Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-02T08:09:15.062Z Has data issue: false hasContentIssue false

5 - Out of the Soil

Soil (Dark Matter Biodiversity) and Societal ‘Collapses’ from Mesoamerica to Mesopotamia and Beyond

Published online by Cambridge University Press:  19 August 2019

Partha Dasgupta
Affiliation:
University of Cambridge
Peter Raven
Affiliation:
Missouri Botanical Garden
Anna McIvor
Affiliation:
University of Cambridge
Get access

Summary

Much of what we can say about the ebbs and flows of ancient societies comes embedded in and directly from the soil. The soil provides evidence about its past and about the qualities it provided for ecological health and human resources. This is important to the topic of this book because the soil, or the pedosphere, is the ultimate domain of ecosystem services and holds the Earth’s highest biodiversity. In this chapter, we begin with a review of biodiversity and erosion in the underappreciated soil ecosystem and then consider societal collapses, extinctions in a sense, mainly through the lenses of geoarchaeology or archaeology using many tools of the geosciences.

Type
Chapter
Information
Biological Extinction
New Perspectives
, pp. 138 - 174
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amundson, R., Berhe, A. A., Hopmans, J. W., Olson, C., Sztein, A. E. & Sparks, D. L. 2015. Soil and human security in the 21st century. Science, 348: 1261071-1-6.Google Scholar
Arnalds, A. 2005. Approaches to landcare : A century of soil conservation in Iceland. Land Degradation and Development, 16: 113125.Google Scholar
Arnalds, A. 2008. Soils of Iceland. Jökull, 58: 409421.Google Scholar
Arnalds, Ó., Gísladóttir, F. O. & Sigurjonsson, H. 2001. Sandy deserts of Iceland: An overview. Journal of Arid Environments, 47: 259371.Google Scholar
Artzy, M. & Hillel, D. 1988. A defense of the theory of progressive soil salinization in ancient Mesopotamia. Geoarchaeology, 3(3): 235238.CrossRefGoogle Scholar
Bardgett, R. D. & van der Putten, W. H. 2014. Below ground biodiversity and ecosystem functioning. Nature, 515: 505511.Google Scholar
Beach, T. 2016. Morals to the story of the ‘Mayacene’ from geoarchaeology and paleoecology. In Exploring Frameworks for Tropical Forest Conservation: Managing Production and Consumption for Sustainability. Paris: UNESCO.Google Scholar
Beach, T. & Luzzadder-Beach, S. 2008. Aggradation around Kinet Höyük, an archaeological mound in the Eastern Mediterranean, Turkey. Geomorphology, 101(3): 416428.Google Scholar
Beach, T., Luzzadder-Beach, S., Cook, D., Dunning, N., Kennett, D., Krause, S., Terry, R., Trein, D. & Valdez, F. 2015. Ancient Maya impacts on the Earth’s surface: an early anthropocene analog? Quaternary Science Reviews, 124: 130.Google Scholar
Beach, T., Luzzadder-Beach, S., Cook, D., Krause, S., Doyle, C., Eshleman, S., Wells, G., Dunning, N., Brennan, M., Brokaw, N., Cortes-Rincon, M., Hammond, G., Terry, R., Trein, D. & Ward, S. 2018. Stability and instability on Maya Lowlands tropical hillslope soils. Geomorphology, 205: 185208.Google Scholar
Beach, T., Luzzadder-Beach, S., Dunning, N., Jones, J., Lohse, J., Guderjan, T., Bozarth, S., Millspaugh, S. & Bhattacharya, T. 2009. A review of human and natural changes in Maya Lowlands wetlands over the Holocene. Quaternary Science Reviews, 28: 17101724.Google Scholar
Beach, T., Luzzadder-Beach, S. & Flood, J. 2017. Synthesis of geoarchaeological research around Kinet Höyük, Hatay, Turkey. In Kozal, E., Akar, M., Heffron, Y., Çilingiroğlu, Ç., Şerifoğlu, T. E., Çakırlar, C., Ünlüsoy, S. & Jean, É. (Eds.), Festschrift for Marie-Henriette and Charles Gates, Veröffentlichungen zur Kultur und Geschichte des Alten Orients und des Alten Testaments: 771802. Münster, Germany: Ugarit Verlag.Google Scholar
Beach, T., Luzzadder-Beach, S., Sweetwood, R. V., Farrell, P., Mazeau, D. & Terry, R. E. 2017. Soils and agricultural carrying capacity. In Hutson, S. (Ed.), Ancient Maya Commerce: Multidisciplinary Research at Chunchucmil: 197219. Boulder: University Press of Colorado.Google Scholar
Bennett, H. H. 1939. Soil Conservation. New York: McGraw-Hill.Google Scholar
Berry, K. A. & McAnany, P. 2007. Reckoning with the wetlands and ancient Maya society. In Scarborough, V. L. & Clark, J. E., The Political Economy of Ancient Mesoamerica: Transformations in the Formative and Classic Periods. Albuquerque: University of New Mexico Press.Google Scholar
Blaikie, P. & Brookfield, H. C. 1987. Land Degradation and Society. London: Methuen.Google Scholar
Blöndal, S. 1987. Afforestation and reforestation in Iceland. Arctic and Alpine Research, 19(4): 526529.CrossRefGoogle Scholar
Brevik, E. C., Hartemink, A. E. 2010. Early soil knowledge and the birth and development of soil science. Catena, 83(1): 2333.Google Scholar
Brooks, Nick. 2006. Cultural responses to aridity in the Middle Holocene and increased social complexity. Quaternary International, 151(1): 2949.Google Scholar
Buckley, B., Anchukaitis, K., Penny, D., Fletcher, R., Cook, E., Sano, M., Nam, L., Wichienkeeo, A., Minh, T. & Hong, T. 2010. Climate as a contributing factor in the demise of Angkor, Cambodia. Proceedings of the National Academy of Science, 107(15): 67486752.Google Scholar
Butzer, K. W. 1976. Early Hydraulic Civilization in Egypt: A Study in Cultural Ecology. Chicago: University of Chicago Press.Google Scholar
Butzer, K. W. 1992. The Americas before and after 1492: An introduction to current geographical research. Annals, Association of American Geographers, 82: 345368.Google Scholar
Butzer, K. W. 2012. Collapse, environment and society. Proceedings of the National Academy of Sciences, 109: 36323639.Google Scholar
Butzer, K. & Endfield, G. 2012. Critical perspectives on historical collapse, Proceedings of the National Academy of Sciences, 109: 36283633.Google Scholar
Butzer, K. W. & Harris, S. 2007. Geoarchaeological approaches to the environmental history of Cyprus: Explication and critical evaluation. Journal of Archaeological Science, 34: 1932–1952.Google Scholar
Catlin, K. A. 2016. Archaeology for the Anthropocene: Scale, soil, and the settlement of Iceland. Anthropocene, 15: 1321, http://dx.doi.org/10.1016/j.ancene.2015.12.005.Google Scholar
Certini, G. & Scalenghe, R. 2011. Anthropogenic soils are the golden spikes for the Anthropocene. Holocene, 2(8): 12691274.CrossRefGoogle Scholar
Chappell, A., Baldock, J. & Sanderman, J. 2015. The global significance of omitting soil erosion from soil organic carbon cycling schemes. Nature Climate Change, 6: 187191, doi:10.1038/ncimate2829.Google Scholar
Chase, A. F., Chase, D. Z., Awe, J. J., Weishampel, J. F., Iannone, G., Moyes, H., Yaeger, J. & Brown, M. K. 2014. The use of LiDAR in understanding the ancient Maya landscape: Caracol and Western Belize. Advances in Archaeological Practice 2(3): 147160.Google Scholar
Claussen, M., Kubatzki, C., Brovkin, V., Ganopolski, A., Hoelzmann, P. & Pachur, H. J. 1999. Simulation of an abrupt change in Saharan vegetation in the mid-Holocene. Geophysical Research Letters, 26(14): 20372040.Google Scholar
Cordova, C. E. & Parsons, J. 1997. Geoarchaeology of an Aztec dispersed village. Geoarchaeology, 12(3): 177210.Google Scholar
Davidson, N. C. 2014. How much wetland has the world lost? Long-term and recent trends in global wetland area. Marine and Freshwater Research, 65: 934941.Google Scholar
Decaëns, T., Jimenez, J. J., Gioia, C., Measey, G. J. & Lavelle, P. 2006. The values of soil animals for conservation biology. European Journal of Soil Biology, 42: S23S38.Google Scholar
DeLong, C., Cruse, J. & Weiner, J. 2015. The soil degradation paradox: Compromising our resources when we need them the most. Sustainability, 7: 866879.CrossRefGoogle Scholar
deMenocal, P. B., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L. & Yarusinsky, M. 2000. Abrupt onset and termination of the African Humid Period: Rapid climate responses to gradual insolation forcing. Quaternary Science Reviews, 19: 347361.Google Scholar
Díaz, R. J. & Rosenberg, R. 2008. Spreading dead zones and consequences for marine ecosystems. Science, 321: 926929.Google Scholar
Dotterweich, M. 2013. The history of human induced soil erosion: Geomorphic legacies, early descriptions and researches, and the development of soil conservation – a global synopsis. Geomorphology, 201: 134.Google Scholar
Douglas, P. M., Demarest, A. A., Brenner, M. & Canuto, M. A. 2016. Impacts of climate change on the collapse of lowland Maya civilization. Annual Review of Earth and Planetary Sciences, 44: 613645.CrossRefGoogle Scholar
Dugmore, A. J., McGovern, T. H., Vestereinsson, O., Arneborg, J., Streeter, R. & Keller, C. 2012. Cultural adaptation, compounding vulnerabiltities and conjunctures in Norse Greenland. Proceedings of the National Academy of Sciences, 109(10): 36583663.Google Scholar
Dunning, N., Beach, T. & Luzzadder-Beach, S. 2012. Kax and kol: Collapse and resilience in lowland Maya civilization. Proceedings of the National Academy of Science, 109: 36523657.Google Scholar
Dunning, N., Griffin, R., Jones, J., Terry, R., Larsen, Z. & Carr, C. 2015. Life on the edge: Tikal in a Bajo landscape. In Lentz, D., Dunning, N. & Scarborough, V. (Eds.), Tikal: Paleoecology of an Ancient Maya City: 95123. Cambridge: Cambridge University Press.Google Scholar
Endfield, G. H. 2012. The resilience and adaptive capacity of social-environmental systems in Colonial Mexico. Proceedings of the National Academy of Sciences. 109(10): 36763681.Google Scholar
FAO and ITPS. 2015. Status of the World’s Soil Resources (SWSR) – Main Report. Rome, Italy: Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils.Google Scholar
Flohr, P., Fleitmann, D., Matthews, R., Matthews, W. & Black, S. 2016. Evidence of resilience to past climate change in Southwest Asia: Early farming communities and the 9.2 and 8.2 ka events, Quaternary Science Review, 136: 2339.Google Scholar
Fuente, B. de la, Staines, C. L. & Hernández, A. A. 1999. Art: Sentries of eternity. In Arellano Hernández., A., de la Fuente, B. & Staines, C. L. (Eds.), The Mayas of the Classical Period: 141226. Mexico City: Consejo Nacional para la Cultura y las Artes (CONACULTA).Google Scholar
Gettleman, J. 2017. Loss of fertile land fuels ‘looming crisis’ across Africa. New York Times, 29 July 2017, 1. www.nytimes.com/2017/07/29/world/africa/africa-climate-change-kenya-land-disputes.html.Google Scholar
Gibbs, H. K. & Salmon, J. M. 2015. Mapping the world’s degraded land. Applied Geography, 57: 1221.Google Scholar
Gill, J. L., Williams, J. W., Jackson, S. T., Lininger, K. B. & Robinson, G. S. 2009. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science, 326(5956): 11001103.Google Scholar
Gisladottir, G., Erlendsson, E., Lal, R. & Bigham, J. 2010. Erosional effects on terrestrial resources over the last millennium in Reykjanes, southwest Iceland. Quaternary Research, 73: 2032.Google Scholar
Glaser, B. 2007. Prehistorically modified soils of Central Amazonia: A model for sustainable agriculture in the 21st century? Philosophical Transactions of the Royal Society, Series B, 362: 187196.Google Scholar
Gleick, P. H. 2014. Water, drought, climate change, and conflict in Syria. Weather, Climate, and Society, 6: 331340.Google Scholar
Greipsson, S. 2012. Catastrophic soil erosion in Iceland: Impact of long-term climate change, compounded natural disturbances and human driven land-use changes. Catena, 98: 4154.Google Scholar
Grove, A. T. & Rackham, O. 2001. The Nature of Mediterranean Europe: An Ecological History. New Haven, CT: Yale University Press.Google Scholar
Hauser, S. & Norgrove, L. 2016. The sustainability of the world’s soils. In Pritchard, B., Ortiz, R. & Shekar, M. (Eds.), Routledge Handbook of Food and Nutrition Security: 201213. London: Earthscan/Routledge.Google Scholar
Hedin, L. O., Brookshire, E. N. J., Menge, D. N. L. & Barron, A. R. 2009. The nitrogen paradox in tropical forest ecosystems. Annual Review of Ecology, Evolution, and Systematics, 40: 613635.Google Scholar
Helms, D. 2010. Hugh Hammond Bennett and the creation of the Soil Conservation Service. Journal of Soil and Water Conservation, 65(2): 37A47A.Google Scholar
Hightower, J. N., Butterfield, A. C. & Weishampel, J. F. 2014. Quantifying ancient Maya land use legacy effects on contemporary rainforest canopy structure. Remote Sensing, 6: 1071610732.Google Scholar
Hillel, D. 1994. Rivers of Eden: The Struggle for Water and the Quest for Peace in the Middle East. New York: Oxford University Press.Google Scholar
Hoggarth, J. A., Breitenbach, S. F. M., Culleton, B. J., Ebert, C. E., Masson, M. A. & Kennett, D. J. 2016. The political collapse of Chichén Itzá in climatic and cultural context. Global and Planetary Change, 138: 2542.CrossRefGoogle Scholar
Hooke, R. LeB. 2000. On the history of humans as geomorphic agents. Geology, 28: 843846.Google Scholar
Hornbeck, R. 2012. The enduring impact of the American dust bowl: Short- and long-run adjustments to environmental catastrophe. American Economic Review, 102(4): 14771507.Google Scholar
Houston, S. & Inomata, T. 2009. The Classic Maya. Cambridge World Archaeology Series. Cambridge: Cambridge University Press.Google Scholar
Hsiang, S. M., Burke, M. & Miguel, E. 2013. Quantifying the influence of climate on human conflict. Science, 341: 1235367.Google Scholar
Jacobsen, T. 1982. Salinity and Irrigation Agriculture in Antiquity: Diyala Basin Archaeological Report on the Essential Results, 1957–1958. Bibliotheca Mesopotamia 14. Malibu: Udenda.Google Scholar
Kelley, C. P., Mohtadi, S., Cane, M. A., Seager, R. & Kushnir, Y. 2015. Climate change in the fertile crescent and implications of the recent Syrian drought. Proceedings of the National Academy of Sciences, 112: 32413246.Google Scholar
Kennett, D. & Beach, T. 2014. Archaeological and environmental lessons for the Anthropocene from the Classic Maya collapse. Anthropocene, 4: 88100.Google Scholar
Kröpelin, S., Verschuren, D., Lézine, A. M., Eggermont, H., Cocquyt, C., Francus, P., Cazet, J. P., Fagot, M., Rumes, B., Russell, J. M., Darius, F., Conley, D. J., Schuster, M., von Suchodoletz, H. & Engstrom, D. R. 2008. Climate-driven ecosystem succession in the Sahara: The past 6000 years. Science, 320(5877): 765768.Google Scholar
Kuper, R. & Kröpelin, S. 2006. Climate-controlled Holocene occupation in the Sahara: Motor of Africa’s evolution. Science, 313(5788): 803807.Google Scholar
Lal, R. 2003. Soil erosion and the global carbon budget. Environment International, 29: 437450.Google Scholar
Lea, D. W., Pak, D. K., Peterson, L. C. & Hughen, K. A. 2003. Synchroneity of tropical and high-latitude atlantic temperatures over the Last Glacial Termination. Science, 301: 13611364.Google Scholar
Lindert, P. H. 2000. Shifting Ground: The Changing Agricultural Soils of China and Indonesia. Cambridge, MA: MIT Press.Google Scholar
Ling, L. L., Schneider, T., Peoples, A. J., Spoering, A. L., Engels, I., Conlon, B. P., Mueller, A., Schäberle, T. F., Hughes, D. E., Epstein, S., Jones, M., Lazarides, L., Steadman, V. A., Cohen, D. R., Felix, C. R., Fetterman, K. A., Millett, W. P., Nitti, A. G., Zullo, A. M., Chen, C. & Kim Lewis, K. 2015. A new antibiotic kills pathogens without detectable resistance. Nature, 517: 455459.Google Scholar
Lowdermilk, W. C. 1953. Conquest of the Land through Seven Thousand Years. Washington, DC: United States of America Department of Agriculture. http://landcare.sc.egov.usda.gov/pdf.asp?productID=109&ConquestThru7000.pdf.Google Scholar
Luzzadder-Beach, S., Beach, T. & Dunning, N. 2012. Maya models and distant mirrors: Wetland fields, drought, and the Maya abandonment. Proceedings of the National Academy of Sciences, 109: 36463651.Google Scholar
Luzzadder-Beach, S., Beach, T., Hutson, S. & Krause, S. 2016. Sky-Earth, lake-sea: Climate and water in Maya history and landscape. Antiquity, 90: 426442. doi:10.15184/aqy.2016.38.Google Scholar
Magee, P. 2004. The impact of southeast Arabian intra-regional trade on settlement location and organization during the Iron Age II period. Arabian Archaeology and Epigraphy, 15: 2442.Google Scholar
Maina, J., de Moel, H., Zinke, J., Madin, J., McClanahan, T. & Vermaat, J. 2013. Human deforestation outweighs future climate change impacts of sedimentation on coral reefs. Nature Communications, 4: 1986 doi:10.1038/ncomms2986.Google Scholar
Malhi, Y., Doughty, C. E., Galetti, M., Smith, F. A., Svenning, J.-C. & Terborgh, J. W. 2016. Megafauna and ecosystem function from the Pleistocene to the Anthropocene. Proceedings of the National Academy of Sciences, 113(4): 838846.CrossRefGoogle ScholarPubMed
Marsh, G. P. 1864. Man and Nature: or, Physical Geography as Modified by Human Action. New York: Charles Scribner.Google Scholar
McLeman, R. A., Dupre, J., Berrang Ford, L., Ford, J., Gajewski, K. & Marchildon, G. 2014. What we learned from the Dust Bowl: Lessons in science, policy, and adaptation. Population and Environment, 35(4): 417440.Google Scholar
McNeill, J. R. 2000. Something New under the Sun: An Environmental History of the 20th-Century World. New York: Norton.Google Scholar
McNeill, J. R. & Winiwarter, V. (Eds.). 2006. Soils and Societies: Perspectives from Environmental History. United Kingdom: White Horse Press.Google Scholar
Mejías Moreno, M., Benítez de Lugo, E. L., del Pozo Tejado, J. & Moraleda Sierra, J. 2014. Los primeros aprovechamientos de aguas subterráneas en la Península Ibérica. Las motillas de Daimiel en la Edad del Bronce de La Mancha. Boletín Geológico y Minero, 125(4): 455474.Google Scholar
Melville, E. G. 1994. A Plague of Sheep: Environmental Consequences of the Conquest of Mexico. Cambridge: Cambridge University Press.Google Scholar
Montgomery, D. R. 2007a. Soil erosion and agricultural sustainability. Proceedings of the National Academy of Sciences, 104: 1326813272.Google Scholar
Montgomery, D. R. 2007b. Dirt: Erosion of Civilizations. Berkeley: University of California Press.Google Scholar
Montgomery, D. R. 2017. Growing a Revolution: Bringing Our Soil Back to Life. New York: Norton.Google Scholar
Mora Pacheco, K. G. 2012. Livestock farming in the Saquencipá Valley, new kingdom of Granada, Colombia in the 16th and 17th centuries. Pastos, 42(2): 251272.Google Scholar
Nannipieri, I., Ascher, J., Ceccherini, M. T., Landi, L., Pietramellara, G. & Renella, G. 2003. Microbial diversity and soil functions. European Journal of Soil Science, 54: 655670.Google Scholar
Nigh, R. & Diemont, S. A. W. 2013. The Maya milpa: Fire and the legacy of living soil. Frontiers in Ecology and the Environment, 11(s1): e45e54.Google Scholar
Orgiazzi, A., Panagos, P., Yigini, Y., Dunbar, M. B., Gardi, C., Montanarella, L. & Ballabio, C. 2016. A knowledge-based approach to estimating the magnitude and spatial patterns of potential threats to soil biodiversity. Science of the Total Environment, 545–546: 1120.Google Scholar
Pepper, I. L., Gerba, C. P., Newby, D. T. & Rice, C. W. 2009. Soil: A public health threat or saviour? Critical Reviews in Environmental Science and Technology, 39: 416432.Google Scholar
Perry, E., Payton, A., Pederson, B. & Velazquez-Oliman, G. 2009. Groundwater geochemistry of the Yucatan Peninsula, Mexico, constraints on stratigraphy and hydrogeology. Journal of Hydrology, 367: 2740.Google Scholar
Pimentel, D. & Burgess, M. 2013. Soil erosion threatens food production. Agriculture, 3: 443463.CrossRefGoogle Scholar
Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., Crist, S., Shpritz, L., Fitton, L., Saffouri, R. & Blair, R. 1995. Environmental and economic costs of soil erosion and conservation benefits. Science, 267: 11171123.Google Scholar
Powell, M. A. 1985. Salt, seed and yields in Sumerian agriculture: A critique of the theory of progressive salinization. Zeitschrift der Assyrologie, 75: 738.Google Scholar
Rabalais, N. N., Cai, W.-J., Carstensen, J., Conley, D. J., Fry, B., Quiñones-Rivera, X., Rosenberg, R., Slomp, C. P., Turner, R. E., Voss, M., Wissel, B. & Zhang, J. 2014. Eutrophication-driven deoxygenation in the coastal ocean. Oceanography, 70: 123133.Google Scholar
Rincon Maunter, C. 1999. Man and the environment in the Coixtlahuaca Basin of northwestern Oaxaca, Mexico: Two thousand years of historical ecology. Unpublished PhD dissertation, University of Texas at Austin.Google Scholar
Roberts, P., Hunt, C., Arroyo-Kalin, M., Evans, D. & Boivin, N. 2017. The deep human prehistory of global tropical forests and its relevance for modern conservation. Nature Plants, 3: 17093.Google Scholar
Rosen, A. M. & Rivera-Collazo, I. 2012. Climate change, adaptive cycles and the persistence of foraging economies during the Late Pleistocene/Holocene transition in the Levant. Proceedings of the National Academy of Sciences, 109(10): 36403645.Google Scholar
Ruddiman, W. F., Fuller, D. Q., Kutzbach, J. E., Tzedakis, P. C., Kaplan, J. O., Ellis, E. C., Vavrus, S. J., Roberts, C. N., Fyfe, R., He, F., Lemmen, C. & Woodbridge, J. 2016. Late Holocene climate: Natural or anthropogenic? Reviews of Geophysics, 53: 93118.Google Scholar
Schmidtko, A., Stramma, L. & Visbeck, M. 2017. Decline in global oceanic oxygen content during the past five decades. Nature, 542: 335339.Google Scholar
Selby, J., Dahi, O. S., Frohlich, C. & Hulme, M. 2017. Climate change and the Syrian civil war revisited. Political Geography 60: 232244.Google Scholar
Sen, A. K. 1959. The choice of agricultural techniques in underdeveloped countries. Economic Development and Cultural Change, 7(3): 279285.Google Scholar
Sheets, P. 2008. Armageddon to the Garden of Eden: Explosive volcanic eruptions and societal resilience in ancient Middle America. In Sandweiss, D. H. & Quilter, J. (Eds.), El Niño, Catastrophism, and Culture Change in Ancient America: 167186. Cambridge, MA: Harvard University Press.Google Scholar
Stanley, D. J., Krom, M. D., Cliff, R. A. & Woodward, J. C. 2003. Nile flow failure at the end of the Old Kingdom Egypt: Strontium isotopic and petrologic evidence. Geoarchaeology: An International Journal, 18–3:395402.Google Scholar
Stockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M., Minasny, B., McBratney, A. B., de Courcelles, V. de R., Singh, K., Wheeler, I., Abbott, L., Angers, D. A., Baldock, J., Bird, M., Brookes, P. C., Chenu, C., Jastrow, J. D., Lal, R., Lehmann, J., O’Donnell, A. G., Parton, W. J., Whitehead, D. & Zimmerman, M. J. 2013. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems and Environment, 164: 8099.Google Scholar
Streeter, R., Dugmore, A. & Vesteinsson, O. 2012. Plague and landscape resilience in premodern Iceland. Proceedings of the National Academy of Sciences, 109(10): 36643669.Google Scholar
Sutter, Paul. 2015. Let Us Now Praise Famous Gullies: Providence Canyon and the Soils of the South. Athens: University of Georgia Press.Google Scholar
Tankersley, K. B., Dunning, N. P., Scarborough, V., Huff, W. D., Lentz, D. & Carr, C. 2016. Catastrophic volcanism and its implication for agriculture in the Maya Lowlands. Journal of Archaeological Science Report, 5: 465470.Google Scholar
Thórhallsdóttir, A. G., Júlíusson, A. D. & Ögmundardóttir, H. 2013. The sheep, the market, and the soil: Environmental destruction in the Icelandic highlands, 1880–1910. In Jørgensen, D. & Sörlin, S. (Eds.), Northscapes: History, Technology, and the Making of Northern Environments: 155173. Vancouver: UBC Press.Google Scholar
Tierney, J. E., Pausata, F. S. R. & deMenocal, P. B. 2017. Rainfall regimes of the Green Sahara. Science Advances, 3: e1601503.Google Scholar
Tomašových, A. & Kidwell, S. M. 2017. Nineteenth-century collapse of a benthic marine ecosystem on the open continental shelf. Proceedings of the Royal Society B, 284: 20170328.CrossRefGoogle ScholarPubMed
Turner, B. L. & Sabloff, J. A. 2012. Classic Period collapse of the Central Maya Lowlands: Insights about human-environment relationships for sustainability. Proceedings of the National Academy of Science, 109: 1390813914.Google Scholar
Wall, D. H., Bardgett, R. D. & Kelly, E. 2010. Biodiversity in the dark. Naure Geoscience, 3: 297298.Google Scholar
Weiss, H. 2016. Global megadrought, societal collapse and resilience at 4.2–3.9 ka BP across the Mediterranean and West Asia. PAGES (Past Global Changes), 24(02): 6263.Google Scholar
Weiss, H. & Bradley, R. S. 2001. What drives societal collapse? Science, 291: 609610.Google Scholar
White, M. A. 2006. Alexandre Hogue’s passion: Ecology and agribusiness in the Crucified Land. Great Plains Quarterly, 26(2): 6783.Google Scholar
Wilkinson, B. H. & McElroy, B. J. 2007. The impact of humans on continental erosion and sedimentation. Geological Society of America Bulletin, 119(1): 140156.Google Scholar
World Wildlife Fund. 2017. Soil erosion and degradation. www.worldwildlife.org/threats/soil-erosion-and-degradation.Google Scholar
Zerboni, A., Biagetti, S., Lancelotti, C. & Madella, M. 2016. The end of the Holocene Humid Period in the central Sahara and Thar deserts. PAGES (Past Global Changes), 24(02): 6061.Google Scholar
Zuazo, V. H. D. & Pleguezuelo, C. R. R. 2009. Soil-erosion and runoff prevention by plant covers: a review. In Lichtfouse, E., Navarette, M., Debaeke, P., Veronique, S. & Alberola, C. (Eds.), Sustainable Agriculture: 785. Paris: Springer.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×