Shu, C, Fang, K, Dardik, A, et al. Pregnancy-associated type B aortic dissection treated with thoracic endovascular aneurysm repair. Ann Thorac Surg 2014;97:582587.Google Scholar
Mehta, LS, Warnes, CA, Bradley, E, et al. Cardiovascular considerations in caring for pregnant patients: a scientific statement from the American Heart Association. Circulation 2020;141:e884e903.Google Scholar
Erbel, R, Aboyans, V, Boileau, C, et al. 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases. Eur Heart J 2014;35:28732926.Google Scholar
Hiratzka, LF, Bakris, GL, Beckman, JA, et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM Guidelines for the diagnosis and management of patients with thoracic aortic disease. Circulation 2010;2010:121. https://doi.org/10.1161/CIR.0b013e3181d4739eGoogle Scholar
Donnelly, RT, Pinto, NM, Kocolas, I, et al. The immediate and long-term impact of pregnancy on aortic growth rate and mortality in women with Marfan syndrome. J Am Coll Cardiol 2012;60:224229.Google Scholar
Smith, K, Gros, B. Pregnancy-related acute aortic dissection in Marfan syndrome: a review of the literature. Congenit Heart Dis 2017;12:251260.Google Scholar
Weinstein, J, Shinfeld, A, Simchen, M, et al. Anesthesia in parturients presenting with Marfan syndrome. Isr Med Assoc J 2021;23:437440.Google Scholar
Mesfin, A, Ahn, NU, Carrino, JA, et al. Ten-year clinical and imaging follow-up of dural ectasia in adults with Marfan syndrome. Spine J 2013;13:6267.Google Scholar
Yang, HJ, Baek, IC, Park, SM, et al. Inadequate spinal anesthesia in a parturient with Marfan’s syndrome due to dural ectasia. Korean J Anesthesiol 2014;67:s104105.Google Scholar
Navti, OB, Kinning, E, Vasudevan, P, et al. Review of perinatal management of arthrogryposis at a large UK teaching hospital serving a multiethnic population. Prenat Diagn 2010;30:4956.Google Scholar
Filges, I, Hall, JG. Failure to identify antenatal multiple congenital contractures and fetal akinesia – proposal of guidelines to improve diagnosis. Prenat Diagn 2012;33:6174.Google Scholar
Pehlivan, D, Bayram, Y, Gunes, N, et al. The genomics of arthrogryposis, a complex trait: candidate genes and further evidence for oligogenic inheritance. Am J Hum Genet 2019;105:132150.Google Scholar
Kalampokas, E, Kalampokas, T, Sofoudis, C, et al. Diagnosing arthrogryposis multiplex congenita: a review. ISRN Obstet Gynecol 2012;2012:264918. https://doi.org/10.5402/2012/264918Google Scholar
Bamshad, M, van Heest, AE, Pleasure, D. Arthrogryposis: a review and update. J Bone Joint Surg 2009;91:4046.Google Scholar
Hall, JG, Aldinger, KA, Tanaka, KI. Amyoplasia revisited. Am J Med Genet Part A 2014; 164A:700730.Google Scholar
Hall, JG. Uterine structural anomalies and arthrogryposis-death of an urban legend. Am J Med Genet Part A 2013;161A:8288.Google Scholar
Ma, L, Yu, X. Arthrogryposis multiplex congenita: classification, diagnosis, perioperative care, and anesthesia. Front Med 2017;11:4852.Google Scholar
Oberoi, GS, Kaul, HL, Gill, IS, et al. Anaesthesia in arthrogryposis multiplex congenita: case report. Can J Anaesth 1987;34:288290.Google Scholar
Duffy, J, Iyer, J. Successful management of pregnancy in arthrogryposis multiplex congenita. Internet J Gynecol Obstet 2006;7:2.Google Scholar
Hardwick, JCR, Irvine GA. Obstetric care in arthrogryposis multiplex congenita. BJOG 2002;109:13031304.Google Scholar
Benonis, J, Habib, AS. Ex utero intrapartum treatment procedure in a patient with arthrogryposis multiplex congenita, using continuous spinal anesthesia and intravenous nitroglycerin for uterine relaxation. Int J Obstet Anesth 2008;17:5356.Google Scholar
Castro, J, Abreu-Silva, J, Godinho, C, et al. Successful pregnancy in a woman with arthrogryposis multiplex congenita. BMJ Case Rep 2013;2013:bcr2013201621.Google Scholar
Hackett, A, Giles, W, James, S. Successful vaginal delivery in a woman with amyoplasia. Aust N Z J Obstet Gynaecol 2000;40:461463.Google Scholar
Quance, DR. Anaesthetic management of an obstetrical patient with arthrogryposis multiplex congenita. Can J Anaesth 1988;35:612614.Google Scholar
Rani Singhal, S, Paul, A, Nanda, S, et al. Successful pregnancy outcome by caesarean section in a woman with arthrogryposis multiple congenita (AMC). Afr J Reprod Health 2010;14:233234.Google Scholar
Rozkowski, A, Smyczek, D, Birnbach, D. Continuous spinal anesthesia for cesarean delivery in a patient with arthrogryposis multiplex congenita: a clinical report. Reg Anesth 1996;21:477479.Google Scholar
Spooner, L. Caesarean section using a combined spinal epidural technique in a patient with arthrogryposis multiplex congenita. Internet J Gynecol Obstet 2000;9:282285.Google Scholar
Isaacson, G, Drum, ET. Difficult airway management in children and young adults with arthrogryposis. World J Otorhinolaryngol Head Neck Surg 2018;4:122125.Google Scholar
Sadacharam, K, Ahmad, M. Epidural anesthesia for labor pain and cesarean section in a parturient with arthrogryposis multiplex congenita. J Anaesthesiol Clin Pharmacol 2016;32:410411.Google Scholar
Martin, S, Tobias, JD. Perioperative care of the child with arthrogryposis. Paediatr Anaesth 2006;16:3137.Google Scholar
Baines, DB, Douglas, ID, Overton JH. Anaesthesia for patients with arthrogryposis multiplex congenita: what is the risk of malignant hyperthermia? Anaesth Intensive Care 1986;14:370372.Google Scholar
Marini, JC, Forlino, A, Bächinger, HP, et al. Osteogenesis imperfecta. Nat Rev Dis Primers 2017;3:119.Google Scholar
Zhytnik, L, Simm, K, Salumets, A, et al. Reproductive options for families at risk of osteogenesis imperfecta: a review. Orphanet J Rare Dis 2020;15:120.Google Scholar
Van Dijk, FS, Sillence, DO. Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment. Am J Med Genet A 2014;164:14701481.Google Scholar
Sillence, DO, Senn, A, Danks, DM. Genetic heterogeneity in osteogenesis imperfecta. J Med Genet 1979;16:101116.Google Scholar
Götherström, C, Westgren, M, Shaw, SWS, et al. Pre- and postnatal transplantation of fetal mesenchymal stem cells in osteogenesis imperfecta: a two-center experience. Stem Cells Transl Med 2014;3:255264.Google Scholar
Ruiter-Ligeti, J, Czuzoj-Shulman, N, Spence, AR, et al. Pregnancy outcomes in women with osteogenesis imperfecta: a retrospective cohort study. Am J Perinatol 2016;36:828831.Google Scholar
Byers, PH, Pyott, SM. Recessively inherited forms of osteogenesis imperfecta. Annu Rev Genet 2012;46:475497.Google Scholar
Rao, R, Cuthbertson, D, Nagamani, SCS, et al. Pregnancy in women with osteogenesis imperfecta: pregnancy characteristics, maternal, and neonatal outcomes. Am J Obstet Gynecol MFM 2021;3:1000362.Google Scholar
Di Lieto, A, Pollio, F, de Falco, M, et al. Collagen content and growth factor immunoexpression in uterine lower segment of type IA osteogenesis imperfecta: relationship with recurrent uterine rupture in pregnancy. Am J Obstet Gynecol 2003;189:594600.Google Scholar
Cozzolino, M, Perelli, F, Maggio, L, et al. Management of osteogenesis imperfecta type I in pregnancy: a review of literature applied to clinical practice Arch Gynecol Obstet 2016;293:11531159.Google Scholar
Kawakita, T, Fries, M, Singh, J, et al. Pregnancies complicated by maternal osteogenesis imperfecta type III: a case report and review of literature. Clin Case Rep 2018;6:12521257.Google Scholar
Bellur, S, Jain, M, Cuthbertson, D, et al. Cesarean delivery is not associated with decreased at-birth fracture rates in osteogenesis imperfecta. Genet Med 2016;18:570576.Google Scholar
Yimgang, DP, Shapiro, JR. Pregnancy outcomes in women with osteogenesis imperfecta. J Matern Fetal Neonatal Med 2015;29:23582362.Google Scholar
Long-Bellil, L, Mitra, M, Iezzoni, LI, et al. Experiences and unmet needs of women with physical disabilities for pain relief during labor and delivery. Disabil Health J 2017;10:440444.Google Scholar
Creaney, M, Mullane, D, Casby, C, et al. Ultrasound to identify the lumbar space in women with impalpable bony landmarks presenting for elective caesarean delivery under spinal anaesthesia: a randomised trial. Int J Obstet Anesth 2016;28:1216.Google Scholar
Perlas, A, Chaparro, LE, Chin, KJ. Lumbar neuraxial ultrasound for spinal and epidural anesthesia. Reg Anesth Pain Med 2016;41:251260.Google Scholar
Bowens, C, Dobie, KH, Devin, CJ, et al. An approach to neuraxial anaesthesia for the severely scoliotic spine. Br J Anaesth 2013;111:807811.Google Scholar
Bojanić, K, Kivela, JE, Gurrieri, C, et al. Perioperative course and intraoperative temperatures in patients with osteogenesis imperfecta. Eur J Anaesthesiol 2011;28:370375.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×