Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-01T02:53:02.229Z Has data issue: false hasContentIssue false

Part III - Neurophysiological and Experiential Bases of the Development of Coping

Published online by Cambridge University Press:  22 June 2023

Ellen A. Skinner
Affiliation:
Portland State University
Melanie J. Zimmer-Gembeck
Affiliation:
Griffith University, Queensland
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Ainsworth, M. D. S. (1969). Object relations, dependency, and attachment: A theoretical review of the infant-mother relationship. Child Development, 40, 9691025.CrossRefGoogle ScholarPubMed
Antontseva, E., Bondar, N., Reshetnikov, V., & Merkulova, T. (2020). The effects of chronic stress on brain myelination in humans and in various rodent models. Neuroscience, 441, 226238. https://doi.org/10.1016/j.neuroscience.2020.06.013CrossRefGoogle ScholarPubMed
Baldwin, J. R., Reuben, A., Newbury, J. B., & Danese, A. (2019). Agreement between prospective and retrospective measures of childhood maltreatment: A systematic review and meta-analysis. JAMA Psychiatry, 76(6), 584593. https://doi.org/10.1001/jamapsychiatry.2019.0097Google Scholar
Bandoli, G., Campbell-Sills, L., Kessler, R. C., Heeringa, S. G., Nock, M. K., Rosellini, A. J., Sampson, N. A., Schoenbaum, M., Ursano, R. J., & Stein, M. B. (2017). Childhood adversity, adult stress, and the risk of major depression or generalized anxiety disorder in US soldiers: A test of the stress sensitization hypothesis. Psychological Medicine, 47(13), 23792392. https://doi.org/10.1017/S0033291717001064CrossRefGoogle ScholarPubMed
Belsky, J. (2019). Early-life adversity accelerates child and adolescent development. Current Directions in Psychological Science, 28(3), 241246. https://doi.org/10.1177/0963721419837670CrossRefGoogle Scholar
Belsky, J., Steinberg, L., & Draper, P. (1991). Childhood experience, interpersonal development, and reproductive strategy: An evolutionary theory of socialization. Child Development, 62(4), 647670. https://doi.org/10.1111/j.1467-8624.1991.tb01558.xGoogle Scholar
Bick, J., Zhu, T., Stamoulis, C., Fox, N. A., Zeanah, C., & Nelson, C. A. (2015). Effect of early institutionalization and foster care on long-term white matter development: A randomized clinical trial. JAMA Pediatrics, 169(3), 211219. https://doi.org/10.1001/jamapediatrics.2014.3212Google Scholar
Bonnefil, V., Dietz, K., Amatruda, M., Wentling, M., Aubry, A. V., Dupree, J. L., Temple, G., Park, H.-J., Burghardt, N. S., Casaccia, P., & Liu, J. (2019). Region-specific myelin differences define behavioral consequences of chronic social defeat stress in mice. ELife, 8, e40855. https://doi.org/10.7554/eLife.40855Google Scholar
Bowlby, J. (1958). The nature of the child’s tie to his mother. International Journal of Psychoanalysis, 39, 350373.Google Scholar
Boyce, T. (2007). A biology of misfortune: Stress reactivity, social context, and the ontogeny of psychopathology in early life. In Masten, A. S. (Ed.), Multilevel dynamics in developmental psychopathology: Pathways to the future. Psychology Press.Google Scholar
Bremner, J. D., Randall, P., Vermetten, E., Staib, L., Bronen, R. A., Mazure, C., Capelli, S., McCarthy, G., Innis, R. B., & Charney, D. S. (1997). Magnetic resonance imaging-based measurement of hippocampal volume in posttraumatic stress disorder related to childhood physical and sexual abuse – A preliminary report. Biological Psychiatry, 41(1), 2332. https://doi.org/10.1016/s0006-3223(96)00162-xCrossRefGoogle ScholarPubMed
Burghy, C. A., Stodola, D. E., Ruttle, P. L., Molloy, E. K., Armstrong, J. M., Oler, J. A., Fox, M. E., Hayes, A. S., Kalin, N. H., Essex, M. J., Davidson, R. J., & Birn, R. M. (2012). Developmental pathways to amygdala-prefrontal function and internalizing symptoms in adolescence. Nature Neuroscience, 15(12), 17361741. https://doi.org/10.1038/nn.3257Google Scholar
Busso, D. S., McLaughlin, K. A., & Sheridan, M. A. (2017). Dimensions of adversity, physiological reactivity, and externalizing psychopathology in adolescence: Deprivation and threat. Psychosomatic Medicine, 79(2), 162171. https://doi.org/10.1097/PSY.0000000000000369CrossRefGoogle ScholarPubMed
Callaghan, B., Gee, D. G., Gabard-Durnam, L., Telzer, E. H., Humphreys, K. L., Goff, B., Shapiro, M., Flannery, J., Lumian, D. S., Fareri, D. S., Caldera, C., & Tottenham, N. (2019). Decreased amygdala reactivity to parent cues protects against anxiety following early adversity: An examination across 3-years. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 4(7), 664671. https://doi.org/10.1016/j.bpsc.2019.02.001Google Scholar
Callaghan, B. L., & Tottenham, N. (2016). The stress acceleration hypothesis: Effects of early-life adversity on emotion circuits and behavior. Current Opinion in Behavioral Sciences, 7, 7681. https://doi.org/10.1016/j.cobeha.2015.11.018Google Scholar
Cameron, J. L. (2001). Critical periods for social attachment: Deprivation and neural systems in rhesus monkeys. Social Research in Child Development Abstr, 2, 054.Google Scholar
Cameron, J. L., Eagleson, K. L., Fox, N. A., Hensch, T. K., & Levitt, P. (2017). Social origins of developmental risk for mental and physical illness. Journal of Neuroscience, 37(45), 1078310791. https://doi.org/10.1523/JNEUROSCI.1822-17.2017Google Scholar
Carrion, V. G., Weems, C. F., Eliez, S., Patwardhan, A., Brown, W., Ray, R. D., & Reiss, A. L. (2001). Attenuation of frontal asymmetry in pediatric posttraumatic stress disorder. Biological Psychiatry, 50(12), 943951. https://doi.org/10.1016/s0006-3223(01)01218-5Google Scholar
Casey, B. J., Heller, A. S., Gee, D. G., & Cohen, A. O. (2019). Development of the emotional brain. Neuroscience Letters, 693, 2934. https://doi.org/10.1016/j.neulet.2017.11.055Google Scholar
Cassidy, J., & Shaver, P. R. (2002). Handbook of attachment: Theory, research, and clinical applications. Rough Guides.Google Scholar
Cohodes, E. M., Kitt, E. R., Baskin‐Sommers, A., & Gee, D. G. (2021). Influences of early-life stress on frontolimbic circuitry: Harnessing a dimensional approach to elucidate the effects of heterogeneity in stress exposure. Developmental Psychobiology, 63(2), 153172. https://doi.org/10.1002/dev.21969CrossRefGoogle ScholarPubMed
Colich, N. L., Rosen, M. L., Williams, E. S., & McLaughlin, K. A. (2020). Biological aging in childhood and adolescence following experiences of threat and deprivation: A systematic review and meta-analysis. Psychological Bulletin, 146(9), 721764. https://doi.org/10.1037/bul0000270Google Scholar
Collins, N. L., & Feeney, B. C. (2004). An attachment theory perspective on closeness and intimacy. In Mashek, D. J. & Aron, A. P. (Eds.), Handbook of closeness and intimacy (pp. 163187). Lawrence Erlbaum Associates Publishers.Google Scholar
Cook, S. C., & Wellman, C. L. (2004). Chronic stress alters dendritic morphology in rat medial prefrontal cortex. Journal of Neurobiology, 60(2), 236248. https://doi.org/10.1002/neu.20025CrossRefGoogle ScholarPubMed
D’Andrea, W., Ford, J., Stolbach, B., Spinazzola, J., & van der Kolk, B. A. (2012). Understanding interpersonal trauma in children: Why we need a developmentally appropriate trauma diagnosis. American Journal of Orthopsychiatry, 82(2), 187200. https://doi.org/10.1111/j.1939-0025.2012.01154.xGoogle Scholar
Dannlowski, U., Kugel, H., Huber, F., Stuhrmann, A., Redlich, R., Grotegerd, D., Dohm, K., Sehlmeyer, C., Konrad, C., Baune, B. T., Arolt, V., Heindel, W., Zwitserlood, P., & Suslow, T. (2013). Childhood maltreatment is associated with an automatic negative emotion processing bias in the amygdala. Human Brain Mapping, 34(11), 28992909. https://doi.org/10.1002/hbm.22112CrossRefGoogle ScholarPubMed
Dannlowski, U., Stuhrmann, A., Beutelmann, V., Zwanzger, P., Lenzen, T., Grotegerd, D., Domschke, K., Hohoff, C., Ohrmann, P., & Bauer, J. (2012). Limbic scars: Long-term consequences of childhood maltreatment revealed by functional and structural magnetic resonance imaging. Biological Psychiatry, 71(4), 286293. https://doi.org/10.1016/j.biopsych.2011.10.021Google Scholar
De Bellis, M. D., Keshavan, M. S., Clark, D. B., Casey, B. J., Giedd, J. N., Boring, A. M., Frustaci, K., & Ryan, N. D. (1999). Developmental traumatology part II: Brain development. Biological Psychiatry, 45(10), 12711284. https://doi.org/10.1016/S0006-3223(99)00045-1Google Scholar
de Kloet, E. R., Joëls, M., & Holsboer, F. (2005). Stress and the brain: From adaptation to disease. Nature Reviews. Neuroscience, 6(6), 463475. https://doi.org/10.1038/nrn1683Google Scholar
Dennison, M. J., Rosen, M. L., Sambrook, K. A., Jenness, J. L., Sheridan, M. A., & McLaughlin, K. A. (2019). Differential associations of distinct forms of childhood adversity with neurobehavioral measures of reward processing: A developmental pathway to depression. Child Development, 90(1), e96e113. https://doi.org/10.1111/cdev.13011Google Scholar
Dobrova-Krol, N. A., van IJzendoorn, M. H., Bakermans-Kranenburg, M. J., Cyr, C., & Juffer, F. (2008). Physical growth delays and stress dysregulation in stunted and non-stunted Ukrainian institution-reared children. Infant Behavior and Development, 31(3), 539553. https://doi.org/10.1016/j.infbeh.2008.04.001Google Scholar
Dong, M., Anda, R. F., Felitti, V. J., Dube, S. R., Williamson, D. F., Thompson, T. J., Loo, C. M., & Giles, W. H. (2004). The interrelatedness of multiple forms of childhood abuse, neglect, and household dysfunction. Child Abuse & Neglect, 28(7), 771784. https://doi.org/10.1016/j.chiabu.2004.01.008CrossRefGoogle ScholarPubMed
Edmiston, E. E., Wang, F., Mazure, C. M., Guiney, J., Sinha, R., Mayes, L. C., & Blumberg, H. P. (2011). Corticostriatal-limbic gray matter morphology in adolescents with self-reported exposure to childhood maltreatment. Archives of Pediatrics & Adolescent Medicine, 165(12), 10691077. https://doi.org/10.1001/archpediatrics.2011.565Google Scholar
Eiland, L., & Romeo, R. D. (2013). Stress and the developing adolescent brain. Neuroscience, 249, 162171. https://doi.org/10.1016/j.neuroscience.2012.10.048CrossRefGoogle ScholarPubMed
Ellis, B. J., Figueredo, A. J., Brumbach, B. H., & Schlomer, G. L. (2009). The impact of harsh versus unpredictable environments on the evolution and development of life history strategies. Human Nature, 20(2), 204268.Google Scholar
Eschenbeck, H., Schmid, S., Schröder, I., Wasserfall, N., & Kohlmann, C.-W. (2018). Development of coping strategies from childhood to adolescence. European Journal of Health Psychology, 25(1), 1830. https://doi.org/10.1027/2512-8442/a000005Google Scholar
Espejo, E. P., Hammen, C. L., Connolly, N. P., Brennan, P. A., Najman, J. M., & Bor, W. (2007). Stress sensitization and adolescent depressive severity as a function of childhood adversity: A link to anxiety disorders. Journal of Abnormal Child Psychology, 35(2), 287299. https://doi.org/10.1007/s10802-006-9090-3Google Scholar
Evans, G. W., Swain, J. E., King, A. P., Wang, X., Javanbakht, A., Ho, S. S., Angstadt, M., Phan, K. L., Xie, H., & Liberzon, I. (2016). Childhood cumulative risk exposure and adult amygdala volume and function. Journal of Neuroscience Research, 94(6), 535543. https://doi.org/10.1002/jnr.23681Google Scholar
Fan, Y., Herrera-Melendez, A. L., Pestke, K., Feeser, M., Aust, S., Otte, C., Pruessner, J. C., Böker, H., Bajbouj, M., & Grimm, S. (2014). Early life stress modulates amygdala-prefrontal functional connectivity: Implications for oxytocin effects: Early life stress and amygdala functional connectivity. Human Brain Mapping, 35(10), 53285339. https://doi.org/10.1002/hbm.22553CrossRefGoogle Scholar
Finkelhor, D., Ormrod, R. K., & Turner, H. A. (2007). Poly-victimization: A neglected component in child victimization. Child Abuse & Neglect, 31(1), 726. https://doi.org/10.1016/j.chiabu.2006.06.008Google Scholar
Flannery, J. E., Gabard-Durnam, L. J., Shapiro, M., Goff, B., Caldera, C., Louie, J., Gee, D. G., Telzer, E. H., Humphreys, K. L., Lumian, D. S., & Tottenham, N. (2017). Diurnal cortisol after early institutional care – Age matters. Developmental Cognitive Neuroscience, 25, 160166. https://doi.org/10.1016/j.dcn.2017.03.006Google Scholar
Gabard-Durnam, L. J., Flannery, J., Goff, B., Gee, D. G., Humphreys, K. L., Telzer, E., Hare, T., & Tottenham, N. (2014). The development of human amygdala functional connectivity at rest from 4 to 23 years: A cross-sectional study. NeuroImage, 95, 193207. https://doi.org/10.1016/j.neuroimage.2014.03.038Google Scholar
Gabard-Durnam, L., & McLaughlin, K. A. (2020). Sensitive periods in human development: Charting a course for the future. Current Opinion in Behavioral Sciences, 36, 120128. https://doi.org/10.1016/j.cobeha.2020.09.003Google Scholar
Gabbay, V., Oatis, M. D., Silva, R. R., & Hirsch, G. S. (2004). Epidemiological aspects of PTSD in children and adolescents. In Silva, R. R. (Ed.), Posttraumatic stress disorders in children and adolescents: Handbook (pp. 117). W. W. Norton & Co.Google Scholar
Ganzel, B. L., Kim, P., Gilmore, H., Tottenham, N., & Temple, E. (2013). Stress and the healthy adolescent brain: Evidence for the neural embedding of life events. Development and Psychopathology, 25(4 Pt. 1), 879889. https://doi.org/10.1017/S0954579413000242Google Scholar
Garrett, A. S., Carrion, V., Kletter, H., Karchemskiy, A., Weems, C. F., & Reiss, A. (2012). Brain activation to facial expressions in youth with PTSD symptoms. Depression and Anxiety, 29(5), 449459. https://doi.org/10.1002/da.21892Google Scholar
Gee, D. G. (2016). Sensitive periods of emotion regulation: Influences of parental care on frontoamygdala circuitry and plasticity: Sensitive periods of emotion regulation. New Directions for Child and Adolescent Development, 2016(153), 87110. https://doi.org/10.1002/cad.20166Google Scholar
Gee, D. G. (2020). Caregiving influences on emotional learning and regulation: Applying a sensitive period model. Current Opinion in Behavioral Sciences, 36, 177184. https://doi.org/10.1016/j.cobeha.2020.11.003Google Scholar
Gee, D. G. (2021). Early-life trauma and resilience: Insights from developmental neuroscience for policy. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 6(2), 141143. https://doi.org/10.1016/j.bpsc.2020.07.005Google Scholar
Gee, D. G., Bath, K. G., Johnson, C. M., Meyer, H. C., Murty, V. P., Bos, W. van Den, , & Hartley, C. A. (2018). Neurocognitive development of motivated behavior: Dynamic changes across childhood and adolescence. Journal of Neuroscience, 38(44), 94339445. https://doi.org/10.1523/JNEUROSCI.1674-18.2018Google Scholar
Gee, D. G., & Casey, B. J. (2015). The impact of developmental timing for stress and recovery. Neurobiology of Stress, 1, 184194. https://doi.org/10.1016/j.ynstr.2015.02.001CrossRefGoogle ScholarPubMed
Gee, D. G., & Cohodes, E. M. (2021). Influences of caregiving on development: A sensitive period for biological embedding of predictability and safety cues. Current Directions in Psychological Science, 30(5), 376383. https://doi.org/10.1177/09637214211015673Google Scholar
Gee, D. G., Gabard-Durnam, L. J., Flannery, J., Goff, B., Humphreys, K. L., Telzer, E. H., Hare, T. A., Bookheimer, S. Y., & Tottenham, N. (2013). Early developmental emergence of human amygdala-prefrontal connectivity after maternal deprivation. Proceedings of the National Academy of Sciences of the United States of America, 110(39), 1563815643. https://doi.org/10.1073/pnas.1307893110Google Scholar
Gee, D. G., Gabard-Durnam, L., Telzer, E. H., Humphreys, K. L., Goff, B., Shapiro, M., Flannery, J., Lumian, D. S., Fareri, D. S., Caldera, C., & Tottenham, N. (2014). Maternal buffering of human amygdala-prefrontal circuitry during childhood but not during adolescence. Psychological Science, 25(11), 20672078. https://doi.org/10.1177/0956797614550878Google Scholar
Gee, D. G., Humphreys, K. L., Flannery, J., Goff, B., Telzer, E. H., Shapiro, M., Hare, T. A., Bookheimer, S. Y., & Tottenham, N. (2013). A developmental shift from positive to negative connectivity in human amygdala–prefrontal circuitry. Journal of Neuroscience, 33(10), 45844593. https://doi.org/10.1523/JNEUROSCI.3446-12.2013Google Scholar
Glynn, L. M., & Baram, T. Z. (2019). The influence of unpredictable, fragmented parental signals on the developing brain. Frontiers in Neuroendocrinology, 53, 100736. https://doi.org/10.1016/j.yfrne.2019.01.002Google Scholar
Godinez, D. A., McRae, K., Andrews-Hanna, J. R., Smolker, H., & Banich, M. T. (2016). Differences in frontal and limbic brain activation in a small sample of monozygotic twin pairs discordant for severe stressful life events. Neurobiology of Stress, 5, 2636. https://doi.org/10.1016/j.ynstr.2016.10.002CrossRefGoogle Scholar
Green, J. G., McLaughlin, K. A., Berglund, P. A., Gruber, M. J., Sampson, N. A., Zaslavsky, A. M., & Kessler, R. C. (2010). Childhood adversities and adult psychopathology in the National Comorbidity Survey Replication (NCS-R) I: Associations with first onset of DSM-IV disorders. Archives of General Psychiatry, 67(2), 113123. https://doi.org/10.1001/archgenpsychiatry.2009.186Google Scholar
Gunnar, M. R., Frenn, K., Wewerka, S. S., & Van Ryzin, M. J. (2009). Moderate versus severe early life stress: Associations with stress reactivity and regulation in 10–12-year-old children. Psychoneuroendocrinology, 34(1), 6275. https://doi.org/10.1016/j.psyneuen.2008.08.013Google Scholar
Gunnar, M. R., Morison, S. J., Chisholm, K., & Schuder, M. (2001). Salivary cortisol levels in children adopted from Romanian orphanages. Development and Psychopathology, 13(3), 611628. https://doi.org/10.1017/S095457940100311XGoogle Scholar
Hackman, D. A., Betancourt, L. M., Brodsky, N. L., Hurt, H., & Farah, M. J. (2012). Neighborhood disadvantage and adolescent stress reactivity. Frontiers in Human Neuroscience, 6. https://doi.org/10.3389/fnhum.2012.00277Google Scholar
Hanson, J. L., Adluru, N., Chung, M. K., Alexander, A. L., Davidson, R. J., & Pollak, S. D. (2013). Early neglect is associated with alterations in white matter integrity and cognitive functioning. Child Development, 84(5), 15661578. https://doi.org/10.1111/cdev.12069Google Scholar
Hanson, J. L., Knodt, A. R., Brigidi, B. D., & Hariri, A. R. (2015). Lower structural integrity of the uncinate fasciculus is associated with a history of child maltreatment and future psychological vulnerability to stress. Development and Psychopathology, 27(4 Pt. 2), 16111619. https://doi.org/10.1017/S0954579415000978Google Scholar
Hanson, J. L., Nacewicz, B. M., Sutterer, M. J., Cayo, A. A., Schaefer, S. M., Rudolph, K. D., Shirtcliff, E. A., Pollak, S. D., & Davidson, R. J. (2015). Behavioral problems after early life stress: Contributions of the hippocampus and amygdala. Biological Psychiatry, 77(4), 314323. https://doi.org/10.1016/j.biopsych.2014.04.020Google Scholar
Hare, T. A., Tottenham, N., Galvan, A., Voss, H. U., Glover, G. H., & Casey, B. J. (2008). Biological substrates of emotional reactivity and regulation in adolescence during an emotional go-nogo task. Biological Psychiatry, 63(10), 927934. https://doi.org/10.1016/j.biopsych.2008.03.015Google Scholar
Harlow, H. F. (1958). The nature of love. American Psychologist, 13(12), 673685. https://doi.org/10.1037/h0047884Google Scholar
Herman, J. P., Ostrander, M. M., Mueller, N. K., & Figueiredo, H. (2005). Limbic system mechanisms of stress regulation: Hypothalamo-pituitary-adrenocortical axis. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 29(8), 12011213. https://doi.org/10.1016/j.pnpbp.2005.08.006CrossRefGoogle ScholarPubMed
Herringa, R. J. (2017). Trauma, PTSD, and the developing brain. Current Psychiatry Reports, 19(10), Article 69. https://doi.org/10.1007/s11920-017-0825-3CrossRefGoogle ScholarPubMed
Herringa, R. J., Birn, R. M., Ruttle, P. L., Burghy, C. A., Stodola, D. E., Davidson, R. J., & Essex, M. J. (2013). Childhood maltreatment is associated with altered fear circuitry and increased internalizing symptoms by late adolescence. Proceedings of the National Academy of Sciences, 110(47), 1911919124. https://doi.org/10.1073/pnas.1310766110CrossRefGoogle ScholarPubMed
Herzberg, M. P., McKenzie, K. J., Hodel, A. S., Hunt, R. H., Mueller, B. A., Gunnar, M. R., & Thomas, K. M. (2021). Accelerated maturation in functional connectivity following early life stress: Circuit specific or broadly distributed? Developmental Cognitive Neuroscience, 48, Article 100922. https://doi.org/10.1016/j.dcn.2021.100922Google Scholar
Heyn, S. A., Keding, T. J., Ross, M. C., Cisler, J. M., Mumford, J. A., & Herringa, R. J. (2018). Abnormal prefrontal development in pediatric posttraumatic stress disorder: A longitudinal structural and functional magnetic resonance imaging study. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 4(2), 171179. https://doi.org/10.1016/j.bpsc.2018.07.013Google Scholar
Hiser, J., & Koenigs, M. (2018). The multifaceted role of the ventromedial prefrontal cortex in emotion, decision making, social cognition, and psychopathology. Biological Psychiatry, 83(8), 638647. https://doi.org/10.1016/j.biopsych.2017.10.030Google Scholar
Ho, T. C., King, L. S., Leong, J. K., Colich, N. L., Humphreys, K. L., Ordaz, S. J., & Gotlib, I. H. (2017). Effects of sensitivity to life stress on uncinate fasciculus segments in early adolescence. Social Cognitive and Affective Neuroscience, 12(9), 14601469. https://doi.org/10.1093/scan/nsx065Google Scholar
Hofer, M. A., & Sullivan, R. M. (2001). Toward a neurobiology of attachment. In Nelson, C. A. & Lucian, M. (Eds.), Handbook of developmental cognitive neuroscience (pp. 599616). The MIT Press.Google Scholar
Hoffman, E. A., Clark, D. B., Orendain, N., Hudziak, J., Squeglia, L. M., & Dowling, G. J. (2019). Stress exposures, neurodevelopment and health measures in the ABCD study. Neurobiology of Stress, 10, Article 100157. https://doi.org/10.1016/j.ynstr.2019.100157Google Scholar
Hofstetter, S., Tavor, I., Moryosef, S. T., & Assaf, Y. (2013). Short-term learning induces white matter plasticity in the fornix. Journal of Neuroscience, 33(31), 1284412850. https://doi.org/10.1523/JNEUROSCI.4520-12.2013Google Scholar
Hölzel, B. K., Carmody, J., Evans, K. C., Hoge, E. A., Dusek, J. A., Morgan, L., Pitman, R. K., & Lazar, S. W. (2010). Stress reduction correlates with structural changes in the amygdala. Social Cognitive and Affective Neuroscience, 5(1), 1117. https://doi.org/10.1093/scan/nsp034Google Scholar
Honkaniemi, J., Pelto-Huikko, M., Rechardt, L., Isola, J., Lammi, A., Fuxe, K., Gustafsson, J.-Å., Wikström, A.-C., & Hökfelt, T. (1992). Colocalization of peptide and glucocorticoid receptor immunoreactivities in rat central amygdaloid nucleus. Neuroendocrinology, 55(4), 451459. https://doi.org/10.1159/000126156Google Scholar
Hostinar, C. E., Sullivan, R. M., & Gunnar, M. R. (2014). Psychobiological mechanisms underlying the social buffering of the hypothalamic–pituitary–adrenocortical axis: A review of animal models and human studies across development. Psychological Bulletin, 140(1), 256282. https://doi.org/10.1037/a0032671Google Scholar
Humphreys, K. L., Miron, D., McLaughlin, K. A., Sheridan, M. A., Nelson, C. A., Fox, N. A., & Zeanah, C. H. (2018). Foster care promotes adaptive functioning in early adolescence among children who experienced severe, early deprivation. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 59(7), 811821. https://doi.org/10.1111/jcpp.12865Google Scholar
Humphreys, K. L., & Zeanah, C. H. (2015). Deviations from the expectable environment in early childhood and emerging psychopathology. Neuropsychopharmacology, 40(1), 154170. https://doi.org/10.1038/npp.2014.165Google Scholar
Jacobson, L., & Sapolsky, R. (1991). The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. Endocrine Reviews, 12(2), 118134. https://doi.org/10.1210/edrv-12-2-118Google Scholar
Jedd, K., Hunt, R. H., Cicchetti, D., Hunt, E., Cowell, R. A., Rogosch, F. A., Toth, S. L., & Thomas, K. M. (2015). Long-term consequences of childhood maltreatment: Altered amygdala functional connectivity. Development and Psychopathology, 27(4 Pt. 2), 15771589. https://doi.org/10.1017/S0954579415000954Google Scholar
Johnson, F. K., Delpech, J.-C., Thompson, G. J., Wei, L., Hao, J., Herman, P., Hyder, F., & Kaffman, A. (2018). Amygdala hyper-connectivity in a mouse model of unpredictable early life stress. Translational Psychiatry, 8(1), Article 49. https://doi.org/10.1038/s41398-018-0092-zGoogle Scholar
Joos, C. M., McDonald, A., & Wadsworth, M. E. (2019). Extending the toxic stress model into adolescence: Profiles of cortisol reactivity. Psychoneuroendocrinology, 107, 4658. https://doi.org/10.1016/j.psyneuen.2019.05.002Google Scholar
Kaiser, R. H., Clegg, R., Goer, F., Pechtel, P., Beltzer, M., Vitaliano, G., Olson, D. P., Teicher, M. H., & Pizzagalli, D. A. (2018). Childhood stress, grown-up brain networks: Corticolimbic correlates of threat-related early life stress and adult stress response. Psychological Medicine, 48(7), 11571166. https://doi.org/10.1017/S0033291717002628Google Scholar
Kamigaki, T. (2019). Prefrontal circuit organization for executive control. Neuroscience Research, 140, 2336. https://doi.org/10.1016/j.neures.2018.08.017Google Scholar
Keding, T. J., & Herringa, R. J. (2015). Abnormal structure of fear circuitry in pediatric post-traumatic stress disorder. Neuropsychopharmacology, 40(3), 537545. https://doi.org/10.1038/npp.2014.239Google Scholar
Kircanski, K., Sisk, L. M., Ho, T. C., Humphreys, K. L., King, L. S., Colich, N. L., Ordaz, S. J., & Gotlib, I. H. (2019). Early life stress, cortisol, frontolimbic connectivity, and depressive symptoms during puberty. Development and Psychopathology, 31(3), 10111022. https://doi.org/10.1017/S0954579419000555Google Scholar
Koss, K. J., & Gunnar, M. R. (2018). Annual Research Review: Early adversity, the hypothalamic–pituitary–adrenocortical axis, and child psychopathology. Journal of Child Psychology and Psychiatry, 59(4), 327346. https://doi.org/10.1111/jcpp.12784Google Scholar
Koss, K. J., Mliner, S. B., Donzella, B., & Gunnar, M. R. (2016). Early adversity, hypocortisolism, and behavior problems at school entry: A study of internationally adopted children. Psychoneuroendocrinology, 66, 3138. https://doi.org/10.1016/j.psyneuen.2015.12.018Google Scholar
Lambert, H. K., King, K. M., Monahan, K. C., & McLaughlin, K. A. (2017). Differential associations of threat and deprivation with emotion regulation and cognitive control in adolescence. Development and Psychopathology, 29(3), 929940. https://doi.org/10.1017/S0954579416000584Google Scholar
Lambert, H. K., Sheridan, M. A., Sambrook, K. A., Rosen, M. L., Askren, M. K., & McLaughlin, K. A. (2017). Hippocampal contribution to context encoding across development is disrupted following early-life adversity. Journal of Neuroscience, 37(7), 19251934. https://doi.org/10.1523/JNEUROSCI.2618-16.2017Google Scholar
Lange, I., Goossens, L., Bakker, J., Michielse, S., van Winkel, R., Lissek, S., Leibold, N., Marcelis, M., Wichers, M., van Os, J., van Amelsvoort, T., & Schruers, K. (2019). Neurobehavioural mechanisms of threat generalization moderate the link between childhood maltreatment and psychopathology in emerging adulthood. Journal of Psychiatry & Neuroscience, 44(3), 185194. https://doi.org/10.1503/jpn.180053Google Scholar
Lautarescu, A., Pecheva, D., Nosarti, C., Nihouarn, J., Zhang, H., Victor, S., Craig, M., Edwards, A. D., & Counsell, S. J. (2020). Maternal prenatal stress is associated with altered uncinate fasciculus microstructure in premature neonates. Biological Psychiatry, 87(6), 559569. https://doi.org/10.1016/j.biopsych.2019.08.010Google Scholar
Lebel, C., & Deoni, S. (2018). The development of brain white matter microstructure. NeuroImage, 182, 207218. https://doi.org/10.1016/j.neuroimage.2017.12.097Google Scholar
Lieberman, A. F. (2017). The emotional life of the toddler. Simon & Schuster.Google Scholar
Loman, M. M., & Gunnar, M. R. (2010). Early experience and the development of stress reactivity and regulation in children. Neuroscience & Biobehavioral Reviews, 34(6), 867876. https://doi.org/10.1016/j.neubiorev.2009.05.007Google Scholar
Lupien, S. J., King, S., Meaney, M. J., & McEwen, B. S. (2000). Child’s stress hormone levels correlate with mother’s socioeconomic status and depressive state. Biological Psychiatry, 48(10), 976980. https://doi.org/10.1016/S0006-3223(00)00965-3Google Scholar
Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10(6), 434445. https://doi.org/10.1038/nrn2639Google Scholar
Machlin, L., Miller, A. B., Snyder, J., McLaughlin, K. A., & Sheridan, M. A. (2019). Differential associations of deprivation and threat with cognitive control and fear conditioning in early childhood. Frontiers in Behavioral Neuroscience, 13. https://doi.org/10.3389/fnbeh.2019.00080Google Scholar
Magalhães, R., Bourgin, J., Boumezbeur, F., Marques, P., Bottlaender, M., Poupon, C., Djemaï, B., Duchesnay, E., Mériaux, S., Sousa, N., Jay, T. M., & Cachia, A. (2017). White matter changes in microstructure associated with a maladaptive response to stress in rats. Translational Psychiatry, 7(1), e1009e1009. https://doi.org/10.1038/tp.2016.283Google Scholar
Magarinos, A. M., Verdugo, J. M. G., & McEwen, B. S. (1997). Chronic stress alters synaptic terminal structure in hippocampus. Proceedings of the National Academy of Sciences, 94(25), 1400214008.Google Scholar
Marusak, H. A., Martin, K. R., Etkin, A., & Thomason, M. E. (2015). Childhood trauma exposure disrupts the automatic regulation of emotional processing. Neuropsychopharmacology, 40(5), 12501258. https://doi.org/10.1038/npp.2014.311Google Scholar
Mason, G. M., Goldstein, M. H., & Schwade, J. A. (2019). The role of multisensory development in early language learning. Journal of Experimental Child Psychology, 183, 4864. https://doi.org/10.1016/j.jecp.2018.12.011Google Scholar
McCrory, E. J., De Brito, S. A., Kelly, P. A., Bird, G., Sebastian, C. L., Mechelli, A., Samuel, S., & Viding, E. (2013). Amygdala activation in maltreated children during pre-attentive emotional processing. British Journal of Psychiatry, 202(4), 269276. https://doi.org/10.1192/bjp.bp.112.116624Google Scholar
McEwen, B. S. (1993). Stress and the individual: Mechanisms leading to disease. Archives of Internal Medicine, 153(18), 20932101. https://doi.org/10.1001/archinte.1993.00410180039004Google Scholar
McEwen, B. S. (2012). Brain on stress: How the social environment gets under the skin. Proceedings of the National Academy of Sciences of the United States of America, 109(Suppl. 2), 1718017185. https://doi.org/10.1073/pnas.1121254109CrossRefGoogle ScholarPubMed
McEwen, B. S., & Akil, H. (2020). Revisiting the stress concept: Implications for affective disorders. Journal of Neuroscience, 40(1), 1221. https://doi.org/10.1523/JNEUROSCI.0733-19.2019Google Scholar
McEwen, B. S., Albeck, D., Cameron, H., Chao, H. M., Gould, E., Hastings, N., Kuroda, Y., Luine, V., Magarinos, A. M., Mckittrick, C. R., Orchinik, M., Pavlides, C., Vaher, P., Watanabe, Y., & Weiland, N. (1995). Stress and the brain: A paradoxical role for adrenal steroids. In Litwack, G. (Ed.), Vitamins & hormones (Vol. 51, pp. 371402). Academic Press. https://doi.org/10.1016/S0083-6729(08)61045-6Google Scholar
McEwen, B. S., Bowles, N. P., Gray, J. D., Hill, M. N., Hunter, R. G., Karatsoreos, I. N., & Nasca, C. (2015). Mechanisms of stress in the brain. Nature Neuroscience, 18(10), 13531363. https://doi.org/10.1038/nn.4086Google Scholar
McEwen, B. S., & Magarinos, A. M. (1997). Stress effects on morphology and function of the hippocampus. Annals of the New York Academy of Sciences, 821(1), 271284. https://doi.org/10.1111/j.1749-6632.1997.tb48286.xGoogle Scholar
McEwen, B., & Milner, T. (2007). Hippocampal formation: Shedding light on the influence of sex and stress on the brain. Brain Research Review, 55(2), 343355. https://doi.org/10.1016/j.brainresrev.2007.02.006Google Scholar
McEwen, B. S., & Morrison, J. H. (2013). The brain on stress: Vulnerability and plasticity of the prefrontal cortex over the life course. Neuron, 79(1), 1629. https://doi.org/10.1016/j.neuron.2013.06.028CrossRefGoogle ScholarPubMed
McEwen, B. S., Nasca, C., & Gray, J. D. (2016). Stress effects on neuronal structure: Hippocampus, amygdala, and prefrontal cortex. Neuropsychopharmacology, 41(1), 323. https://doi.org/10.1038/npp.2015.171Google Scholar
McGoron, L., Gleason, M. M., Smyke, A. T., Drury, S. S., Nelson, C. A., Gregas, M. C., Fox, N. A., & Zeanah, C. H. (2012). Recovering from early deprivation: Attachment mediates effects of caregiving on psychopathology. Journal of the American Academy of Child and Adolescent Psychiatry, 51(7), 683693. https://doi.org/10.1016/j.jaac.2012.05.004Google Scholar
McLaughlin, K. A., Conron, K. J., Koenen, K. C., & Gilman, S. E. (2010). Childhood adversity, adult stressful life events, and risk of past-year psychiatric disorder: A test of the stress sensitization hypothesis in a population-based sample of adults. Psychological Medicine, 40(10), 16471658. https://doi.org/10.1017/S0033291709992121Google Scholar
McLaughlin, K. A., Greif Green, J., Gruber, M. J., Sampson, N. A., Zaslavsky, A. M., & Kessler, R. C. (2012). Childhood adversities and first onset of psychiatric disorders in a national sample of US adolescents. Archives of General Psychiatry, 69(11), 11511160. https://doi.org/10.1001/archgenpsychiatry.2011.2277Google Scholar
McLaughlin, K. A., & Sheridan, M. A. (2016). Beyond cumulative risk: A dimensional approach to childhood adversity. Current Directions in Psychological Science, 25(4), 239245. https://doi.org/10.1177/0963721416655883Google Scholar
McLaughlin, K. A., Sheridan, M. A., Gold, A. L., Duys, A., Lambert, H. K., Peverill, M., Heleniak, C., Shechner, T., Wojcieszak, Z., & Pine, D. S. (2016). Maltreatment exposure, brain structure, and fear conditioning in children and adolescents. Neuropsychopharmacology, 41(8), 19561964. https://doi.org/10.1038/npp.2015.365Google Scholar
McLaughlin, K. A., Sheridan, M. A., & Lambert, H. K. (2014). Childhood adversity and neural development: Deprivation and threat as distinct dimensions of early experience. Neuroscience and Biobehavioral Reviews, 47, 578591. https://doi.org/10.1016/j.neubiorev.2014.10.012Google Scholar
McLaughlin, K. A., Sheridan, M. A., & Nelson, C. A. (2017). Neglect as a violation of species-expectant experience: Neurodevelopmental consequences. Biological Psychiatry, 82(7), 462471. https://doi.org/10.1016/j.biopsych.2017.02.1096Google Scholar
McLaughlin, K. A., Sheridan, M. A., Tibu, F., Fox, N. A., Zeanah, C. H., & Nelson, C. A. (2015). Causal effects of the early caregiving environment on development of stress response systems in children. Proceedings of the National Academy of Sciences, 112(18), 56375642. https://doi.org/10.1073/pnas.1423363112Google Scholar
Mehta, M. A., Golembo, N. I., Nosarti, C., Colvert, E., Mota, A., Williams, S. C. R., Rutter, M., & Sonuga-Barke, E. J. S. (2009). Amygdala, hippocampal and corpus callosum size following severe early institutional deprivation: The English and Romanian Adoptees Study Pilot. Journal of Child Psychology and Psychiatry, 50(8), 943951. https://doi.org/10.1111/j.1469-7610.2009.02084.xGoogle Scholar
Mitra, R., Jadhav, S., McEwen, B. S., Vyas, A., & Chattarji, S. (2005). Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proceedings of the National Academy of Sciences, 102(26), 93719376. https://doi.org/10.1073/pnas.0504011102Google Scholar
Morey, R. A., Haswell, C. C., Hooper, S. R., & De Bellis, M. D. (2016). Amygdala, hippocampus, and ventral medial prefrontal cortex volumes differ in maltreated youth with and without chronic posttraumatic stress disorder. Neuropsychopharmacology, 41(3), 791801. https://doi.org/10.1038/npp.2015.205Google Scholar
Moriceau, S., & Sullivan, R. M. (2006). Maternal presence serves as a switch between learning fear and attraction in infancy. Nature Neuroscience, 9(8), 10041006. https://doi.org/10.1038/nn1733Google Scholar
Nelson, C. A. (2007). A neurobiological perspective on early human deprivation. Child Development Perspectives, 1(1), 1318. https://doi.org/10.1111/j.1750-8606.2007.00004.xGoogle Scholar
Nelson, C. A., & Gabard-Durnam, L. J. (2020). Early adversity and critical periods: Neurodevelopmental consequences of violating the expectable environment. Trends in Neurosciences, 43(3), 133143. https://doi.org/10.1016/j.tins.2020.01.002Google Scholar
Nelson, C. A., Zeanah, C. H., Fox, N. A., Marshall, P. J., Smyke, A. T., & Guthrie, D. (2007). Cognitive recovery in socially deprived young children: The Bucharest Early Intervention Project. Science, 318(5858), 19371940. https://doi.org/10.1126/science.1143921Google Scholar
Opendak, M., Robinson-Drummer, P., Blomkvist, A., Zanca, R. M., Wood, K., Jacobs, L., Chan, S., Tan, S., Woo, J., Venkataraman, G., Kirschner, E., Lundström, J. N., Wilson, D. A., Serrano, P. A., & Sullivan, R. M. (2019). Neurobiology of maternal regulation of infant fear: The role of mesolimbic dopamine and its disruption by maltreatment. Neuropsychopharmacology, 44, 12471257. https://doi.org/10.1038/s41386-019-0340-9Google Scholar
Pagliaccio, D., Luby, J. L., Bogdan, R., Agrawal, A., Gaffrey, M. S., Belden, A. C., Botteron, K. N., Harms, M. P., & Barch, D. M. (2015). Amygdala functional connectivity, HPA axis genetic variation, and life stress in children and relations to anxiety and emotion regulation. Journal of Abnormal Psychology, 124(4), 817833. https://doi.org/10.1037/abn0000094Google Scholar
Park, A. T., Leonard, J. A., Saxler, P. K., Cyr, A. B., Gabrieli, J. D. E., & Mackey, A. P. (2018). Amygdala–medial prefrontal cortex connectivity relates to stress and mental health in early childhood. Social Cognitive and Affective Neuroscience, 13(4), 430439. https://doi.org/10.1093/scan/nsy017Google Scholar
Pechtel, P., Lyons-Ruth, K., Anderson, C. M., & Teicher, M. H. (2014). Sensitive periods of amygdala development: The role of maltreatment in preadolescence. NeuroImage, 97, 236244. https://doi.org/10.1016/j.neuroimage.2014.04.025Google Scholar
Peckins, M. K., Dockray, S., Eckenrode, J. L., Heaton, J., & Susman, E. J. (2012). The longitudinal impact of exposure to violence on cortisol reactivity in adolescents. Journal of Adolescent Health, 51(4), 366372. https://doi.org/10.1016/j.jadohealth.2012.01.005Google Scholar
Perry, R., & Sullivan, R. M. (2014). Neurobiology of attachment to an abusive caregiver: Short-term benefits and long-term costs. Developmental Psychobiology, 56(8), 16261634. https://doi.org/10.1002/dev.21219Google Scholar
Peverill, M., Sheridan, M. A., Busso, D. S., & McLaughlin, K. A. (2019). Atypical prefrontal–amygdala circuitry following childhood exposure to abuse: links with adolescent psychopathology. Child Maltreatment, 24(4), 411423. https://doi.org/10.1177/1077559519852676Google Scholar
Plotsky, P. M., Thrivikraman, K. V., Nemeroff, C. B., Caldji, C., Sharma, S., & Meaney, M. J. (2005). Long-term consequences of neonatal rearing on central corticotropin-releasing factor systems in adult male rat offspring. Neuropsychopharmacology, 30(12), 21922204. https://doi.org/10.1038/sj.npp.1300769Google Scholar
Radley, J. J., Arias, C. M., & Sawchenko, P. E. (2006). Regional differentiation of the medial prefrontal cortex in regulating adaptive responses to acute emotional stress. Journal of Neuroscience, 26(50), 1296712976. https://doi.org/10.1523/JNEUROSCI.4297-06.2006Google Scholar
Rickard, I. J., Frankenhuis, W. E., & Nettle, D. (2014). Why are childhood family factors associated with timing of maturation? A role for internal prediction. Perspectives on Psychological Science, 9(1), 315. https://doi.org/10.1177/1745691613513467Google Scholar
Robinson-Drummer, P. A., Opendak, M., Blomkvist, A., Chan, S., Tan, S., Delmer, C., Wood, K., Sloan, A., Jacobs, L., Fine, E., Chopra, D., Sandler, C., Kamenetzky, G., & Sullivan, R. M. (2019). Infant trauma alters social buffering of threat learning: Emerging role of prefrontal cortex in preadolescence. Frontiers in Behavioral Neuroscience, 13. https://doi.org/10.3389/fnbeh.2019.00132Google Scholar
Rutter, M. (1998). Developmental catch-up, and deficit, following adoption after severe global early privation. Journal of Child Psychology and Psychiatry, 39(4), 465476. https://doi.org/10.1111/1469-7610.00343Google Scholar
Sabatini, M. J., Ebert, P., Lewis, D. A., Levitt, P., Cameron, J. L., & Mirnics, K. (2007). Amygdala gene expression correlates of social behavior in monkeys experiencing maternal separation. Journal of Neuroscience, 27(12), 32953304. https://doi.org/10.1523/JNEUROSCI.4765-06.2007Google Scholar
Sanchez, M. M., McCormack, K. M., & Howell, B. R. (2015). Social buffering of stress responses in nonhuman primates: Maternal regulation of the development of emotional regulatory brain circuits. Social Neuroscience, 10(5), 512526. https://doi.org/10.1080/17470919.2015.1087426Google Scholar
Schaffer, H. R., & Emerson, P. E. (1964). The development of social attachments in infancy. Monographs of the Society for Research in Child Development, 29(3), 177. https://doi.org/10.2307/1165727Google Scholar
Sheridan, M. A., Fox, N. A., Zeanah, C. H., McLaughlin, K. A., & Nelson, C. A. (2012). Variation in neural development as a result of exposure to institutionalization early in childhood. Proceedings of the National Academy of Sciences, 109(32), 1292712932. https://doi.org/10.1073/pnas.1200041109Google Scholar
Sheridan, M. A., & McLaughlin, K. A. (2014). Dimensions of early experience and neural development: Deprivation and threat. Trends in Cognitive Sciences, 18(11), 580585. https://doi.org/10.1016/j.tics.2014.09.001Google Scholar
Sheridan, M. A., Peverill, M., Finn, A. S., & McLaughlin, K. A. (2017). Dimensions of childhood adversity have distinct associations with neural systems underlying executive functioning. Development and Psychopathology, 29(5), 17771794. https://doi.org/10.1017/S0954579417001390Google Scholar
Shonkoff, J. P., The Committee on Psychosocial Aspects of Child and Family Health, Committee on Early Childhood Adoption, and Dependent Care, and Section on Developmental and Behavioral Pediatrics, Siegel, B. S., Dobbins, M. I., Earls, M. F., Garner, A. S., McGuinn, L., Pascoe, J., & Wood, D. L. (2012). The lifelong effects of early childhood adversity and toxic stress. Pediatrics, 129(1), e232e246. https://doi.org/10.1542/peds.2011-2663Google Scholar
Tarullo, A. R., & Gunnar, M. R. (2006). Child maltreatment and the developing HPA axis. Hormones and Behavior, 50(4), 632639. https://doi.org/10.1016/j.yhbeh.2006.06.010Google Scholar
Teicher, M. H., Andersen, S. L., Polcari, A., Anderson, C. M., & Navalta, C. P. (2002). Developmental neurobiology of childhood stress and trauma. The Psychiatric Clinics of North America, 25(2), 397426, vii–viii. https://doi.org/10.1016/s0193-953x(01)00003-xGoogle Scholar
Teicher, M. H., Anderson, C. M., Ohashi, K., Khan, A., McGreenery, C. E., Bolger, E. A., Rohan, M. L., & Vitaliano, G. D. (2018). Differential effects of childhood neglect and abuse during sensitive exposure periods on male and female hippocampus. NeuroImage, 169, 443452. https://doi.org/10.1016/j.neuroimage.2017.12.055Google Scholar
Tottenham, N. (2012). Human amygdala development in the absence of species-expected caregiving. Developmental Psychobiology, 54(6), 598611. https://doi.org/10.1002/dev.20531Google Scholar
Tottenham, N. (2015). Social scaffolding of human amygdala-mPFCcircuit development. Social Neuroscience, 10(5), 489499. https://doi.org/10.1080/17470919.2015.1087424Google Scholar
Tottenham, N., Hare, T. A., Millner, A., Gilhooly, T., Zevin, J. D., & Casey, B. J. (2011). Elevated amygdala response to faces following early deprivation. Developmental Science, 14(2), 190204. https://doi.org/10.1111/j.1467-7687.2010.00971.xGoogle Scholar
Tottenham, N., Hare, T. A., Quinn, B. T., McCarry, T. W., Nurse, M., Gilhooly, T., Millner, A., Galvan, A., Davidson, M. C., Eigsti, I.-M., Thomas, K. M., Freed, P. J., Booma, E. S., Gunnar, M. R., Altemus, M., Aronson, J., & Casey, B. J. (2010). Prolonged institutional rearing is associated with atypically large amygdala volume and difficulties in emotion regulation. Developmental Science, 13(1), 4661. https://doi.org/10.1111/j.1467-7687.2009.00852.xGoogle Scholar
Uematsu, A., Matsui, M., Tanaka, C., Takahashi, T., Noguchi, K., Suzuki, M., & Nishijo, H. (2012). Developmental trajectories of amygdala and hippocampus from infancy to early adulthood in healthy individuals. PLoS ONE, 7(10), e46970. https://doi.org/10.1371/journal.pone.0046970Google Scholar
Uno, H., Tarara, R., Else, J. G., Suleman, M. A., & Sapolsky, R. M. (1989). Hippocampal damage associated with prolonged and fatal stress in primates. Journal of Neuroscience, 9(5), 17051711. https://doi.org/10.1523/JNEUROSCI.09-05-01705.1989Google Scholar
van der Kolk, B. A. (2003). The neurobiology of childhood trauma and abuse. Child and Adolescent Psychiatric Clinics of North America, 12(2), 293317. https://doi.org/10.1016/S1056-4993(03)00003-8Google Scholar
van der Kolk, B. A., McFarlane, A. C., & Weiseth, L. (2012). Traumatic stress: The effects of overwhelming experience on mind, body, and society. Guilford Press.Google Scholar
van Harmelen, A.-L., van Tol, M.-J., Demenescu, L. R., van der Wee, A. N. J., Veltman, D. J., Aleman, A., van Buchem, A. M., Spinhoven, P., Penninx, B. W. J. H., & Elzinga, B. M. (2013). Enhanced amygdala reactivity to emotional faces in adults reporting childhood emotional maltreatment. Social Cognitive and Affective Neuroscience, 8(4), 362369. https://doi.org/10.1093/scan/nss007Google Scholar
Vasung, L., Abaci Turk, E., Ferradal, S. L., Sutin, J., Stout, J. N., Ahtam, B., Lin, P.-Y., & Grant, P. E. (2019). Exploring early human brain development with structural and physiological neuroimaging. NeuroImage, 187, 226254. https://doi.org/10.1016/j.neuroimage.2018.07.041Google Scholar
Vyas, A., Bernal, S., & Chattarji, S. (2003). Effects of chronic stress on dendritic arborization in the central and extended amygdala. Brain Research, 965(1), 290294. https://doi.org/10.1016/S0006-8993(02)04162-8Google Scholar
Vyas, A., Mitra, R., Rao, B. S., & Chattarji, S. (2002). Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. Journal of Neuroscience, 22(15), 68106818. https://doi.org/10.1523/JNEUROSCI.22-15-06810.2002Google Scholar
Vyas, S., Rodrigues, A. J., Silva, J. M., Tronche, F., Almeida, O. F. X., Sousa, N., & Sotiropoulos, I. (2016). Chronic stress and glucocorticoids: From neuronal plasticity to neurodegeneration [Review Article]. Neural Plasticity, 2016, Article 6391686. https://doi.org/10.1155/2016/6391686Google Scholar
Wade, M., Zeanah, C. H., Fox, N. A., Tibu, F., Ciolan, L. E., & Nelson, C. A. (2019). Stress sensitization among severely neglected children and protection by social enrichment. Nature Communications, 10(1), Article 5771. https://doi.org/10.1038/s41467-019-13622-3Google Scholar
Wang, Q., Verweij, E. W. E., Krugers, H. J., Joels, M., Swaab, D. F., & Lucassen, P. J. (2014). Distribution of the glucocorticoid receptor in the human amygdala; changes in mood disorder patients. Brain Structure and Function, 219(5), 16151626. https://doi.org/10.1007/s00429-013-0589-4Google Scholar
Weems, C. F., Klabunde, M., Russell, J. D., Reiss, A. L., & Carrión, V. G. (2015). Post-traumatic stress and age variation in amygdala volumes among youth exposed to trauma. Social Cognitive and Affective Neuroscience, 10(12), 16611667. https://doi.org/10.1093/scan/nsv053Google Scholar
Wolf, R. C., & Herringa, R. J. (2016). Prefrontal–amygdala dysregulation to threat in pediatric posttraumatic stress disorder. Neuropsychopharmacology, 41(3), 822831. https://doi.org/10.1038/npp.2015.209Google Scholar
Woolley, C. S., Gould, E., & McEwen, B. S. (1990). Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Research, 531(1–2), 225231. https://doi.org/10.1016/0006-8993(90)90778-AGoogle Scholar
Wu, M., Kujawa, A., Lu, L. H., Fitzgerald, D. A., Klumpp, H., Fitzgerald, K. D., Monk, C. S., & Phan, K. L. (2016). Age-related changes in amygdala–frontal connectivity during emotional face processing from childhood into young adulthood. Human Brain Mapping, 37(5), 16841695. https://doi.org/10.1002/hbm.23129Google Scholar
Yan, C.-G., Rincón-Cortés, M., Raineki, C., Sarro, E., Colcombe, S., Guilfoyle, D. N., Yang, Z., Gerum, S., Biswal, B. B., Milham, M. P., Sullivan, R. M., & Castellanos, F. X. (2017). Aberrant development of intrinsic brain activity in a rat model of caregiver maltreatment of offspring. Translational Psychiatry, 7(1), e1005e1005. https://doi.org/10.1038/tp.2016.276Google Scholar
Yehuda, R., Daskalakis, N. P., Bierer, L. M., Bader, H. N., Klengel, T., Holsboer, F., & Binder, E. B. (2016). Holocaust exposure induced intergenerational effects on FKBP5 methylation. Biological Psychiatry, 80(5), 372380. https://doi.org/10.1016/j.biopsych.2015.08.005Google Scholar
Zeanah, C., Nelson, C., Fox, N., Smyke, A., Marshall, P., Parker, S., & Koga, S. (2003). Designing research to study the effects of institutionalization on brain and behavioral development: The Bucharest Early Intervention Project. Development and Psychopathology, 15, 885907. https://doi.org/10.1017/S0954579403000452Google Scholar
Zhu, J., Lowen, S. B., Anderson, C. M., Ohashi, K., Khan, A., & Teicher, M. H. (2019). Association of prepubertal and postpubertal exposure to childhood maltreatment with adult amygdala function. JAMA Psychiatry, 76(8), 843853. https://doi.org/10.1001/jamapsychiatry.2019.0931Google Scholar

References

Agorastos, A., Pervanidou, P., Chrousos, G. P., & Baker, D. G. (2019). Developmental trajectories of early life stress and trauma: A narrative review on neurobiological aspects beyond stress system dysregulation. Frontiers in Psychiatry, 10. https://doi.org/10.3389/fpsyt.2019.00118Google Scholar
Ahmed, S. P., Bittencourt-Hewitt, A., & Sebastian, C. L. (2015). Neurocognitive bases of emotion regulation development in adolescence. Developmental Cognitive Neuroscience, 15, 1125. https://doi.org/10.1016/j.dcn.2015.07.006Google Scholar
Aimie-Salleh, N., Malarvili, M. B., & Whittaker, A. C. (2019). Fusion of heart rate variability and salivary cortisol for stress response identification based on adverse childhood experience. Medical & Biological Engineering & Computing, 57(6), 12291245. https://doi.org/10.1007/s11517-019-01958-3Google Scholar
Appelhans, B. M., & Luecken, L. J. (2006). Heart rate variability as an index of regulated emotional responding. Review of General Psychology, 10(3), 229240. https://doi.org/10.1037/1089-2680.10.3.229Google Scholar
Beauchaine, T. P. (2015a). Respiratory sinus arrhythmia: A transdiagnostic biomarker of emotion dysregulation and psychopathology. Current Opinion in Psychology, 3, 4347. https://doi.org/10.1016/j.copsyc.2015.01.017Google Scholar
Beauchaine, T. P. (2015b). Future directions in emotion dysregulation and youth psychopathology. Journal of Clinical Child & Adolescent Psychology, 44(5), 875896. https://doi.org/10.1080/15374416.2015.1038827Google Scholar
Benarroch, E. E. (1993). The central autonomic network: Functional organization, dysfunction, and perspective. Mayo Clinic Proceedings, 68(10), 9881001. https://doi.org/10.1016/S0025-6196(12)62272-1Google Scholar
Benarroch, E. E. (1997). The central autonomic network. In Low, P. A. (Ed.), Clinical autonomic disorders (2nd ed., pp. 1723). Lippincott-Raven.Google Scholar
Brosschot, J. F., Gerin, W., & Thayer, J. F. (2006). The perseverative cognition hypothesis: A review of worry, prolonged stress-related physiological activation, and health. Journal of Psychosomatic Research, 60(2), 113124. https://doi.org/10.1016/j.jpsychores.2005.06.074Google Scholar
Casey, B. J., Getz, S., & Galvan, A. (2008). The adolescent brain. Developmental Review, 28(1), 6277. https://doi.org/10.1016/j.dr.2007.08.003Google Scholar
Chrousos, G. P. (2009). Stress and disorders of the stress system. Nature Reviews Endocrinology, 5(7), 374381. https://doi.org/10.1038/nrendo.2009.106Google Scholar
Chrousos, G. P., & Gold, P. W. (1992). The concepts of stress and stress system disorders: Overview of physical and behavioral homeostasis. JAMA, 267(9), 12441252.Google Scholar
Churchwell, J. C., Morris, A. M., Heurtelou, N. M., & Kesner, R. P. (2009). Interactions between the prefrontal cortex and amygdala during delay discounting and reversal. Behavioral Neuroscience, 123(6), 11851196. https://doi.org/10.1037/a0017734Google Scholar
Daskalakis, N. P., Bagot, R. C., Parker, K. J., Vinkers, C. H., & de Kloet, E. R. (2013). The three-hit concept of vulnerability and resilience: Toward understanding adaptation to early-life adversity outcome. Psychoneuroendocrinology, 38(9), 18581873. https://doi.org/10.1016/j.psyneuen.2013.06.008Google Scholar
Friedman, B. H. (2007). An autonomic flexibility–neurovisceral integration model of anxiety and cardiac vagal tone. Biological Psychology, 74(2), 185199. https://doi.org/10.1016/j.biopsycho.2005.08.009Google Scholar
Friedman, B. H., & Thayer, J. F. (1998). Autonomic balance revisited: Panic anxiety and heart rate variability. Journal of Psychosomatic Research, 44(1), 133151. https://doi.org/10.1016/S0022-3999(97)00202-XGoogle Scholar
Gabard-Durnam, L., & McLaughlin, K. A. (2020). Sensitive periods in human development: Charting a course for the future. Current Opinion in Behavioral Sciences, 36, 120128. https://doi.org/10.1016/j.cobeha.2020.09.003Google Scholar
Heim, C. M., Entringer, S., & Buss, C. (2019). Translating basic research knowledge on the biological embedding of early-life stress into novel approaches for the developmental programming of lifelong health. Psychoneuroendocrinology, 105, 123137. https://doi.org/10.1016/j.psyneuen.2018.12.011Google Scholar
Hilt, L. M., Hanson, J. L., & Pollak, S. D. (2011). Emotion dysregulation. In Brown, B. B. & Prinstein, M. J. (Eds.), Encyclopedia of adolescence (Vol. 3, pp. 160169). Elsevier.Google Scholar
Katz, M., Liu, C., Schaer, M., Parker, K. J., Ottet, M.-C., Epps, A., Buckmaster, C. L., Bammer, R., Moseley, M. E., Schatzberg, A. F., Eliez, S., & Lyons, D. M. (2009). Prefrontal plasticity and stress inoculation-induced resilience. Developmental Neuroscience, 31(4), 293299. https://doi.org/10.1159/000216540Google Scholar
Koenig, J. (2020). Neurovisceral regulatory circuits of affective resilience in youth: Principal outline of a dynamic model of neurovisceral integration in development. Psychophysiology, 57(5), Article e13568. https://doi.org/10.1111/psyp.13568Google Scholar
Kok, B. E., Coffey, K. A., Cohn, M. A., Catalino, L. I., Vacharkulksemsuk, T., Algoe, S. B., Brantley, M., & Fredrickson, B. L. (2013). How positive emotions build physical health: Perceived positive social connections account for the upward spiral between positive emotions and vagal tone. Psychological Science, 24(7), 11231132. https://doi.org/10.1177/0956797612470827Google Scholar
Lewis, M. D., & Douglas, L. (1988). A dynamic systems approach to cognition – Emotion interactions in development. In Mascolo, M. F. & Griffin, S. (Eds.), What develops in emotional development? Emotions, personality, and psychotherapy (pp. 159188). Springer. https://doi.org/10.1007/978-1-4899-1939-7_7Google Scholar
Maier, S. F. (2015). Behavioral control blunts reactions to contemporaneous and future adverse events: Medial prefrontal cortex plasticity and a corticostriatal network. Neurobiology of Stress, 1, 1222. https://doi.org/10.1016/j.ynstr.2014.09.003Google Scholar
McEwen, B. S. (1998). Protective and damaging effects of stress mediators. The New England Journal of Medicine, 338(3), 171179. https://doi.org/10.1056/NEJM199801153380307Google Scholar
McEwen, B. S., & Gianaros, P. J. (2011). Stress- and allostasis-induced brain plasticity. Annual Review of Medicine, 62, 431445. https://doi.org/10.1146/annurev-med-052209-100430Google Scholar
Merikangas, K. R., He, J., Burstein, M., Swanson, S. A., Avenevoli, S., Cui, L., Benjet, C., Georgiades, K., & Swendsen, J. (2010). Lifetime prevalence of mental disorders in U.S. adolescents: Results from the National Comorbidity Survey Replication–Adolescent Supplement (NCS-A). Journal of the American Academy of Child & Adolescent Psychiatry, 49(10), 980989. https://doi.org/10.1016/j.jaac.2010.05.017Google Scholar
Merikangas, K. R., Nakamura, E. F., & Kessler, R. C. (2009). Epidemiology of mental disorders in children and adolescents. Dialogues in Clinical Neuroscience, 11(1), 720. https://doi.org/10.31887/DCNS.2009.11.1/krmerikangasGoogle Scholar
Meyer, H. C., & Lee, F. S. (2019). Translating developmental neuroscience to understand risk for psychiatric disorders. American Journal of Psychiatry, 176(3), 179185. https://doi.org/10.1176/appi.ajp.2019.19010091Google Scholar
Mulkey, S. B., & du Plessis, A. J. (2019). Autonomic nervous system development and its impact on neuropsychiatric outcome. Pediatric Research, 85(2), 120126. https://doi.org/10.1038/s41390-018-0155-0Google Scholar
Nederhof, E., & Schmidt, M. V. (2012). Mismatch or cumulative stress: Toward an integrated hypothesis of programming effects. Physiology & Behavior, 106(5), 691700. https://doi.org/10.1016/j.physbeh.2011.12.008Google Scholar
Nolte, I. M., Munoz, M. L., Tragante, V., Amare, A. T., Jansen, R., Vaez, A., … & de Geus, E. J. C. (2017). Genetic loci associated with heart rate variability and their effects on cardiac disease risk. Nature Communications, 8(1), Article 15805. https://doi.org/10.1038/ncomms15805Google Scholar
Patron, E., Calgagnì, A., Thayer, J. F., & Scrimin, S. (2021). The longitudinal negative impact of early stressful events on emotional and physical well-being: The buffering role of cardiac vagal development. Developmental Psychobiology, 63, 11461155. https://doi.org/10.1002/dev.22066Google Scholar
Pozzato, I., Craig, A., Gopinath, B., Tran, Y., Dinh, M., Gillett, M., & Cameron, I. (2019). Biomarkers of autonomic regulation for predicting psychological distress and functional recovery following road traffic injuries: Protocol for a prospective cohort study. BMJ Open, 9(4), e024391. https://doi.org/10.1136/bmjopen-2018-024391Google Scholar
Prinsloo, G. E., Rauch, H. G. L., & Derman, W. E. (2014). A brief review and clinical application of heart rate variability biofeedback in sports, exercise, and rehabilitation medicine. The Physician and Sportsmedicine, 42(2), 8899. https://doi.org/10.3810/psm.2014.05.2061Google Scholar
Russo, S. J., Murrough, J. W., Han, M., Charney, D. S., & Nestler, E. J. (2012). Neurobiology of resilience. Nature Neuroscience, 15(11), 14751484. https://doi.org/10.1038/nn.3234Google Scholar
Sakaki, M., Yoo, H. J., Nga, L., Lee, T.-H., Thayer, J. F., & Mather, M. (2016). Heart rate variability is associated with amygdala functional connectivity with MPFC across younger and older adults. NeuroImage, 139, 4452. https://doi.org/10.1016/j.neuroimage.2016.05.076Google Scholar
Saul, J. (1990). Beat-to-beat variations of heart rate reflect modulation of cardiac autonomic outflow. Physiology, 5(1), 3237. https://doi.org/10.1152/physiologyonline.1990.5.1.32Google Scholar
Sigrist, C., Mürner-Lavanchy, I., Peschel, S. K. V., Schmidt, S. J., Kaess, M., & Koenig, J. (2021). Early life maltreatment and resting-state heart rate variability: A systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews, 120, 307334. https://doi.org/10.1016/j.neubiorev.2020.10.026Google Scholar
Smith, R., Thayer, J. F., Khalsa, S. S., & Lane, R. D. (2017). The hierarchical basis of neurovisceral integration. Neuroscience & Biobehavioral Reviews, 75, 274296. https://doi.org/10.1016/j.neubiorev.2017.02.003Google Scholar
Squeglia, L. M., Jacobus, J., Sorg, S. F., Jernigan, T. L., & Tapert, S. F. (2013). Early adolescent cortical thinning is related to better neuropsychological performance. Journal of the International Neuropsychological Society, 19(9), 962970. https://doi.org/10.1017/S1355617713000878Google Scholar
Steinfurth, E. C. K., Wendt, J., Geisler, F., Hamm, A. O., Thayer, J. F., & Koenig, J. (2018). Resting state vagally-mediated heart rate variability is associated with neural activity during explicit emotion regulation. Frontiers in Neuroscience, 12, 794. https://doi.org/10.3389/fnins.2018.00794Google Scholar
Thayer, J. F., Åhs, F., Fredrikson, M., Sollers, J. J., & Wager, T. D. (2012). A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neuroscience & Biobehavioral Reviews, 36(2), 747756. https://doi.org/10.1016/j.neubiorev.2011.11.009Google Scholar
Thayer, J. F., & Brosschot, J. F. (2005). Psychosomatics and psychopathology: Looking up and down from the brain. Psychoneuroendocrinology, 30(10), 10501058. https://doi.org/10.1016/j.psyneuen.2005.04.014Google Scholar
Thayer, J. F., & Friedman, B. H. (1997). The heart of anxiety: A dynamical systems approach. In Vingerhoets, A. (Ed.), The (non)expression of emotions in health and disease (pp. 3949). Springer.Google Scholar
Thayer, J. F., & Lane, R. D. (2000). A model of neurovisceral integration in emotion regulation and dysregulation. Journal of Affective Disorders, 61(3), 201216. https://doi.org/10.1016/S0165-0327(00)00338-4Google Scholar
Thayer, J. F., & Lane, R. D. (2009). Claude Bernard and the heart–brain connection: Further elaboration of a model of neurovisceral integration. Neuroscience & Biobehavioral Reviews, 33(2), 8188. https://doi.org/10.1016/j.neubiorev.2008.08.004Google Scholar
Thayer, J. F., Mather, M., & Koenig, J. (2021). Stress and aging: A neurovisceral integration perspective. Psychophysiology, 58(7), e13804. https://doi.org/10.1111/psyp.13804Google Scholar
Thayer, J. F., & Siegle, G. J. (2002). Neurovisceral integration in cardiac and emotional regulation. IEEE Engineering in Medicine and Biology Magazine, 21(4), 2429. https://doi.org/10.1109/MEMB.2002.1032635Google Scholar
Thayer, J. F., Yamamoto, S. S., & Brosschot, J. F. (2010). The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. International Journal of Cardiology, 141(2), 122131. https://doi.org/10.1016/j.ijcard.2009.09.543Google Scholar
van der Kolk, B. A. (2015). The body keeps the score: Brain, mind, and body in the healing of trauma. Penguin Books.Google Scholar
Vijayakumar, N., Whittle, S., Yücel, M., Dennison, M., Simmons, J., & Allen, N. B. (2014). Thinning of the lateral prefrontal cortex during adolescence predicts emotion regulation in females. Social Cognitive and Affective Neuroscience, 9(11), 18451854. https://doi.org/10.1093/scan/nst183Google Scholar
Walker, F. R., Pfingst, K., Carnevali, L., Sgoifo, A., & Nalivaiko, E. (2017). In the search for integrative biomarker of resilience to psychological stress. Neuroscience & Biobehavioral Reviews, 74, 310320. https://doi.org/10.1016/j.neubiorev.2016.05.003Google Scholar
Wulsin, L., Herman, J., & Thayer, J. F. (2018). Stress, autonomic imbalance, and the prediction of metabolic risk: A model and a proposal for research. Neuroscience & Biobehavioral Reviews, 86, 1220. https://doi.org/10.1016/j.neubiorev.2017.12.010Google Scholar

References

Adam, E. K., Quinn, M. E., Tavernier, R., McQuillan, M. T., Dahlke, K. A., & Gilbert, K. E. (2017). Diurnal cortisol slopes and mental and physical health outcomes: A systematic review and meta-analysis. Psychoneuroendocrinology, 83, 2541. https://doi.org/10.1016/j.psyneuen.2017.05.018Google Scholar
Ainsworth, M. D. S. (1990). Epilogue: Some considerations regarding theory and assessment relevant to attachments beyond infancy. In Greenberg, M. T., Cicchetti, D., & Cummings, E. M. (Eds.), Attachment in the preschool years (pp. 463488). University of Chicago Press.Google Scholar
Andersen, S. L., Tomada, A., Vincow, E. S., Valente, E., Polcari, A., & Teicher, M. H. (2008). Preliminary evidence for sensitive periods in the effect of childhood sexual abuse on regional brain development. The Journal of Neuropsychiatry and Clinical Neurosciences, 20(3), 292301. https://doi.org/10.1176/appi.neuropsych.20.3.292Google Scholar
Badanes, L. S., Watamura, S. E., & Hankin, B. L. (2011). Hypocortisolism as a potential marker of allostatic load in children: Associations with family risk and internalizing disorders. Development and Psychopathology, 23(3), 881896. https://doi.org/10.1017/S095457941100037XGoogle Scholar
Balamore, U., & Wozniak, R. H. (1984). Speech-action coordination in young children. Developmental Psychology, 20(5), 850858. https://doi.org/10.1037/0012-1649.20.5.850Google Scholar
Baldwin, J. R., Arseneault, L., Caspi, A., Fisher, H. L., Moffitt, T. E., Odgers, C. L., … & Danese, A. (2018). Childhood victimization and inflammation in young adulthood: A genetically sensitive cohort study. Brain, Behavior, and Immunity, 67, 211217. https://doi.org/10.1016/j.bbi.2017.08.025Google Scholar
Barnett, D., Manly, J. T., & Cicchetti, D. (1993). Defining child maltreatment: The interface between policy and research. In Cicchetti, D. & Toth, S. L. (Eds.), Child abuse, child development, and social policy (pp. 773). Ablex.Google Scholar
Bendezú, J. J., Loughlin-Presnal, J. E., & Wadsworth, M. E. (2019). Attachment security moderates effects of uncontrollable stress on preadolescent hypothalamic–pituitary–adrenal axis responses: Evidence of regulatory fit. Clinical Psychological Science, 7(6), 13551371. https://doi.org/10.1177/2167702619854747Google Scholar
Bendezú, J. J., Perzow, S. E., & Wadsworth, M. E. (2016). What constitutes effective coping and efficient physiologic regulation following psychosocial stress depends on involuntary stress responses. Psychoneuroendocrinology, 73, 4250. https://doi.org/10.1016/j.psyneuen.2016.07.005Google Scholar
Bernard, K., Dozier, M., Bick, J., & Gordon, M. K. (2015). Intervening to enhance cortisol regulation among children at risk for neglect: Results of a randomized clinical trial. Development and Psychopathology, 27(3), 829841. https://doi.org/10.1017/S095457941400073XGoogle Scholar
Bernard, K., Hostinar, C. E., & Dozier, M. (2015). Intervention effects on diurnal cortisol rhythms of Child Protective Services–referred infants in early childhood: Preschool follow-up results of a randomized clinical trial. JAMA Pediatrics, 169(2), 112119. https://doi.org/10.1001/jamapediatrics.2014.2369Google Scholar
Blair, C., & Razza, R. P. (2007). Relating effortful control, executive function, and false belief understanding to emerging math and literacy ability in kindergarten. Child Development, 78(2), 647663. https://doi.org/10.1111/j.1467-8624.2007.01019.xGoogle Scholar
Bowlby, J. (1982). Attachment and loss: Vol. 1. Attachment (2nd ed.). Basic Books.Google Scholar
Bretherton, I. (2013). Internal working models of attachment relationships as related to resilient coping. In Noam, G. G. & Fischer, K. W. (Eds.), Development and vulnerability in close relationships (pp. 2348). Psychology Press.Google Scholar
Bretherton, I., Grossmann, K. E., Grossmann, K., & Waters, E. (2005). In pursuit of the internal working model construct and its relevance to attachment relationships. In Grossman, K. E., Grossman, K., & Waters, E. (Eds.), Attachment from infancy to adulthood: The major longitudinal studies (pp. 1347). Guilford Press.Google Scholar
Bufalino, C., Hepgul, N., Aguglia, E., & Pariante, C. M. (2013). The role of immune genes in the association between depression and inflammation: A review of recent clinical studies. Brain, Behavior, and Immunity, 31, 3147. https://doi.org/10.1016/j.bbi.2012.04.009Google Scholar
Campbell, L. K., Scaduto, M., Van Slyke, D., Niarhos, F., Whitlock, J. A., & Compas, B. E. (2009). Executive function, coping, and behavior in survivors of childhood acute lymphocytic leukemia. Journal of Pediatric Psychology, 34(3), 317327. https://doi.org/10.1093/jpepsy/jsn080Google Scholar
Cassidy, J., & Shaver, P. R. (Eds.). (2008). Handbook of attachment: Theory, research, and clinical applications (2nd ed.). Guilford Press.Google Scholar
Chen, E., McLean, K. C., & Miller, G. E. (2015). Shift-and-persist strategies: Associations with socioeconomic status and the regulation of inflammation among adolescents and their parents. Psychosomatic Medicine, 77(4), 371382. https://doi.org/10.1097/psy.0000000000000157Google Scholar
Chen, E., Turiano, N. A., Mroczek, D. K., & Miller, G. E. (2016). Association of reports of childhood abuse and all-cause mortality rates in women. JAMA Psychiatry, 73(9), 920927. https://doi.org/10.1001/jamapsychiatry.2016.1786Google Scholar
Cicchetti, D. (Ed.). (2011a). Allostatic load, part 1. Development and Psychopathology, 23, 723724. https://doi.org/10.1017/S0954579411000277Google Scholar
Cicchetti, D. (Ed). (2011b). Allostatic load, part 2. Development and Psychopathology, 23, 955974. https://doi.org/10.1017/S0954579411000447Google Scholar
Cicchetti, D. (2013). Annual research review: Resilient functioning in maltreated children – past, present, and future perspectives. Journal of Child Psychology and Psychiatry, 54(4), 402422. https://doi.org/10.1111/j.1469-7610.2012.02608.xGoogle Scholar
Cicchetti, D. (Ed.). (2017). Biological and behavioral effects of early adversity on multiple levels of development. Development and Psychopathology, 29(5), 15171986.Google Scholar
Cicchetti, D., & Gunnar, M. R. (2008). Integrating biological processes into the design and evaluation of preventive interventions. Development and Psychopathology, 20(3), 737743. https://doi.org/10.1017/S0954579408000357Google Scholar
Cicchetti, D., Handley, E. D., & Rogosch, F. A. (2015). Child maltreatment, inflammation, and internalizing symptoms: Investigating the roles of C-reactive protein, gene variation and neuroendocrine regulation. Development and Psychopathology, 27(2), 553566. https://doi.org/10.1017/S0954579415000152Google Scholar
Cicchetti, D., & Lynch, M. (1995). Failures in the expectable environment and their impact on individual development: The case of child maltreatment. In Cicchetti, D. & Cohen, D. J. (Eds.), Developmental psychopathology: Risk, disorder, and adaptation (Vol. 2, pp. 3271). Wiley.Google Scholar
Cicchetti, D., & Rogosch, F. A. (2007). Personality, adrenal steroid hormones, and resilience in maltreated children: A multi-level perspective. Development and Psychopathology, 19(3), 787809. https://doi.org/10.1017/S0954579407000399Google Scholar
Cicchetti, D., & Rogosch, F. A. (2009). Adaptive coping under conditions of extreme stress: Multilevel influences on the determinants of resilience in maltreated children. New Directions for Child and Adolescent Development, 124, 4759. https://doi.org/10.1002/cd.242Google Scholar
Cicchetti, D., Rogosch, F. A., Howe, M. L., & Toth, S. L. (2010). The effects of maltreatment and neuroendocrine regulation on memory performance. Child Development, 81(5), 15041519. https://doi.org/10.1111/j.1467-8624.2010.01488.xGoogle Scholar
Cicchetti, D., Rogosch, F. A., & Toth, S. L. (2006). Fostering secure attachment in infants in maltreating families through preventive interventions. Development and Psychopathology, 18(3), 623649. https://doi.org/10.1017/s0954579406060329Google Scholar
Cicchetti, D., & Tucker, D. (1994). Development and self-regulatory structures of the mind. Development and Psychopathology, 6(4), 533549. https://doi.org/10.1017/S0954579400004673Google Scholar
Cicchetti, D., & Valentino, K. (2006). An ecological transactional perspective on child maltreatment: Failure of the average expectable environment and its influence upon child development. In Cicchetti, D & Cohen, D. J (Eds.), Developmental psychopathology. Risk, disorder, and adaptation (2nd ed., Vol. 3, pp. 129201). Wiley.Google Scholar
Cisler, J. M., & Herringa, R. J. (2020). Posttraumatic stress disorder and the developing adolescent brain. Biological Psychiatry, 89(2), 144151. https://doi.org/10.1016/j.biopsych.2020.06.001Google Scholar
Coelho, R., Viola, T. W., Walss‐Bass, C., Brietzke, E., & Grassi‐Oliveira, R. (2014). Childhood maltreatment and inflammatory markers: A systematic review. Acta Psychiatrica Scandinavica, 129(3), 180192. https://doi.org/10.1111/acps.12217Google Scholar
Cohen‐Gilbert, J. E., & Thomas, K. M. (2013). Inhibitory control during emotional distraction across adolescence and early adulthood. Child Development, 84(6), 19541966. https://doi.org/10.1111/cdev.12085Google Scholar
Cole, P. M., Bendezú, J. J., Ram, N., & Chow, S. M. (2017). Dynamical systems modeling of early childhood self-regulation. Emotion, 17(4), 684699. https://doi.org/10.1037/emo0000268Google Scholar
Compas, B. E. (2009). Coping, regulation, and development during childhood and adolescence. New Directions for Child and Adolescent Development, 124, 8799. https://doi.org/10.1002/cd.245Google Scholar
Compas, B. E., Connor, J. K., Saltzman, H., Thomsen, A. H., & Wadsworth, M. (1999). Getting specific about coping: Effortful and involuntary responses to stress in development. In Lewis, M. & Ramsey, D. (Eds.), Soothing and Stress (pp. 229256). Cambridge University Press.Google Scholar
Compas, B. E., Connor-Smith, J., & Jaser, S. S. (2004). Temperament, stress reactivity, and coping: Implications for depression in childhood and adolescence. Journal of Clinical Child and Adolescent Psychology, 33(1), 2131. https://doi.org/10.1207/S15374424JCCP3301_3Google Scholar
Compas, B. E., Connor-Smith, J. K., Saltzman, H., Thomsen, A. H., & Wadsworth, M. E. (2001). Coping with stress during childhood and adolescence: Problems, progress, and potential in theory and research. Psychological Bulletin, 127(1), 87127. https://doi.org/10.1037/0033-2909.127.1.87Google Scholar
Compas, B. E., Jaser, S. S., Bettis, A. H., Watson, K. H., Gruhn, M. A., Dunbar, J. P., … & Thigpen, J. C. (2017). Coping, emotion regulation, and psychopathology in childhood and adolescence: A meta-analysis and narrative review. Psychological Bulletin, 143(9), 939991. https://doi.org/10.1037/bul0000110Google Scholar
Cowell, R. A., Cicchetti, D., Rogosch, F. A., & Toth, S. L. (2015). Childhood maltreatment and its effect on neurocognitive functioning: Timing and chronicity matter. Development and Psychopathology, 27(2), 521533. https://doi.org/10.1017/S0954579415000139Google Scholar
Danese, A., & McEwen, B. S. (2012). Adverse childhood experiences, allostasis, allostatic load, and age-related disease. Physiology & Behavior, 106(1), 2939. https://doi.org/10.1016/j.physbeh.2011.08.019Google Scholar
Dannlowski, U., Stuhrmann, A., Beutelmann, V., Zwanzger, P., Lenzen, T., Grotegerd, D., … & Kugel, H. (2012). Limbic scars: Long-term consequences of childhood maltreatment revealed by functional and structural magnetic resonance imaging. Biological Psychiatry, 71(4), 286293. https://doi.org/10.1016/j.biopsych.2011.10.021Google Scholar
De Bellis, M. D., Chrousos, G. P., Dorn, L. D., Burke, L., Helmers, K., Kling, M. A., … & Putnam, F. W. (1994). Hypothalamic-pituitary-adrenal axis dysregulation in sexually abused girls. The Journal of Clinical Endocrinology & Metabolism, 78(2), 249255. https://doi.org/10.1210/jcem.78.2.8106608Google Scholar
Delis, D. C., Kramer, J. H., Kaplan, E., & Ober, B. A. (1994). California Verbal Learning Test – Children’s version. Psychological Corporation.Google Scholar
Demers, L. A., Handley, E. D., Hunt, R. H., Rogosch, F. A., Toth, S. L., Thomas, K. M., & Cicchetti, D. (2019). Childhood maltreatment disrupts brain-mediated pathways between adolescent maternal relationship quality and positive adult outcomes. Child Maltreatment, 24(4), 424434. https://doi.org/10.1177/1077559519847770Google Scholar
Demers, L. A., Hunt, R. H., Cicchetti, D., Cohen-Gilbert, J. E., Rogosch, F. A., Toth, S. L., & Thomas, K. M. (2021). Impact of childhood maltreatment and resilience on behavioral and neural patterns of inhibitory control during emotional distraction. Development and Psychopathology, 34(4). https://doi.org/10.1017/S0954579421000055Google Scholar
Demers, L. A., McKenzie, K. J., Hunt, R. H., Cicchetti, D., Cowell, R. A., Rogosch, F. A., … & Thomas, K. M. (2018). Separable effects of childhood maltreatment and adult adaptive functioning on amygdala connectivity during emotion processing. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(2), 116124. https://doi.org/10.1016/j.bpsc.2017.08.010Google Scholar
Demeusy, E. M., Handley, E. D., Rogosch, F. A., Cicchetti, D., & Toth, S. L. (2018). Early neglect and the development of aggression in toddlerhood: The role of working memory. Child Maltreatment, 23(4), 344354. https://doi.org/10.1177/1077559518778814Google Scholar
Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., … & Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31(3), 968980. https://doi.org/10.1016/j.neuroimage.2006.01.021Google Scholar
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135168. https://doi.org/10.1146/annurev-psych-113011-143750Google Scholar
Diamond, A., Prevor, M. B., Callender, G., & Druin, D. P. (1997). Prefrontal cortex cognitive deficits in children treated early and continuously for PKU. Monographs of the Society for Research in Child Development, 62(4, Serial No. 252). https://doi.org/10.2307/1166208Google Scholar
Diamond, A., & Taylor, C. (1996). Development of an aspect of executive control: Development of the abilities to remember what I said and to “Do as I say, not as I do.” Developmental Psychobiology, 29(4), 315334. . https://doi.org/10.1002/(SICI)1098-2302(199605)29:4<315::AID-DEV2>3.0.CO;2-TGoogle Scholar
Doom, J. R., Cicchetti, D., Rogosch, F. A., & Dackis, M. N. (2013). Child maltreatment and gender interactions as predictors of differential neuroendocrine profiles. Psychoneuroendocrinology, 38(8), 14421454. https://doi.org/10.1016/j.psyneuen.2012.12.019Google Scholar
Dunn, E. C., McLaughlin, K. A., Slopen, N., Rosand, J., & Smoller, J. W. (2013). Developmental timing of child maltreatment and symptoms of depression and suicidal ideation in young adulthood: Results from the National Longitudinal Study of Adolescent Health. Depression and Anxiety, 30(10), 955964. https://doi.org/10.1002/da.22102Google Scholar
Edmiston, E. E., Wang, F., Mazure, C. M., Guiney, J., Sinha, R., Mayes, L. C., & Blumberg, H. P. (2011). Corticostriatal-limbic gray matter morphology in adolescents with self-reported exposure to childhood maltreatment. Archives of Pediatrics & Adolescent Medicine, 165(12), 10691077. https://doi.org/10.1001/archpediatrics.2011.565Google Scholar
Ehrlich, K. B., Miller, G. E., Rogosch, F. A., & Cicchetti, D. (2021). Maltreatment exposure across childhood and low‐grade inflammation: Considerations of exposure type, timing, and sex differences. Developmental Psychobiology, 63(3), 529537. https://doi.org/10.1002/dev.22031Google Scholar
Fonzo, G. A., Flagan, T. M., Sullivan, S., Allard, C. B., Grimes, E. M., Simmons, A. N., … & Stein, M. B. (2013). Neural functional and structural correlates of childhood maltreatment in women with intimate-partner violence-related posttraumatic stress disorder. Psychiatry Research: Neuroimaging, 211(2), 93103. https://doi.org/10.1016/j.pscychresns.2012.08.006Google Scholar
Gerstadt, C. L., Hong, Y. J., & Diamond, A. (1994). The relationship between cognition and action: Performance of children 3½–7 years old on a Stroop-like day-night test. Cognition, 53(2), 129153. https://doi.org/10.1016/0010-0277(94)90068-XGoogle Scholar
Glick, G. C., & Rose, A. J. (2011). Prospective associations between friendship adjustment and social strategies: Friendship as a context for building social skills. Developmental Psychology, 47(4), 11171132. https://doi.org/10.1037/a0023277Google Scholar
Goodyer, I. M., Park, R. J., Netherton, C. M., & Herbert, J. (2001). Possible role of cortisol and dehydroepiandrosterone in human development and psychopathology. The British Journal of Psychiatry, 179(3), 243249. https://doi.org/10.1192/bjp.179.3.243Google Scholar
Grillon, C., Baas, J. M., Pine, D. S., Lissek, S., Lawley, M., Ellis, V., & Levine, J. (2006). The benzodiazepine alprazolam dissociates contextual fear from cued fear in humans as assessed by fear-potentiated startle. Biological Psychiatry, 60(7), 760766. https://doi.org/10.1016/j.biopsych.2005.11.027Google Scholar
Gruhn, M. A., & Compas, B. E. (2020). Effects of maltreatment on coping and emotion regulation in childhood and adolescence: A meta-analytic review. Child Abuse & Neglect, 103, 10441046. https://doi.org/10.1016/j.chiabu.2020.104446Google Scholar
Guilliams, T. G., & Edwards, L. (2010). Chronic stress and the HPA axis. The Standard, 9(2), 112.Google Scholar
Gunnar, M. R., Tottenham, N., & Cicchetti, D. (Eds.). (2020). Early adversity, stress, and neurobehavioral development. Development and Psychopathology, 32(5), 15551953. https://doi.org/10.1017/S0954579420001649Google Scholar
Guyer, A. E., McClure‐Tone, E. B., Shiffrin, N. D., Pine, D. S., & Nelson, E. E. (2009). Probing the neural correlates of anticipated peer evaluation in adolescence. Child Development, 80(4), 10001015. https://doi.org/10.1111/j.1467-8624.2009.01313.xGoogle Scholar
Hardt, J., & Rutter, M. (2004). Validity of adult retrospective reports of adverse childhood experiences: Review of the evidence. Journal of Child Psychology and Psychiatry, 45(2), 260273. https://doi.org/10.1111/j.1469-7610.2004.00218.xGoogle Scholar
Hariri, A. R., Bookheimer, S. Y., & Mazziotta, J. C. (2000). Modulating emotional responses: Effects of a neocortical network on the limbic system. Neuroreport, 11(1), 4348. https://doi.org/10.1097/00001756-200001170-00009Google Scholar
Hart, H., & Rubia, K. (2012). Neuroimaging of child abuse: A critical review. Frontiers in Human Neuroscience, 6 (52), 124. https://doi.org/10.3389/fnhum.2012.00052Google Scholar
Jedd, K., Hunt, R. H., Cicchetti, D., Hunt, E., Cowell, R., Rogosch, F., … & Thomas, K. M. (2015). Long-term consequences of childhood maltreatment: Altered amygdala functional connectivity. Development and Psychopathology, 27(4), 15771589. https://doi.org/10.1017/S0954579415000954Google Scholar
Johnson, M. H. (2011). Interactive specialization: A domain-general framework for human functional brain development? Developmental Cognitive Neuroscience, 1(1), 721. https://doi.org/10.1016/j.dcn.2010.07.003Google Scholar
Johnson, R. J., Greenhoot, A. F., Glisky, E., & McCloskey, L. A. (2005). The relations among abuse, depression, and adolescents’ autobiographical memory. Journal of Clinical Child and Adolescent Psychology, 34(2), 235247. https://doi.org/10.1207/s15374424jccp3402_3Google Scholar
Juster, R. P., Bizik, G., Picard, M., Arsenault-Lapierre, G., Sindi, S., Trepanier, L., … & Lupien, S. J. (2011). A transdisciplinary perspective of chronic stress in relation to psychopathology throughout life span development. Development and Psychopathology, 23(3), 725776. https://doi.org/10.1017/S0954579411000289Google Scholar
Kajantie, E., & Phillips, D. I. (2006). The effects of sex and hormonal status on the physiological response to acute psychosocial stress. Psychoneuroendocrinology, 31(2), 151178. https://doi.org/10.1016/j.psyneuen.2005.07.002Google Scholar
Kaltas, G. A., & Chrousos, G. P. (2007). The neuroendocrinology of stress. In Cacioppo, J. T., Tassinary, L. G., & Bernston, G. C. (Eds.), Handbook of psychophysiology (2nd ed., pp. 303318). Cambridge University PressGoogle Scholar
Kamin, H. S., & Kertes, D. A. (2017). Cortisol and DHEA in development and psychopathology. Hormones and Behavior, 89, 6985. https://doi.org/10.1016/j.yhbeh.2016.11.018Google Scholar
Kaplow, J. B., & Widom, C. S. (2007). Age of onset of child maltreatment predicts long-term mental health outcomes. Journal of Abnormal Psychology, 116(1), 176187. https://doi.org/10.1037/0021-843X.116.1.176Google Scholar
Kim, J., Talbot, N. L., & Cicchetti, D. (2009). Childhood abuse and current interpersonal conflict: The role of shame. Child Abuse & Neglect, 33(6), 362371. https://doi.org/10.1016/j.chiabu.2008.10.003Google Scholar
MacMillan, H. L., Wathen, C. N., Barlow, J., Fergusson, D. M., Leventhal, J. M., & Taussig, H. N. (2009). Interventions to prevent child maltreatment and associated impairment. The Lancet, 373 (9659), 250266. https://doi.org/10.1016/S0140-6736(08)61708-0Google Scholar
Manly, J. T. (2005). Advances in research definitions of child maltreatment. Child Abuse & Neglect, 29(5), 425439. https://doi.org/10.1016/j.chiabu.2005.04.001Google Scholar
Manly, J. T., Kim, J. E., Rogosch, F. A., & Cicchetti, D. (2001). Dimensions of child maltreatment and children’s adjustment: Contributions of developmental timing and subtype. Development and Psychopathology, 13(4), 759782.Google Scholar
Masten, A. S., & Cicchetti, D. (2010). Developmental cascades. Development and Psychopathology, 22(3), 491495. https://doi.org/10.1017/S0954579410000222Google Scholar
McEwen, B. S. (2013). The brain on stress: Toward an integrative approach to brain, body, and behavior. Perspectives on Psychological Science, 8(6), 673675. https://doi.org/10.1177/1745691613506907Google Scholar
McGee, R., Wolfe, D., & Olson, J. (2001). Multiple maltreatment, attribution of blame, and adjustment among adolescents. Development and Psychopathology, 13(4), 827846.Google Scholar
Miller, G. E., Chen, E., & Zhou, E. S. (2007). If it goes up, must it come down? Chronic stress and the hypothalamic-pituitary-adrenocortical axis in humans. Psychological Bulletin, 133(1), 2545. https://doi.org/10.1037/0033-2909.133.1.25Google Scholar
Morris, A. S., Silk, J. S., Steinberg, L., Myers, S. S., & Robinson, L. R. (2007). The role of the family context in the development of emotion regulation. Social Development, 16(2), 361388. https://doi.org/10.1111/j.1467-9507.2007.00389.xGoogle Scholar
Pajer, K., Tabbah, R., Gardner, W., Rubin, R. T., Czambel, R. K., & Wang, Y. (2006). Adrenal androgen and gonadal hormone levels in adolescent girls with conduct disorder. Psychoneuroendocrinology, 31(10), 12451256. https://doi.org/10.1016/j.psyneuen.2006.09.005Google Scholar
Pinto, A., Malacrida, B., Oieni, J., Serafini, M. M., Davin, A., Galbiati, V., … & Racchi, M. (2015). DHEA modulates the effect of cortisol on RACK1 expression via interference with the splicing of the glucocorticoid receptor. British Journal of Pharmacology, 172(11), 29182927. https://doi.org/10.1111/bph.13097Google Scholar
Polak, A. R., Witteveen, A. B., Reitsma, J. B., & Olff, M. (2012). The role of executive function in posttraumatic stress disorder: A systematic review. Journal of Affective Disorders, 141(1), 1121. https://doi.org/10.1016/j.jad.2012.01.001Google Scholar
Pollak, S. D., Vardi, S., Putzer Bechner, A. M., & Curtin, J. J. (2005). Physically abused children’s regulation of attention in response to hostility. Child Development, 76(5), 968977. https://doi.org/10.1111/j.1467-8624.2005.00890.xGoogle Scholar
Raine, A. (2002). Biosocial studies of antisocial and violent behavior in children and adults: A review. Journal of Abnormal Child Psychology, 30(4), 311326. https://doi.org/10.1023/A:1015754122318Google Scholar
Reising, M. M., Bettis, A. H., Dunbar, J. P., Watson, K. H., Gruhn, M., Hoskinson, K. R., & Compas, B. E. (2018). Stress, coping, executive function, and brain activation in adolescent offspring of depressed and nondepressed mothers. Child Neuropsychology, 24(5), 638656. https://doi.org/10.1080/09297049.2017.1307950Google Scholar
Robinson, K. E., Pearson, M. M., Cannistraci, C. J., Anderson, A. W., KutteschJr, J. F., Wymer, K., … & Compas, B. E. (2015). Functional neuroimaging of working memory in survivors of childhood brain tumors and healthy children: Associations with coping and psychosocial outcomes. Child Neuropsychology, 21(6), 779802. https://doi.org/10.1080/09297049.2014.924492Google Scholar
Rose, A. J., Smith, R. L., Glick, G. C., & Schwartz-Mette, R. A. (2016). Girls’ and boys’ problem talk: Implications for emotional closeness in friendships. Developmental Psychology, 52(4), 629639. https://doi.org/10.1037/dev0000096Google Scholar
Rudolph, K. D. (2002). Gender differences in emotional responses to interpersonal stress during adolescence. Journal of Adolescent Health, 30(4), 313. https://doi.org/10.1016/S1054-139X(01)00383-4Google Scholar
Shackman, J. E., Shackman, A. J., & Pollak, S. D. (2007). Physical abuse amplifies attention to threat and increases anxiety in children. Emotion, 7(4), 838852. https://doi.org/10.1037/1528-3542.7.4.838Google Scholar
Shansky, R. M., & Lipps, J. (2013). Stress-induced cognitive dysfunction: Hormone-neurotransmitter interactions in the prefrontal cortex. Frontiers in Human Neuroscience, 7(123), 16. https://doi.org/10.3389/fnhum.2013.00123Google Scholar
Shields, G. S., Moons, W. G., & Slavich, G. M. (2017). Inflammation, self-regulation, and health: An immunologic model of self-regulatory failure. Perspectives on Psychological Science, 12(4), 588612. https://doi.org/10.1177/1745691616689091Google Scholar
Shields, G. S., Sazma, M. A., & Yonelinas, A. P. (2016). The effects of acute stress on core executive functions: A meta-analysis and comparison with cortisol. Neuroscience & Biobehavioral Reviews, 68, 651668. https://doi.org/10.1016/j.neubiorev.2016.06.038Google Scholar
Shipman, K., Edwards, A., Brown, A., Swisher, L., & Jennings, E. (2005). Managing emotion in a maltreating context: A pilot study examining child neglect. Child Abuse & Neglect, 29(9), 10151029. https://doi.org/10.1016/j.chiabu.2005.01.006Google Scholar
Skinner, E. A., & Zimmer‐Gembeck, M. J. (2009). Challenges to the developmental study of coping. New Directions for Child and Adolescent Development, 124, 517. https://doi.org/10.1002/cd.239Google Scholar
Slavich, G. M., & Irwin, M. R. (2014). From stress to inflammation and major depressive disorder: A social signal transduction theory of depression. Psychological Bulletin, 140(3), 774815. https://doi.org/10.1037/a0035302Google Scholar
Smith, E. E., Jonides, J., Koeppe, R. A., Awh, E., Schumacher, E. H., Minoshima, S. (1995). Spatial versus object working memory: PET investigations. Journal of Cognitive Neuroscience, 7, 337356. https://doi.org/10.1162/jocn.1995.7.3.337Google Scholar
Spear, L. P. (2009). Heightened stress responsivity and emotional reactivity during pubertal maturation: Implications for psychopathology. Development and Psychopathology, 21(1), 8797. https://doi.org/10.1017/S0954579409000066Google Scholar
Steinberg, L. (2014). Age of opportunity: Lessons from the new science of adolescence. Houghton Mifflin Harcourt.Google Scholar
Su, Y., D’Arcy, C., Yuan, S., & Meng, X. (2019). How does childhood maltreatment influence ensuing cognitive functioning among people with the exposure of childhood maltreatment? A systematic review of prospective cohort studies. Journal of Affective Disorders, 252, 278293. https://doi.org/10.1016/j.jad.2019.04.026Google Scholar
Teicher, M. H., Anderson, C. M., & Polcari, A. (2012). Childhood maltreatment is associated with reduced volume in the hippocampal subfields CA3, dentate gyrus, and subiculum. Proceedings of the National Academy of Sciences, 109(9), E563E572. https://doi.org/10.1073/pnas.1115396109Google Scholar
Teisl, M., & Cicchetti, D. (2008). Physical abuse, cognitive and emotional processes, and aggressive/disruptive behavior problems. Social Development, 17(1), 123.Google Scholar
Thompson, R. A., & Nelson, C. A. (2001). Developmental science and the media: Early brain development. American Psychologist, 56(1), 515. https://doi.org/10.1037/0003-066X.56.1.5Google Scholar
Toth, S. L., Gravener-Davis, J. A., Guild, D. J., & Cicchetti, D. (2013). Relational interventions for child maltreatment: Past, present, & future perspectives. Development and Psychopathology, 25(4pt2), 16011617. https://doi.org/10.1017/S0954579413000795Google Scholar
Toth, S. L., Sturge-Apple, M. L., Rogosch, F. A., & Cicchetti, D. (2015). Mechanisms of change: Testing how preventative interventions impact psychological and physiological stress functioning in mothers in neglectful families. Development and Psychopathology, 27(4), 16611674. https://doi.org/10.1017/S0954579415001017Google Scholar
Valentino, K., Toth, S. L., & Cicchetti, D. (2009). Autobiographical memory functioning among abused, neglected, and nonmaltreated children: The overgeneral memory effect. Journal of Child Psychology and Psychiatry, 50(8), 10291038. https://doi.org/10.1111/j.1469-7610.2009.02072.xGoogle Scholar
Van der Werff, E., Steg, L., & Keizer, K. (2013). The value of environmental self-identity: The relationship between biospheric values, environmental self-identity and environmental preferences, intentions and behaviour. Journal of Environmental Psychology, 34, 5563. https://doi.org/10.1016/j.jenvp.2012.12.006Google Scholar
van Harmelen, A. L., Hauber, K., Moor, B. G., Spinhoven, P., Boon, A. E., Crone, E. A., & Elzinga, B. M. (2014). Childhood emotional maltreatment severity is associated with dorsal medial prefrontal cortex responsivity to social exclusion in young adults. PLoS ONE, 9(1), 85107. https://doi.org/10.1371/journal.pone.0085107Google Scholar
van Harmelen, A. L., van Tol, M. J., Demenescu, L. R., van der Wee, N. J., Veltman, D. J., Aleman, A., … & Elzinga, B. M. (2013). Enhanced amygdala reactivity to emotional faces in adults reporting childhood emotional maltreatment. Social Cognitive and Affective Neuroscience, 8(4), 362369. https://doi.org/10.1093/scan/nss007Google Scholar
VanMeter, F., Handley, E. D., & Cicchetti, D. (2020). The role of coping strategies in the pathway between child maltreatment and internalizing and externalizing behaviors. Child Abuse & Neglect, 101, Article 104323. https://doi.org/10.1016/j.chiabu.2019.104323Google Scholar
VanZomeren, A. A., Zhang, J., Lee, S. K., Gunlicks-Stoessel, M., Piehler, T., & Cicchetti, D. (2020). Maltreatment timing, HPA axis functioning, multigenic risk, and depressive symptoms in African American youth: Differential associations without moderated mediation. Development and Psychopathology, 32(5), 18381853. https://doi.org/10.1017/S0954579420000589Google Scholar
Wadsworth, M. E. (2015). Development of maladaptive coping: A functional adaptation to chronic, uncontrollable stress. Child Development Perspectives, 9(2), 96100. https://doi.org/10.1111/cdep.12112Google Scholar
Wadsworth, M. E., McDonald, A., Joos, C. M., Ahlkvist, J. A., Perzow, S. E., Tilghman‐Osborne, E. M., … & Brelsford, G. M. (2020). Reducing the biological and psychological toxicity of poverty‐related stress: Initial efficacy of the BaSICS intervention for early adolescents. American Journal of Community Psychology, 65(3–4), 305319. https://doi.org/10.1002/ajcp.12400Google Scholar
Williams, J. M., & Broadbent, K. (1986). Autobiographical memory in suicide attempters. Journal of Abnormal Psychology, 95(2), 144149. https://doi.org/10.1037/0021-843X.95.2.144Google Scholar
Williams, J. M. G., Barnhofer, T., Crane, C., Herman, D., Raes, F., Watkins, E., & Dalgleish, T. (2007). Autobiographical memory specificity and emotional disorder. Psychological Bulletin, 133(1), 122148. https://doi.org/10.1037/0033-2909.133.1.122Google Scholar
Woon, F. L., & Hedges, D. W. (2008). Hippocampal and amygdala volumes in children and adults with childhood maltreatment-related posttraumatic stress disorder: A meta-analysis. Hippocampus, 18(8), 729736. https://doi.org/10.1002/hipo.20437Google Scholar
Yuan, P., & Raz, N. (2014). Prefrontal cortex and executive functions in healthy adults: A meta-analysis of structural neuroimaging studies. Neuroscience & Biobehavioral Reviews, 42, 180192. https://doi.org/10.1016/j.neubiorev.2014.02.005Google Scholar
Zelazo, P. D. (2020). Executive function and psychopathology: A neurodevelopmental perspective. Annual Review of Clinical Psychology, 16, 431454. https://doi.org/10.1146/annurev-clinpsy-072319-024242Google Scholar
Zelazo, P. D., & Carlson, S. M. (2012). Hot and cool executive function in childhood and adolescence: Development and plasticity. Child Development Perspectives, 6(4), 354360.Google Scholar
Zelazo, P. D., Carlson, S. M., & Kesek, A. (2008). Development of executive function in childhood. In Nelson, C. A. & Luciana, M. (Eds.), Handbook of developmental cognitive neuroscience (2nd ed., pp. 553574). MIT Press.Google Scholar
Zimmer-Gembeck, M. J., & Skinner, E. A. (2016). The development of coping and regulation: Implications for psychopathology and resilience. In Cicchetti, D. (Ed.), Developmental psychopathology: Risk, resilience, and intervention (3rd ed., pp. 485544). John Wiley & Sons, Inc. https://doi.org/10.1002/9781119125556.devpsy410Google Scholar

References

Adam, E. K. (2006). Transactions among adolescent trait and state emotion and diurnal and momentary cortisol activity in naturalistic settings. Psychoneuroendocrinology, 31(5), 664679. https://doi.org/10.1016/j.psyneuen.2006.01.010Google Scholar
Ahmed, S. P., Bittencourt-Hewitt, A., & Sebastian, C. L. (2015). Neurocognitive bases of emotion regulation development in adolescence. Developmental Cognitive Neuroscience, 15, 1125. https://doi.org/10.1016/j.dcn.2015.07.006Google Scholar
Alloy, L. B., Hamilton, J. L., Hamlat, E. J., & Abramson, L. Y. (2016). Pubertal development, emotion regulatory styles, and the emergence of sex differences in internalizing disorders and symptoms in adolescence. Clinical Psychological Science, 4(5), 867881. https://doi.org/10.1177/2167702616643008Google Scholar
Balzarotti, S., Biassoni, F., Colombo, B., & Ciceri, M. R. (2017). Cardiac vagal control as a marker of emotion regulation in healthy adults: A review. Biological Psychology, 130, 5466. https://doi.org/10.1016/j.biopsycho.2017.10.008Google Scholar
Banks, S. J., Eddy, K. T., Angstadt, M., Nathan, P. J., & Phan, K. L. (2007). Amygdala–frontal connectivity during emotion regulation. Social Cognitive and Affective Neuroscience, 2(4), 303312. https://doi.org/10.1093/scan/nsm029Google Scholar
Bendezú, J. J., Sarah, E. D. P., & Martha, E. W. (2016). What constitutes effective coping and efficient physiologic regulation following psychosocial stress depends on involuntary stress responses. Psychoneuroendocrinology, 73, 4250. https://doi.org/10.1016/j.psyneuen.2016.07.005Google Scholar
Blakemore, S.-J., & Choudhury, S. (2006). Development of the adolescent brain: Implications for executive function and social cognition. Journal of Child Psychology and Psychiatry, 47(3–4), 296312. https://doi.org/10.1111/j.1469-7610.2006.01611.xGoogle Scholar
Bouma, E. M. C., Riese, H., Ormel, J., Verhulst, F. C., & Oldehinkel, A. J. (2009). Adolescents’ cortisol responses to awakening and social stress; Effects of gender, menstrual phase and oral contraceptives. The TRAILS study. Psychoneuroendocrinology, 34(6), 884893. https://doi.org/10.1016/j.psyneuen.2009.01.003Google Scholar
Buhle, J. T., Silvers, J. A., Wager, T. D., Lopez, R., Onyemekwu, C., Kober, H., Weber, J., & Ochsner, K. N. (2014). Cognitive reappraisal of emotion: A meta-analysis of human neuroimaging studies. Cerebral Cortex, 24(11), 29812990. https://doi.org/10.1093/cercor/bht154Google Scholar
Casey, B. J., Getz, S., & Galvan, A. (2008). The adolescent brain. Developmental Review, 28(1), 6277. https://doi.org/10.1016/j.dr.2007.08.003Google Scholar
Chapman, P. L., & Mullis, R. L. (1999). Adolescent coping strategies and self-esteem. Child Study Journal, 29(1), 6977.Google Scholar
Chein, J., Albert, D., O’Brien, L., Uckert, K., & Steinberg, L. (2011). Peers increase adolescent risk taking by enhancing activity in the brain’s reward circuitry. Developmental Science, 14(2), F1F10. https://doi.org/10.1111/j.1467-7687.2010.01035.xGoogle Scholar
Chrousos, G. P., & Gold, P. W. (1992). The concepts of stress and stress system disorders: Overview of physical and behavioral homeostasis. JAMA, 267(9), 12441252. https://doi.org/10.1001/jama.1992.03480090092034Google Scholar
Collins, K. A., Mendelsohn, A., Cain, C. K., & Schiller, D. (2014). Taking action in the face of threat: Neural synchronization predicts adaptive coping. Journal of Neuroscience, 34(44), 1473314738. https://doi.org/10.1523/JNEUROSCI.2152-14.2014Google Scholar
Compas, B. E., Banez, G. A., Malcarne, V., & Worsham, N. (1991). Perceived control and coping with stress: A developmental perspective. Journal of Social Issues, 47(4), 2334. https://doi.org/10.1111/j.1540-4560.1991.tb01832.xGoogle Scholar
Compas, B. E., Connor-Smith, J. K., Saltzman, H., Thomsen, A. H., & Wadsworth, M. E. (2001). Coping with stress during childhood and adolescence: Problems, progress, and potential in theory and research. Psychological Bulletin, 127(1), 87127. https://doi.org/10.1037/0033-2909.127.1.87Google Scholar
Compas, B. E., Jaser, S. S., Dunbar, J. P., Watson, K. H., Bettis, A. H., Gruhn, M. A., & Williams, E. K. (2014). Coping and emotion regulation from childhood to early adulthood: Points of convergence and divergence. Australian Journal of Psychology, 66(2), 7181. https://doi.org/10.1111/ajpy.12043Google Scholar
Connor-Smith, J. K., Compas, B. E., Wadsworth, M. E., Thomsen, A. H., & Saltzman, H. (2000). Responses to stress in adolescence: Measurement of coping and involuntary stress responses. Journal of Consulting and Clinical Psychology, 68(6), 976992.Google Scholar
Cracco, E., Goossens, L., & Braet, C. (2017). Emotion regulation across childhood and adolescence: Evidence for a maladaptive shift in adolescence. European Child & Adolescent Psychiatry, 26(8), 909921. https://doi.org/10.1007/s00787-017-0952-8Google Scholar
Creswell, J. D., Way, B. M., Eisenberger, N. I., & Lieberman, M. D. (2007). Neural correlates of dispositional mindfulness during affect labeling. Psychosomatic Medicine, 69(6), 560565. https://doi.org/10.1097/PSY.0b013e3180f6171fGoogle Scholar
Cribbet, M. R., Williams, P. G., Gunn, H. E., & Rau, H. K. (2011). Effects of tonic and phasic respiratory sinus arrhythmia on affective stress responses. Emotion, 11(1), 188193. https://doi.org/10.1037/a0021789Google Scholar
Crone, E. A., & Dahl, R. E. (2012). Understanding adolescence as a period of social–affective engagement and goal flexibility. Nature Reviews Neuroscience, 13(9), 636650. https://doi.org/10.1038/nrn3313Google Scholar
Crystal, D. S., Kakinuma, M., DeBell, M., Azuma, H., & Miyashita, T. (2008). Who helps you? Self and other sources of support among youth in Japan and the USA. International Journal of Behavioral Development, 32(6), 496508. https://doi.org/10.1177/0165025408095554Google Scholar
Cui, L., Morris, A. S., Harrist, A. W., Larzelere, R. E., Criss, M. M., & Houltberg, B. J. (2015). Adolescent RSA responses during an anger discussion task: Relations to emotion regulation and adjustment. Emotion, 15(3), 360372. https://doi.org/10.1037/emo0000040Google Scholar
Dahl, R. E., & Gunnar, M. R. (2009). Heightened stress responsiveness and emotional reactivity during pubertal maturation: Implications for psychopathology. Development and Psychopathology, 21(1), 16. https://doi.org/10.1017/S0954579409000017Google Scholar
Davis, M. M., Miernicki, M. E., Telzer, E. H., & Rudolph, K. D. (2019). The contribution of childhood negative emotionality and cognitive control to anxiety-linked neural dysregulation of emotion in adolescence. Journal of Abnormal Child Psychology, 47(3), 515527. https://doi.org/10.1007/s10802-018-0456-0Google Scholar
De France, K., & Hollenstein, T. (2017). Assessing emotion regulation repertoires: The Regulation of Emotion Systems Survey. Personality and Individual Differences, 119, 204215. https://doi.org/10.1016/j.paid.2017.07.018Google Scholar
de Zambotti, M., Javitz, H., Franzen, P. L., Brumback, T., Clark, D. B., Colrain, I. M., & Baker, F. C. (2018). Sex- and age-dependent differences in autonomic nervous system functioning in adolescents. Journal of Adolescent Health, 62(2), 184190. https://doi.org/10.1016/j.jadohealth.2017.09.010Google Scholar
Del Giudice, M., Ellis, B. J., & Shirtcliff, E. A. (2011). The adaptive calibration model of stress responsivity. Neuroscience & Biobehavioral Reviews, 35(7), 15621592. https://doi.org/10.1016/j.neubiorev.2010.11.007Google Scholar
Donaldson, D., Prinstein, M. J., Danovsky, M., & Spirito, A. (2000). Patterns of children’s coping with life stress: Implications for clinicians. American Journal of Orthopsychiatry, 70(3), 351359. https://doi.org/10.1037/h0087689Google Scholar
Dorn, L. D., & Biro, F. M. (2011). Puberty and its measurement: A decade in review. Journal of Research on Adolescence, 21(1), 180195. https://doi.org/10.1111/j.1532-7795.2010.00722.xGoogle Scholar
Dumontheil, I., & Blakemore, S. J. (2012). Social cognition and abstract thought in adolescence: The role of structural and functional development in rostral prefrontal cortex. British Journal of Educational Psychology Monograph Series II, Number 8 – Educational Neuroscience, 1, 99113.Google Scholar
Elmlinger, M. W., Kühnel, W., & Ranke, M. B. (2002). Reference ranges for serum concentrations of lutropin (LH), follitropin (FSH), estradiol (E2), prolactin, progesterone, sex hormone-binding globulin (SHBG), dehydroepiandrosterone sulfate (DHEAS), cortisol and ferritin in neonates, children and young adults. Clinical Chemistry and Laboratory Medicine, 40(11), 11511160. https://doi.org/10.1515/CCLM.2002.202Google Scholar
Ernst, M., Nelson, E. E., Jazbec, S., McClure, E. B., Monk, C. S., Leibenluft, E., Blair, J., & Pine, D. S. (2005). Amygdala and nucleus accumbens in responses to receipt and omission of gains in adults and adolescents. NeuroImage, 25(4), 12791291. https://doi.org/10.1016/j.neuroimage.2004.12.038Google Scholar
Ernst, M., Pine, D. S., & Hardin, M. (2006). Triadic model of the neurobiology of motivated behavior in adolescence. Psychological Medicine, 36(3), 299312. https://doi.org/10.1017/S0033291705005891Google Scholar
Eschenbeck, H., Kohlmann, C.-W., & Lohaus, A. (2007). Gender differences in coping strategies in children and adolescents. Journal of Individual Differences, 28(1), 1826. https://doi.org/10.1027/1614-0001.28.1.18Google Scholar
Evans, B. E., Greaves-Lord, K., Euser, A. S., Tulen, J. H. M., Franken, I. H. A., & Huizink, A. C. (2013). Determinants of physiological and perceived physiological stress reactivity in children and adolescents. PLoS ONE, 8(4), e61724. https://doi.org/10.1371/journal.pone.0061724Google Scholar
Eyre, E. L. J., Duncan, M. J., Birch, S. L., & Fisher, J. P. (2014). The influence of age and weight status on cardiac autonomic control in healthy children: A review. Autonomic Neuroscience: Basic & Clinical, 186, 821. https://doi.org/10.1016/j.autneu.2014.09.019Google Scholar
Foland-Ross, L. C., Kircanski, K., & Gotlib, I. H. (2014). Coping with having a depressed mother: The role of stress and coping in hypothalamic-pituitary-adrenal axis dysfunction in girls at familial risk for major depression. Development and Psychopathology, 26(4 Pt 2), 14011409. https://doi.org/10.1017/S0954579414001102Google Scholar
Fowler, C. H., Miernicki, M. E., Rudolph, K. D., & Telzer, E. H. (2017). Disrupted amygdala-prefrontal connectivity during emotion regulation links stress-reactive rumination and adolescent depressive symptoms. Developmental Cognitive Neuroscience, 27, 99106. https://doi.org/10.1016/j.dcn.2017.09.002Google Scholar
Franco, P., Putois, B., Guyon, A., Raoux, A., Papadopoulou, M., Guignard-Perret, A., Bat-Pitault, F., Hartley, S., & Plancoulaine, S. (2020). Sleep during development: Sex and gender differences. Sleep Medicine Reviews, 51, Article 101276. https://doi.org/10.1016/j.smrv.2020.101276Google Scholar
Fransson, E., Folkesson, L., Bergström, M., Östberg, V., & Lindfors, P. (2014). Exploring salivary cortisol and recurrent pain in mid-adolescents living in two homes. BMC Psychology, 2(1). https://doi.org/10.1186/s40359-014-0046-zGoogle Scholar
Frydenberg, E., & Lewis, R. (2000). Teaching coping to adolescents: When and to whom? American Educational Research Journal, 37(3), 727745. https://doi.org/10.3102/00028312037003727Google Scholar
Gee, D. G., Humphreys, K. L., Flannery, J., Goff, B., Telzer, E. H., Shapiro, M., Hare, T. A., Bookheimer, S. Y., & Tottenham, N. (2013). A developmental shift from positive to negative connectivity in human amygdala–prefrontal circuitry. Journal of Neuroscience, 33(10), 45844593. https://doi.org/10.1523/JNEUROSCI.3446-12.2013Google Scholar
Giuliani, N. R., & Pfeifer, J. H. (2015). Age-related changes in reappraisal of appetitive cravings during adolescence. NeuroImage, 108, 173181. https://doi.org/10.1016/j.neuroimage.2014.12.037Google Scholar
Gross, J. J., & Thompson, R. A. (2007). Emotion regulation: Conceptual foundations. In Gross, J. J. (Ed.), Handbook of emotion regulation (pp. 324). Guilford Press.Google Scholar
Grossman, P., & Taylor, E. W. (2007). Toward understanding respiratory sinus arrhythmia: Relations to cardiac vagal tone, evolution and biobehavioral functions. Biological Psychology, 74(2), 263285. https://doi.org/10.1016/j.biopsycho.2005.11.014Google Scholar
Gullone, E., Hughes, E. K., King, N. J., & Tonge, B. (2010). The normative development of emotion regulation strategy use in children and adolescents: A 2-year follow-up study. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 51(5), 567574. https://doi.org/10.1111/j.1469-7610.2009.02183.xGoogle Scholar
Gunnar, M. R., Wewerka, S., Frenn, K., Long, J. D., & Griggs, C. (2009). Developmental changes in hypothalamus–pituitary–adrenal activity over the transition to adolescence: Normative changes and associations with puberty. Development and Psychopathology, 21(1), 6985. https://doi.org/10.1017/S0954579409000054Google Scholar
Guyer, A. E., Choate, V. R., Pine, D. S., & Nelson, E. E. (2012). Neural circuitry underlying affective response to peer feedback in adolescence. Social Cognitive and Affective Neuroscience, 7(1), 8192. https://doi.org/10.1093/scan/nsr043Google Scholar
Guyer, A. E., McClure-Tone, E. B., Shiffrin, N. D., Pine, D. S., & Nelson, E. E. (2009). Probing the neural correlates of anticipated peer evaluation in adolescence. Child Development, 80(4), 10001015. https://doi.org/10.1111/j.1467-8624.2009.01313.xGoogle Scholar
Guyer, A. E., Monk, C. S., McClure-Tone, E. B., Nelson, E. E., Roberson-Nay, R., Adler, A. D., Fromm, S. J., Leibenluft, E, Pine, D. S., & Ernst, M. (2008). A developmental examination of amygdala response to facial expressions. Journal of Cognitive Neuroscience, 20(9), 15651582. https://doi.org/10.1162/jocn.2008.20114Google Scholar
Gyurak, A., Gross, J. J., & Etkin, A. (2011). Explicit and implicit emotion regulation: A dual-process framework. Cognition & Emotion, 25(3), 400412. https://doi.org/10.1080/02699931.2010.544160Google Scholar
Hare, T. A., Tottenham, N., Galvan, A., Voss, H. U., Glover, G. H., & Casey, B. J. (2008). Biological substrates of emotional reactivity and regulation in adolescence during an emotional go-nogo task. Biological Psychiatry, 63(10), 927934. https://doi.org/10.1016/j.biopsych.2008.03.015Google Scholar
Herman, J. P., Ostrander, M. M., Mueller, N. K., & Figueiredo, H. (2005). Limbic system mechanisms of stress regulation: Hypothalamo-pituitary-adrenocortical axis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 29(8), 12011213. https://doi.org/10.1016/j.pnpbp.2005.08.006Google Scholar
Hilt, L. M., Sladek, M. R., Doane, L. D., & Stroud, C. B. (2017). Daily and trait rumination: Diurnal cortisol patterns in adolescent girls. Cognition and Emotion, 31(8), 17571767. https://doi.org/10.1080/02699931.2016.1262332Google Scholar
Hollanders, J. J., van der Voorn, B., Rotteveel, J., & Finken, M. J. J. (2017). Is HPA axis reactivity in childhood gender-specific? A systematic review. Biology of Sex Differences, 8(1), Article 23. https://doi.org/10.1186/s13293-017-0144-8Google Scholar
Hostinar, C. E., Johnson, A. E., & Gunnar, M. R. (2015). Parent support is less effective in buffering cortisol stress reactivity for adolescents compared to children. Developmental Science, 18(2), 281297. https://doi.org/10.1111/desc.12195Google Scholar
Hostinar, C. E., McQuillan, M. T., Mirous, H. J., Grant, K. E., & Adam, E. K. (2014). Cortisol responses to a group public speaking task for adolescents: Variations by age, gender, and race. Psychoneuroendocrinology, 50, 155166. https://doi.org/10.1016/j.psyneuen.2014.08.015Google Scholar
Ji, J., Negriff, S., Kim, H., & Susman, E. J. (2016). A study of cortisol reactivity and recovery among young adolescents: Heterogeneity and longitudinal stability and change. Developmental Psychobiology, 58(3), 283302. https://doi.org/10.1002/dev.21369Google Scholar
Kazuma, N., Otsuka, K., Wakamatsu, K., Shirase, E., & Matsuoka, I. (2002). Heart rate variability in normotensive healthy children with aging. Clinical and Experimental Hypertension, 24(1–2), 8389. https://doi.org/10.1081/ceh-100108718Google Scholar
Key, B. L., Campbell, T. S., Bacon, S. L., & Gerin, W. (2008). The influence of trait and state rumination on cardiovascular recovery from a negative emotional stressor. Journal of Behavioral Medicine, 31(3), 237248. https://doi.org/10.1007/s10865-008-9152-9Google Scholar
Klimes-Dougan, B., Hastings, P. D., Granger, D. A., Usher, B. A., & Zahn-Waxler, C. (2001). Adrenocortical activity in at-risk and normally developing adolescents: Individual differences in salivary cortisol basal levels, diurnal variation, and responses to social challenges. Development and Psychopathology, 13(3), 695719. https://doi.org/10.1017/s0954579401003157Google Scholar
Koenig, J., Rash, J. A., Campbell, T. S., Thayer, J. F., & Kaess, M. (2017). A meta-analysis on sex differences in resting-state vagal activity in children and adolescents. Frontiers in Physiology, 8, Article 582. https://doi.org/10.3389/fphys.2017.00582Google Scholar
Kovacs, M., Yaroslavsky, I., Rottenberg, J., George, C. J., Kiss, E., Halas, K., Dochnal, R., Benák, I., Baji, I., Vetró, A., Makai, A., & Kapornai, K. (2016). Maladaptive mood repair, atypical respiratory sinus arrhythmia, and risk of a recurrent major depressive episode among adolescents with prior major depression. Psychological Medicine, 46(10), 21092119. https://doi.org/10.1017/S003329171600057XGoogle Scholar
Ladouceur, C. D. (2012). Neural systems supporting cognitive-affective interactions in adolescence: The role of puberty and implications for affective disorders. Frontiers in Integrative Neuroscience, 6, Article 65. https://doi.org/10.3389/fnint.2012.00065Google Scholar
Lazarus, R. S., & Folkman, S. (1984). Stress, appraisal, and coping. Springer.Google Scholar
Lee, T.-H., & Telzer, E. H. (2016). Negative functional coupling between the right fronto-parietal and limbic resting state networks predicts increased self-control and later substance use onset in adolescence. Developmental Cognitive Neuroscience, 20, 3542. https://doi.org/10.1016/j.dcn.2016.06.002Google Scholar
Lefkowitz, E. S. (2005). “Things have gotten better”: Developmental changes among early emerging adults after the transition to university. Journal of Adolescent Research, 20(1), 4063. https://doi.org/10.1177/0743558404271236Google Scholar
Lenard, Z., Studinger, P., Mersich, B., Kocsis, L., & Kollai, M. (2004). Maturation of cardiovagal autonomic function from childhood to young adult age. Circulation, 110(16), 23072312. https://doi.org/10.1161/01.CIR.0000145157.07881.A3Google Scholar
Lougheed, J. P., & Hollenstein, T. (2012). A limited repertoire of emotion regulation strategies is associated with internalizing problems in adolescence. Social Development, 21(4), 704721. https://doi.org/10.1111/j.1467-9507.2012.00663.xGoogle Scholar
Lucas-Thompson, R. G., McKernan, C. J., & Henry, K. L. (2018). Unraveling current and future adolescent depressive symptoms: The role of stress reactivity across physiological systems. Developmental Psychology, 54(9), 16501660. https://doi.org/10.1037/dev0000530Google Scholar
McCorry, L. K. (2007). Physiology of the autonomic nervous system. American Journal of Pharmaceutical Education, 71(4), Article 78. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1959222/Google Scholar
McKernan, C. J., & Lucas-Thompson, R. G. (2018). Autonomic nervous system coordination moderates links of negative interparental conflict with adolescent externalizing behaviors. Developmental Psychology, 54(9), 16971708. https://doi.org/10.1037/dev0000498Google Scholar
Mendle, J., Beam, C. R., McKone, K. M. P., & Koch, M. K. (2020). Puberty and transdiagnostic risks for mental health. Journal of Research on Adolescence, 30(3), 687705. https://doi.org/10.1111/jora.12552Google Scholar
Modi, H. H., Davis, M. M., Miernicki, M. E., Telzer, E. H., & Rudolph, K. D. (2020). Maternal antecedents to adolescent girls’ neural regulation of emotion. Journal of Research on Adolescence, 30(3), 581598. https://doi.org/10.1111/jora.12545Google Scholar
Monk, C. S., McClure, E. B., Nelson, E. E., Zarahn, E., Bilder, R. M., Leibenluft, E., Charney, D. S., Ernst, M., & Pine, D. S. (2003). Adolescent immaturity in attention-related brain engagement to emotional facial expressions. NeuroImage, 20(1), 420428. https://doi.org/10.1016/S1053-8119(03)00355-0Google Scholar
Moore, W. E., III, Pfeifer, J. H., Masten, C. L., Mazziotta, J. C., Iacoboni, M., & Dapretto, M. (2012). Facing puberty: Associations between pubertal development and neural responses to affective facial displays. Social Cognitive and Affective Neuroscience, 7(1), 3543. https://doi.org/10.1093/scan/nsr066Google Scholar
Moos, R. H., & Schaefer, J. A. (1993). Coping resources and processes: Current concepts and measures. In Goldberger, L. & Breznitz, S. (Eds.), Handbook of stress: Theoretical and clinical aspects (2nd ed., pp. 234257). Free Press.Google Scholar
Nelson, E. E., Leibenluft, E., McClure, E. B., & Pine, D. S. (2005). The social re-orientation of adolescence: A neuroscience perspective on the process and its relation to psychopathology. Psychological Medicine, 35(2), 163174. https://doi.org/10.1017/S0033291704003915Google Scholar
Netherton, C., Goodyer, I., Tamplin, A., & Herbert, J. (2004). Salivary cortisol and dehydroepiandrosterone in relation to puberty and gender. Psychoneuroendocrinology, 29(2), 125140. https://doi.org/10.1016/S0306-4530(02)00150-6Google Scholar
Neumann, S. A., Waldstein, S. R., Sellers, J. J., Thayer, J. F., & Sorkin, J. D. (2004). Hostility and distraction have differential influences on cardiovascular recovery from anger recall in women. Health Psychology, 23(6), 631640. https://doi.org/10.1037/0278-6133.23.6.631Google Scholar
Obradović, J., & Boyce, W. T. (2012). Developmental psychophysiology of emotion processes. Monographs of the Society for Research in Child Development, 77(2), 120128. https://doi.org/10.1111/j.1540-5834.2011.00670.xGoogle Scholar
Ochsner, K. N., Silvers, J. A., & Buhle, J. T. (2012). Functional imaging studies of emotion regulation: A synthetic review and evolving model of the cognitive control of emotion. Annals of the New York Academy of Sciences, 1251, E124. https://doi.org/10.1111/j.1749-6632.2012.06751.xGoogle Scholar
Ordaz, S., & Luna, B. (2012). Sex differences in physiological reactivity to acute psychosocial stress in adolescence. Psychoneuroendocrinology, 37(8), 11351157. https://doi.org/10.1016/j.psyneuen.2012.01.002Google Scholar
Pascual, A., Conejero, S., & Etxebarria, I. (2016). Coping strategies and emotion regulation in adolescents: Adequacy and gender differences. Ansiedad y Estrés, 22(1), 14. https://doi.org/10.1016/j.anyes.2016.04.002Google Scholar
Payer, D. E., Baicy, K., Lieberman, M. D., & London, E. D. (2012). Overlapping neural substrates between intentional and incidental down-regulation of negative emotions. Emotion, 12(2), 229235. https://doi.org/10.1037/a0027421Google Scholar
Pfeifer, J. H., & Blakemore, S.-J. (2012). Adolescent social cognitive and affective neuroscience: Past, present, and future. Social Cognitive and Affective Neuroscience, 7(1), 110. https://doi.org/10.1093/scan/nsr099Google Scholar
Pitskel, N. B., Bolling, D. Z., Kaiser, M. D., Crowley, M. J., & Pelphrey, K. A. (2011). How grossed out are you? The neural bases of emotion regulation from childhood to adolescence. Developmental Cognitive Neuroscience, 1(3), 324337. https://doi.org/10.1016/j.dcn.2011.03.004Google Scholar
Platje, E., Vermeiren, R. R. J. M., Branje, S. J. T., Doreleijers, T. A. H., Meeus, W. H. J., Koot, H. M., Frijns, T., van Lier, P. A. C., & Jansen, L. M. C. (2013). Long-term stability of the cortisol awakening response over adolescence. Psychoneuroendocrinology, 38(2), 271280. https://doi.org/10.1016/j.psyneuen.2012.06.007Google Scholar
Porges, S. W. (2007). The polyvagal perspective. Biological Psychology, 74(2), 116143. https://doi.org/10.1016/j.biopsycho.2006.06.009Google Scholar
Quevedo, K. M., Benning, S. D., Gunnar, M. R., & Dahl, R. E. (2009). The onset of puberty: Effects on the psychophysiology of defensive and appetitive motivation. Development and Psychopathology, 21(1), 2745. https://doi.org/10.1017/S0954579409000030Google Scholar
Rauch, A. V., Ohrmann, P., Bauer, J., Kugel, H., Engelien, A., Arolt, V., Heindel, W., & Suslow, T. (2007). Cognitive coping style modulates neural responses to emotional faces in healthy humans: A 3-T fMRI study. Cerebral Cortex, 17(11), 25262535. https://doi.org/10.1093/cercor/bhl158Google Scholar
Reising, M. M., Bettis, A. H., Dunbar, J. P., Watson, K. H., Gruhn, M., Hoskinson, K. R., & Compas, B. E. (2018). Stress, coping, executive function, and brain activation in adolescent offspring of depressed and nondepressed mothers. Child Neuropsychology, 24(5), 638656. https://doi.org/10.1080/09297049.2017.1307950Google Scholar
Renk, K., & Creasey, G. (2003). The relationship of gender, gender identity, and coping strategies in late adolescents. Journal of Adolescence, 26(2), 159168. https://doi.org/10.1016/s0140-1971(02)00135-5Google Scholar
Roecker, C. E., Dubow, E. F., & Donaldson, D. (1996). Cross-situational patterns in children’s coping with observed interpersonal conflict. Journal of Clinical Child Psychology, 25(3), 288299. https://doi.org/10.1207/s15374424jccp2503_5Google Scholar
Rudolph, K. D. (2014). Puberty as a developmental context of risk for psychopathology. In Lewis, M. & Rudolph, K. D. (Eds.), Handbook of developmental psychopathology (pp. 331354). Springer US. https://doi.org/10.1007/978-1-4614-9608-3_17Google Scholar
Rudolph, K. D., Davis, M. M., Skymba, H. V., Modi, H. H., & Telzer, E. H. (2021). Social experience calibrates neural sensitivity to social feedback during adolescence: A functional connectivity approach. Developmental Cognitive Neuroscience, 47, Article 100903. https://doi.org/10.1016/j.dcn.2020.100903Google Scholar
Rudolph, K. D., Skymba, H. V., Modi, H. H., Davis, M. M., Sze, W. Y., Rosswurm, C. P., & Telzer, E. H. (2021). How does peer adversity “get inside the brain?” Adolescent girls’ differential susceptibility to neural dysregulation of emotion following victimization. Developmental Psychobiology, 63(3), 481495. https://doi.org/10.1002/dev.22022Google Scholar
Rudolph, K. D., & Troop-Gordon, W. (2010). Personal-accentuation and contextual-amplification models of pubertal timing: Predicting youth depression. Development and Psychopathology, 22(2), 433451. https://doi.org/10.1017/S0954579410000167Google Scholar
Rudolph, K. D., Troop-Gordon, W., Modi, H. H., & Granger, D. A. (2018). An exploratory analysis of the joint contribution of HPA axis activation and motivation to early adolescent depressive symptoms. Developmental Psychobiology, 60(3), 303316. https://doi.org/10.1002/dev.21600Google Scholar
Santarnecchi, E., Sprugnoli, G., Tatti, E., Mencarelli, L., Neri, F., Momi, D., Di Lorenzo, G., Pascual-Leone, A., Rossi, S., & Rossi, A. (2018). Brain functional connectivity correlates of coping styles. Cognitive, Affective, & Behavioral Neuroscience, 18(3), 495508. https://doi.org/10.3758/s13415-018-0583-7Google Scholar
Saxbe, D. E. (2008). A field (researcher’s) guide to cortisol: Tracking HPA axis functioning in everyday life. Health Psychology Review, 2(2), 163190. https://doi.org/10.1080/17437190802530812Google Scholar
Schreiber, J. E., Shirtcliff, E., Van Hulle, C., Lemery-Chalfant, K., Klein, M. H., Kalin, N. H., Essex, M. J., & Goldsmith, H. H. (2006). Environmental influences on family similarity in afternoon cortisol levels: Twin and parent-offspring designs. Psychoneuroendocrinology, 31(9), 11311137. https://doi.org/10.1016/j.psyneuen.2006.07.005Google Scholar
Schriber, R. A., & Guyer, A. E. (2016). Adolescent neurobiological susceptibility to social context. Developmental Cognitive Neuroscience, 19, 118. https://doi.org/10.1016/j.dcn.2015.12.009Google Scholar
Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., Reiss, A. L., & Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27(9), 23492356. https://doi.org/10.1523/JNEUROSCI.5587-06.2007Google Scholar
Shirtcliff, E. A., Allison, A. L., Armstrong, J. M., Slattery, M. J., Kalin, N. H., & Essex, M. J. (2012). Longitudinal stability and developmental properties of salivary cortisol levels and circadian rhythms from childhood to adolescence. Developmental Psychobiology, 54(5), 493502. https://doi.org/10.1002/dev.20607Google Scholar
Silk, J. S., Siegle, G. J., Lee, K. H., Nelson, E. E., Stroud, L. R., & Dahl, R. E. (2014). Increased neural response to peer rejection associated with adolescent depression and pubertal development. Social Cognitive and Affective Neuroscience, 9(11), 17981807. https://doi.org/10.1093/scan/nst175Google Scholar
Silvers, J. A., McRae, K., Gabrieli, J. D. E., Gross, J. J., Remy, K. A., & Ochsner, K. N. (2012). Age-related differences in emotional reactivity, regulation, and rejection sensitivity in adolescence. Emotion, 12(6), 12351247. https://doi.org/10.1037/a0028297Google Scholar
Silvers, J. A., Shu, J., Hubbard, A. D., Weber, J., & Ochsner, K. N. (2015). Concurrent and lasting effects of emotion regulation on amygdala response in adolescence and young adulthood. Developmental Science, 18(5), 771784. https://doi.org/10.1111/desc.12260Google Scholar
Sinha, R., Lacadie, C. M., Constable, R. T., & Seo, D. (2016). Dynamic neural activity during stress signals resilient coping. Proceedings of the National Academy of Sciences, 113(31), 88378842. https://doi.org/10.1073/pnas.1600965113Google Scholar
Skinner, E. A., Edge, K., Altman, J., & Sherwood, H. (2003). Searching for the structure of coping: A review and critique of category systems for classifying ways of coping. Psychological Bulletin, 129(2), 216269. https://doi.org/10.1037/0033-2909.129.2.216Google Scholar
Skinner, E. A., & Wellborn, J. G. (1994). Coping during childhood and adolescence: A motivational perspective. In Featherman, D. L., Lerner, R. M., & Perlmutter, M. (Eds.), Life-span development and behavior (Vol. 12, pp. 91133). Lawrence Erlbaum Associates, Inc.Google Scholar
Skinner, E. A., & Zimmer-Gembeck, M. J. (2007). The development of coping. Annual Review of Psychology, 58(1), 119144. https://doi.org/10.1146/annurev.psych.58.110405.085705Google Scholar
Sladek, M. R., Doane, L. D., Luecken, L. J., & Eisenberg, N. (2016). Perceived stress, coping, and cortisol reactivity in daily life: A study of adolescents during the first year of college. Biological Psychology, 117, 815. https://doi.org/10.1016/j.biopsycho.2016.02.003Google Scholar
Sladek, M. R., Doane, L. D., & Stroud, C. B. (2017). Individual and day-to-day differences in active coping predict diurnal cortisol patterns among early adolescent girls. Journal of Youth and Adolescence, 46(1), 121135. https://doi.org/10.1007/s10964-016-0591-2Google Scholar
Smith, A. R., Chein, J., & Steinberg, L. (2013). Impact of socio-emotional context, brain development, and pubertal maturation on adolescent risk-taking. Hormones and Behavior, 64(2), 323332. https://doi.org/10.1016/j.yhbeh.2013.03.006Google Scholar
Somerville, L. H. (2013). The teenage brain: Sensitivity to social evaluation. Current Directions in Psychological Science, 22(2), 121127. https://doi.org/10.1177/0963721413476512Google Scholar
Sontag, L. M., Graber, J. A., Brooks-Gunn, J., & Warren, M. P. (2008). Coping with social stress: Implications for psychopathology in young adolescent girls. Journal of Abnormal Child Psychology, 36(8), Article 1159. https://doi.org/10.1007/s10802-008-9239-3Google Scholar
Sowell, E. R., Peterson, B. S., Thompson, P. M., Welcome, S. E., Henkenius, A. L., & Toga, A. W. (2003). Mapping cortical change across the human life span. Nature Neuroscience, 6(3), 309315. https://doi.org/10.1038/nn1008Google Scholar
Spear, L. P. (2009). Heightened stress responsivity and emotional reactivity during pubertal maturation: Implications for psychopathology. Development and Psychopathology, 21(1), 8797. https://doi.org/10.1017/S0954579409000066Google Scholar
Spear, L. P. (2011). Rewards, aversions and affect in adolescence: Emerging convergences across laboratory animal and human data. Developmental Cognitive Neuroscience, 1(4), 390403. https://doi.org/10.1016/j.dcn.2011.08.001Google Scholar
Stewart, J. G., Mazurka, R., Bond, L., Wynne-Edwards, K. E., & Harkness, K. L. (2013). Rumination and impaired cortisol recovery following a social stressor in adolescent depression. Journal of Abnormal Child Psychology, 41(7), 10151026. https://doi.org/10.1007/s10802-013-9740-1Google Scholar
Stroud, L. R., Foster, E., Papandonatos, G. D., Handwerger, K., Granger, D. A., Kivlighan, K. T., & Niaura, R. (2009). Stress response and the adolescent transition: Performance versus peer rejection stressors. Development and Psychopathology, 21(1), 4768. https://doi.org/10.1017/S0954579409000042Google Scholar
Stroud, L. R., Papandonatos, G. D., Williamson, D. E., & Dahl, R. E. (2011). Sex differences in cortisol response to corticotropin releasing hormone challenge over puberty: Pittsburgh Pediatric Neurobehavioral Studies. Psychoneuroendocrinology, 36(8), 12261238. https://doi.org/10.1016/j.psyneuen.2011.02.017Google Scholar
Sumter, S. R., Bokhorst, C. L., Miers, A. C., Van Pelt, J., & Westenberg, P. M. (2010). Age and puberty differences in stress responses during a public speaking task: Do adolescents grow more sensitive to social evaluation? Psychoneuroendocrinology, 35(10), 15101516. https://doi.org/10.1016/j.psyneuen.2010.05.004Google Scholar
Tanner, J. M. (1971). Sequence, tempo, and individual variation in the growth and development of boys and girls aged twelve to sixteen. Daedalus, 100(4), 907930.Google Scholar
Thayer, J. F., & Lane, R. D. (2009). Claude Bernard and the heart-brain connection: Further elaboration of a model of neurovisceral integration. Neuroscience and Biobehavioral Reviews, 33(2), 8188. https://doi.org/10.1016/j.neubiorev.2008.08.004Google Scholar
Theurel, A., & Gentaz, E. (2018). The regulation of emotions in adolescents: Age differences and emotion-specific patterns. PLoS ONE, 13(6), Article e0195501. https://doi.org/10.1371/journal.pone.0195501Google Scholar
Thomas, K. M., Drevets, W. C., Whalen, P. J., Eccard, C. H., Dahl, R. E., Ryan, N. D., & Casey, B. J. (2001). Amygdala response to facial expressions in children and adults. Biological Psychiatry, 49(4), 309316. https://doi.org/10.1016/S0006-3223(00)01066-0Google Scholar
Törnhage, C. J. (2002). Reference values for morning salivary cortisol concentrations in healthy school-aged children. Journal of Pediatric Endocrinology & Metabolism: JPEM, 15(2), 197204. https://doi.org/10.1515/jpem.2002.15.2.197Google Scholar
Torre, J. B., & Lieberman, M. D. (2018). Putting feelings into words: Affect labeling as implicit emotion regulation. Emotion Review, 10(2), 116124. https://doi.org/10.1177/1754073917742706Google Scholar
Tsigos, C., & Chrousos, G. P. (2002). Hypothalamic–pituitary–adrenal axis, neuroendocrine factors and stress. Journal of Psychosomatic Research, 53(4), 865871.Google Scholar
van den Bos, E., de Rooij, M., Miers, A. C., Bokhorst, C. L., & Westenberg, P. M. (2014). Adolescents’ increasing stress response to social evaluation: Pubertal effects on cortisol and alpha-amylase during public speaking. Child Development, 85(1), 220236. https://doi.org/10.1111/cdev.12118Google Scholar
Vasilev, C. A., Crowell, S. E., Beauchaine, T. P., Mead, H. K., & Gatzke-Kopp, L. M. (2009). Correspondence between physiological and self-report measures of emotion dysregulation: A longitudinal investigation of youth with and without psychopathology. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 50(11), 13571364. https://doi.org/10.1111/j.1469-7610.2009.02172.xGoogle Scholar
Vijayakumar, N., Pfeifer, J. H., Flournoy, J. C., Hernandez, L. M., & Dapretto, M. (2019). Affective reactivity during adolescence: Associations with age, puberty and testosterone. Cortex, 117, 336350. https://doi.org/10.1016/j.cortex.2019.04.024Google Scholar
Vögele, C., Sorg, S., Studtmann, M., & Weber, H. (2010). Cardiac autonomic regulation and anger coping in adolescents. Biological Psychology, 85(3), 465471. https://doi.org/10.1016/j.biopsycho.2010.09.010Google Scholar
Wadsworth, M. E., Bendezú, J. J., Loughlin-Presnal, J., Ahlkvist, J. A., Tilghman-Osborne, E., Bianco, H., Rindlaub, L., & Hurwich-Reiss, E. (2018). Unlocking the black box: A multilevel analysis of preadolescent children’s coping. Journal of Clinical Child and Adolescent Psychology, 47(4), 527541. https://doi.org/10.1080/15374416.2016.1141356Google Scholar
Walker, E. F., Walder, D. J., & Reynolds, F. (2001). Developmental changes in cortisol secretion in normal and at-risk youth. Development and Psychopathology, 13(3), 721732. https://doi.org/10.1017/S0954579401003169Google Scholar
Wang, Y., & Yip, T. (2020). Sleep facilitates coping: Moderated mediation of daily sleep, ethnic/racial discrimination, stress responses, and adolescent well-being. Child Development, 91(4), e833e852. https://doi.org/10.1111/cdev.13324Google Scholar
Weisz, J. R., Rothbaum, F. M., & Blackburn, T. C. (1984). Standing out and standing in: The psychology of control in America and Japan. American Psychologist, 39(9), 955969. https://doi.org/10.1037/0003-066X.39.9.955Google Scholar
Will, G.-J., van Lier, P. A. C., Crone, E. A., & Güroğlu, B. (2016). Chronic childhood peer rejection is associated with heightened neural responses to social exclusion during adolescence. Journal of Abnormal Child Psychology, 44(1), 4355. https://doi.org/10.1007/s10802-015-9983-0Google Scholar
Williams, K., & McGillicuddy-De Lisi, A. (1999). Coping strategies in adolescents. Journal of Applied Developmental Psychology, 20(4), 537549. https://doi.org/10.1016/S0193-3973(99)00025-8Google Scholar
Yang, J., Zhang, S., Lou, Y., Long, Q., Liang, Y., Xie, S., & Yuan, J. (2018). The increased sex differences in susceptibility to emotional stimuli during adolescence: An event-related potential study. Frontiers in Human Neuroscience, 11. https://doi.org/10.3389/fnhum.2017.00660Google Scholar
Yaroslavsky, I., Bylsma, L. M., Rottenberg, J., & Kovacs, M. (2013). Combinations of resting RSA and RSA reactivity impact maladaptive mood repair and depression symptoms. Biological Psychology, 94(2), 272281. https://doi.org/10.1016/j.biopsycho.2013.06.008Google Scholar
Yaroslavsky, I., Rottenberg, J., Bylsma, L. M., Jennings, J. R., George, C., Baji, I., Benák, I., Dochnal, R., Halas, K., Kapornai, K., Kiss, E., Makai, A., Varga, H., Vetró, Á., & Kovacs, M. (2016). Parasympathetic nervous system activity predicts mood repair use and its effectiveness among adolescents with and without histories of major depression. Journal of Abnormal Psychology, 125(3), 323336. https://doi.org/10.1037/abn0000149Google Scholar
Yuan, J., Ju, E., Yang, J., Chen, X., & Li, H. (2014). Different patterns of puberty effect in neural oscillation to negative stimuli: Sex differences. Cognitive Neurodynamics, 8(6), 517524. https://doi.org/10.1007/s11571-014-9287-zGoogle Scholar
Yuksel, D., Baker, F. C., Goldstone, A., Claudatos, S. A., Forouzanfar, M., Prouty, D. E., Colrain, I. M., & de Zambotti, M. (2021). Stress, sleep, and autonomic function in healthy adolescent girls and boys: Findings from the NCANDA study. Sleep Health, 7(1), 7278. https://doi.org/10.1016/j.sleh.2020.06.004Google Scholar
Zelazo, P. D., & Carlson, S. M. (2012). Hot and cool executive function in childhood and adolescence: Development and plasticity. Child Development Perspectives, 6(4), 354360.Google Scholar
Zimmer-Gembeck, M. J., & Skinner, E. A. (2011). The development of coping across childhood and adolescence: An integrative review and critique of research. International Journal of Behavioral Development, 35(1), 117. https://doi.org/10.1177/0165025410384923Google Scholar
Zimmer‐Gembeck, M. J., & Skinner, E. A. (2016). The development of coping: Implications for psychopathology and resilience. In Cicchetti, D. (Ed.), Developmental psychopathology (3rd ed., Vol. 4, pp. 485544). Wiley. http://au.wiley.com/WileyCDA/WileyTitle/productCd-1118121791Google Scholar
Zimmermann, P., & Iwanski, A. (2014). Emotion regulation from early adolescence to emerging adulthood and middle adulthood: Age differences, gender differences, and emotion-specific developmental variations. International Journal of Behavioral Development, 38(2), 182194. https://doi.org/10.1177/0165025413515405Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×