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Liquid-infused surfaces (LISs) are a promising technique for reducing friction, fouling
and icing in both laminar and turbulent flows. Previous work has demonstrated that
these surfaces are susceptible to shear-driven drainage. Here, we report a different failure
mode using direct numerical simulations of a turbulent channel flow with liquid-infused
longitudinal grooves. When the liquid–liquid surface tension is small and/or grooves are
wide, we observe travelling-wave perturbations on the interface with amplitudes larger
than the viscous sublayer of the turbulent flow. These capillary waves induce a roughness
effect that increases drag. The generation mechanism of these waves is explained using
the theory developed by Miles for gravity waves. Energy is transferred from the turbulent
flow to the LIS provided that there is a negative curvature of the mean flow at the critical
layer. Given the groove width, the Weber number and an estimate of the friction Reynolds
number, we provide relations to determine whether a LIS behaves as a smooth or rough
surface in a turbulent flow.
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1. Introduction

A protective and functional surface coating can be created by lubricating a textured surface
with an appropriate liquid. The drag-reducing properties of these liquid-infused surfaces
(LISs) have been explored recently both numerically (Fu et al. 2017; Cartagena et al.
2018; Arenas et al. 2019) and experimentally (Van Buren & Smits 2017; Fu et al. 2019).
The LISs can also prevent fouling (Epstein et al. 2012), corrosion (Wang, Lu & Zhang
2015) and ice formation (Kim et al. 2012).
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The drag-reducing capabilities of LISs for liquid flows is often compared to those
of superhydrophobic surfaces (SHSs), where air is used as the infused medium. The
low viscosity of air is beneficial for drag reduction, but the use of SHSs in turbulent
applications is restricted by mass diffusion (Ling et al. 2017) and instability of the gas
pockets (Seo, García-Mayoral & Mani 2018). For LISs, the mass diffusion is negligible
if the liquids are immiscible, and LISs are not susceptible to failure due to hydrostatic
pressure (Wong et al. 2011). However, also for LISs, the stability of the interface depends
on the texture’s geometry, the surface tension between the two liquids and the contact
angle at the liquid–liquid–solid interface. In particular, these surfaces may experience
shear-driven drainage of the infused liquid, but this can be mitigated, for example with
chemical patterning (Wexler, Jacobi & Stone 2015; Fu et al. 2019).

In this paper, we show that capillary motion of the liquid–liquid interface may drastically
lower the drag-reducing performance of LISs. In the present study, the surface texture is
fixed to longitudinal (streamwise-aligned) grooves. We use direct numerical simulations of
a LIS in a liquid turbulent channel flow for frictional Reynolds numbers around Reτ ≈ 180.
The employed volume-of-fluid (VOF) framework allows for large interface deformations
(low surface tension) and moving contact lines. When the liquid–liquid surface tension
is small and/or grooves are wide, we find travelling-wave perturbations on the interface
with amplitudes larger than the viscous sublayer of the turbulent flow (a+ ≈ 5–8). These
capillary waves induce a roughness effect and increase friction drag.

The detrimental capillary waves develop for viscosity and density ratios of one, which
excludes interface instability mechanisms driven by density and viscosity stratification
(Boomkamp & Miesen 1996). Instead, we find that the linear instability can be described
by the theory developed by Miles (1957) in the context of two-dimensional gravity waves.
This inviscid instability is due to an energy transfer from the external flow to the waves
that makes them grow in time at an exponential rate. The energy transfer can occur if (i)
there is a negative curvature of the mean velocity profile where it equals the phase speed
of a wave, i.e. at the critical layer, and (ii) the critical layer is not too far away from the
surface, so that velocity fluctuations due to the wave (dispersive stresses) are non-zero.

The existence of energy transfer is not sufficient for failure of LISs, however. The
interface fluctuations also need to grow sufficiently fast to reach large amplitudes that
induce roughness effects. Figure 1(a), which summarises our main contribution, shows
three domains, namely rough, smooth and transitional (grey), in a plane spanned by a
groove width (w+) and a Weber number (We+), both normalised with the viscous length
scale. This design map is obtained from the critical-layer theory and provides a means to
design LISs that can be predicted to achieve a balance between performance (large w+)
and stability (smooth domain).

2. Numerical methods and configuration

We consider a fully developed turbulent open channel flow. The flow domain, shown
schematically in figure 1(b), has the size (Lx, Ly, Lz) = (6.4h, h + k, 3.2h), where x, y
and z correspond to the streamwise, wall-normal and spanwise directions, respectively,
and h is the half-channel height. At the top boundary we impose a free-slip (symmetry)
boundary condition (BC). Periodic boundary conditions are imposed in the streamwise
and spanwise directions. The streamwise-aligned grooves at the bottom wall have a
height k, a width w and square cross-section, k = w. The fluid–solid ratio is set to 0.5.
The infused and external fluids have the same density ρi = ρ∞ = ρ, but different
viscosities (μi and μ∞). We have used grooves of width w+0 = 18. Throughout this paper,
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Figure 1. (a) Design map for LIS, spanned by We+ and w+. Smooth and rough regions are separated using
(3.12), (3.14) and (3.15). Values from simulations with w+0 = 18 are included, with symbols referring to
μi/μ∞ = 1 (©), μi/μ∞ = 0.5 (�) and μi/μ∞ = 2 (♦) and colours to We = 50 (green), We = 100 (blue),
We = 150 (red), We = 200 (yellow) and We = 400 (turquoise). Also shown are values with wider grooves,
w+0 = 36, with We = 25 (purple circle), We = 50 (green circle) and We = 100 (blue circle). The asymptotic
relations (3.16) and (3.17) are shown with dashed line and dashed-dotted line, respectively. Sketches of (b) the
channel configuration and (c) a wave on a groove. The infused liquid is shown in green and the solids in grey.

+0 refers to normalisation using the friction velocity of a regular smooth wall (nominal
wall units). A single superscript + refers to normalisation using the friction velocity of
each individual case. The corresponding viscous length scale is δν = μ∞/(ρuτ ), where
uτ is the friction velocity.

We impose a constant mass flow rate through a uniform pressure gradient over 0 < y <

h, where y = 0 corresponds to the crest of the texture so that Reb = ρhUb/μ∞ = 2820,
giving Reτ = ρhuτ /μ∞ ≈ 180 (with the pressure gradient implemented as a volume
force). Here, Reb and Reτ are Reynolds numbers based on bulk velocity Ub and friction
velocity uτ , respectively.

Our simulations allow for a moving liquid–liquid–solid contact line with a dynamic
contact angle different from the static value, which is θ = 45◦ with respect to the infused
liquid. Our method also allows for interface deformation, which is typically quantified by
the Weber number, defined as We = ρU2

bh/γ , where γ is the surface tension. We have
simulated LISs for We = 100, 150 and 200 and viscosity ratios μi/μ∞ = 0.5, 1 and 2.
The Weber number in wall units is We+ = ρu2

τ δν/γ = μ∞uτ /γ . It can be noted that the
Weber number based on the friction velocity and the width of the grooves is We+w+.

The numerical configuration described above corresponds to an infused liquid
consisting of some alkane (with dynamic viscosities similar to that of water (Van Buren
& Smits 2017)), a water channel with h = 0.5 cm and Ub = 1 m s−1. This results in
Reb = 5000, which is close to the value in our simulations. A typical surface tension
γ = 50 mN m−1 then results in We = 100.

The code used for the simulations is based on the PArallel, Robust, Interface Simulator
(PARIS), which employs a VOF method for the multiphase description (Aniszewski
et al. 2021; Arrufat et al. 2021). The cited papers also include additional test cases and
validations. Height functions are used for curvature calculation for the surface tension.
The interface is advected in the manner suggested by Weymouth & Yue (2010) at each
substep. This advection scheme conserves the volume of both liquids to a high accuracy.
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(b)(a)

Figure 2. Top view of interfaces (green) and surface (grey) at one instant for μi/μ∞ = 1 and (a) We = 100
and (b) We = 200. The flow is from left to right. The complete domain is shown.

At solid surfaces, a contact angle is imposed by using the height functions and a dynamic
contact angle model for VOF based on hydrodynamic theory (Legendre & Maglio 2015).
Details are given in § S1 of the supplementary material, available at https://doi.org/10.
1017/jfm.2021.241. Finally, the grid size is (Nx, Ny, Nz) = (256, 640, 1024), with constant
grid spacing in each direction. The flow was converged after 600h/Ub, and statistics were
collected over a time of 500h/Ub.

3. Results

3.1. Dependence of drag on Weber number
Figure 2(a) shows an instantaneous snapshot of the liquid–liquid interface, viewed from
the top, for We = 100 and μi = μ∞. There are oscillations on the interface, due to the
finite surface tension, but they remain small. The deformation of the interface increases
with We, however. For We = 200, significantly larger waves develop on the interface, as
shown in figure 2(b).

The consequences of the waves on the overlying flow can be quantified by the drag
reduction

DR =
c0

f − cf

c0
f

, (3.1)

where cf = 2τw/(ρU2
b) is the friction coefficient and τw is the total stress at the crest plane

of the surface (computed from the pressure gradient). Here, c0
f is the coefficient of a regular

smooth wall at y = 0. For We = 100 and We = 200, we obtained DR = 0.09 and DR =
−0.04, respectively. In other words, the capillary waves observed at We = 200 increase
frictional drag compared to a smooth and homogeneous surface and have therefore induced
failure of the LIS.

Figure 3(a) shows DR for We = {100, 150, 200} and viscosity ratios μi/μ∞ =
{0.5, 1, 2} as a function of the apparent slip length, b+0. The slip length b is the distance at
which the mean velocity would be zero if linearly extrapolated at the crests of the surface.
It is largely unaffected by changes in We, but it increases with decreasing viscosity ratio.
In fact, the slip lengths extracted from our numerical simulations with w+ ≈ 18 are well
approximated by the slip lengths obtained by solving the Stokes equations for a periodic
array of grooves exposed to unit shear (Schönecker, Baier & Hardt 2014) (black line in
figure 3b). A similar agreement was observed for smaller grooves (w+ ≈ 9) in turbulent
flows by Fu et al. (2017) and Arenas et al. (2019).
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Roughness on liquid-infused surfaces due to capillary waves
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Figure 3. Drag reduction as a function of (a) the slip length and (b) the slip length normalised by the pitch as
a function of viscosity ratio. Symbols and colours are the same as in figure 1(a). In panel (b), the points for
different We are almost on top of each other. Analytical relations are shown by black solid lines: (a) Rastegari
& Akhavan (2015) and (b) Schönecker et al. (2014).

When the interface is perfectly flat (We = 0), the drag reduction can be related to slip
length as

DR ≈ b+0

b+0 + U+0
b

, (3.2)

where U+0
b is the bulk velocity in nominal wall units. This relation – shown in figure 3(a)

(black line) – can be obtained by neglecting changes in the Reynolds shear stress above a
smooth wall (Rastegari & Akhavan 2015). We observe from figure 3(a) that, for We = 100
(blue) and We = 150 (red), there is a drag reduction (DR > 0) for all three viscosity
ratios. Moreover, the deviations from (3.2) are small, confirming that the drag reduction
mechanism is indeed slippage. These small deviations are due to change of Reynolds
shear stress. In contrast, the deviations from (3.2) are significant for We = 200 (yellow),
where we observe a drag increase (DR < 0) for μi/μ∞ = 1 and 2 and a DR close to zero
for μi/μ∞ = 0.5. The corresponding mean velocity and velocity fluctuations reflect the
increase in drag, and these are described in § S2 of the supplementary material.

The waves formed on the interface at We = 200 are sufficiently large to cause roughness
effects. Interface height profiles at different times are shown in figure 4(b), together with
amplitudes of a wave in its initial stage (figure 4c, yellow). The wave amplitude is defined
as the height of the local maximum of the wave. Wave amplitudes of a+ > 5 are observed
and these extend outside the viscous sublayer, indicating that the surface is transitionally
rough. The amplitude grows initially at an exponential rate, before it levels off. In contrast,
interface fluctuations for We = 100 have small amplitudes (a+ < 1) (figure 4a) and show a
significantly smaller growth rate (figure 4c, blue). The exponential growth rate (figure 4c,
dashed) is an indication of a linear instability. In the next section, we provide evidence of a
critical-layer instability (Miles 1957), where energy is transferred to the wave perturbation
from the turbulent flow.

3.2. Conditions for phase speed and growth rate of capillary waves
We assume a small perturbation on the liquid–liquid interface of the form

η = Aeikx(x−ct) cos(kzz), (3.3)

where z = 0 is located in the centre of the groove. As illustrated in figure 1(c), η

is the height of the interface, A is the initial wave amplitude, c is a complex wave
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Figure 4. Instantaneous interface heights in the centreline of a groove for μi/μ∞ = 1: (a) We = 100 for 3 ≤
x ≤ 6 and (b) We = 200 for 1 ≤ x ≤ 4. The five profiles are separated by 	t = 0.2h/Ub. Note the difference
in vertical scale. In (c), the wave amplitude developing at x/h = 4.5 in (a) and at x/h = 3.5 in (b) are shown.
The phase speeds in (a,b) can be estimated as c+ ≈ 14 and c+ ≈ 10, respectively.

speed and t is time. Moreover, kx = 2π/λx and kz = 2π/λz are streamwise and spanwise
wavenumbers, respectively. The spanwise wavelength can have a maximum value of
λz = 2w, due to the finite width of the grooves. This value can be seen to dominate in
the snapshots of figure 2, as most waves only have one crest or one trough in the spanwise
direction. We also observe from figure 2 that streamwise wavelengths are generally similar
to, or larger than, λz. This three-dimensionality implies that both spanwise and streamwise
curvatures contribute to the capillary pressure of a wave,

	pcap = p+
0 −p−

0 = γ

(
∂2

∂x2 + ∂2

∂z2

)
η = −γ k2η. (3.4)

Here, k =
√

k2
x + k2

z and p+
0 (p−

0 ) is the pressure above (below) the interface.
Next, we consider a wall-normal velocity disturbance v(x, y, z, t) on the turbulent mean

flow U( y) with the same waveform as η. If we neglect viscous and nonlinear effects,
the amplitude v̂( y) is governed by the Rayleigh equation (§ S3 A of the supplementary
material)

1
k2 v̂′′ −

[
1 + 1

(U − c)
1
k2 U′′

]
v̂ = 0, (3.5)

where ′ denotes a derivative with respect to y. The velocity perturbation must vanish
at infinity and satisfy the kinematic condition at the interface, v/(U − c) = ikxη. The
equation for the pressure amplitude, p̂( y), corresponding to (3.5) is

p̂
ρ

= −i
kx

k2 [(U − c)v̂′ − U′v̂]. (3.6)

Our aim is to find an approximate solution to (3.4)–(3.6) in order to determine the
phase speed Re(c) (real part) and growth rate Im(kxc) (imaginary part) of the interface
perturbation (3.3).

Miles (1957) formulated a similar set of equations for describing wind-induced water
waves, where gravity – instead of capillarity – balances fluid pressure. He suggested the
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Roughness on liquid-infused surfaces due to capillary waves

following approximate solution for v:

v = ikxη(U − c)e−ky, y ≥ 0. (3.7)

This expression, which satisfies the boundary conditions at y → ∞, implies that 1/k is
the relevant length scale over which v decreases. The assumption of exponential decay can
also be used in the grooves:

v = −ikxcηeky, y < 0. (3.8)

Here, we have assumed that the grooves are sufficiently deep such that the
velocity perturbation is nearly zero at the bottom of the groove. With a depth w,
kw > kzw ≥ (2π/(2w))w = π, and, since e−π 
 1, the assumption is valid for our
configuration. We have also neglected U and its derivative inside the groove. Inserting
(3.8) into (3.6) results in the following expression for the pressure immediately below the
interface (y → 0−):

p−
0 = ρ

k2
x

k
c2η. (3.9)

Similarly, by inserting (3.7) into (3.6) the pressure just above the interface is

p+
0 = (α + iβ)ρU2

1
k2

x

k
η, (3.10)

where α and β are real constants and U1 is an arbitrary reference velocity. It is shown
in § S3 C of the supplementary material that the parameter α can be decomposed into
two parts, α = α1 + α2, where α1 corresponds to (3.9) and α2 incorporates the remaining
contributions from the slip velocity and the shear. Using this decomposition and inserting
(3.9) and (3.10) into (3.4), we obtain (see § S3 D of the supplementary material)

c = cw

(
1 + 1

4
(α2 + iβ)

U2
1

c2
w

+ · · ·
)

. (3.11)

Here cw = √
γ k3/(2ρk2

x) is the free phase speed, i.e. the speed of a capillary wave without
forcing from the overlying flow.

The free phase speed is shown in figure 5(a) (in nominal wall units) as a function of λx/w
for We = {100, 150, 200}. We note that two-dimensional capillary waves (kz = 0) have a
phase speed that monotonically decreases with λx. However, for LISs, there is a minimum
phase speed due to the finite spanwise wavelength. This minimum is approximately (for
the analytical expression, see § S3 D of the supplementary material)

c+
w,min ≈

√
π

We+w+ . (3.12)

For We = 200 (and μi/μ∞ = 1), c+
w,min = 7.0, which is slightly lower than the phase

speed of the wave shown in figure 4(b). One may use c+
w,min as a lower bound of the

actual phase speed of capillary waves on LISs.
We now turn our attention to the imaginary part of (3.11) to approximate the growth rate

of the instability. As shown by Miles (1957) – and repeated in § S3 E of the supplementary
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Figure 5. (a) The free phase speed c+0
w for We = {100, 150, 200} when kz = π/w (i.e. λz/w = 2). For We =

200, the phase speed of a two-dimensional wave (kz = 0) is also shown. (b) The growth rate coefficient β

versus kyc, showing a fast decrease in β for kyc � 1.

material – one may integrate the Rayleigh equation and evaluate the pressure equation
(3.6) at the interface to find

β = −π

∣∣∣∣ vc

kxηU1

∣∣∣∣
2 1

k
U′′

c

U′
c
, (3.13)

where the subscript c denotes values at the position of the critical layer yc. In order for
an infinitesimal wave to have a positive growth rate, i.e. β > 0, a first requirement is that
U′′

c < 0, i.e. negative curvature at the critical layer. This is satisfied if the critical layer is
outside of the viscous sublayer.

A second requirement for β > 0 is that vc in (3.13) is non-zero at the critical layer. The
approximate solution of v in (3.7) implies, however, that v is zero at the critical layer.
As shown in § 3 E of the supplementary material, one may transform the condition for
positive growth rate to an integral form to estimate v in the vicinity of the critical layer.
By further assuming a logarithmic mean velocity profile and setting the reference velocity
to U1 = uτ /κ (where κ is the von Kármán constant), one may evaluate the expression for
β (as a function of kyc), and obtain what is shown in figure 5(b).

We observe from figure 5(b) that, when kyc > 3/2, then β < 0.02, which results in very
slow-growing waves, whereas when kyc < 1/2, we have β > 0.8, resulting in a factor 40
or more faster growth. The grey region in figure 5(b) marks the range 1/2 < kyc < 3/2
where there is a transition from low to high growth rates. Now, since k > kz and the upper
limit of λz is 2w, we may formulate bounds for the position of the critical layer. When

y+
c � 1

2
w+

π
, (3.14)

the growth rate can be expected to be significant, in contrast to when

y+
c � 3

2
w+

π
, (3.15)

for which the growth is negligible.
Equations (3.12), (3.14) and (3.15) provide relationships between We+, w+ and c+

w,min,
y+

c,max that can be confirmed by our simulations. Equation (3.12) states that a large We+
and/or w+ give a small phase speed. This is observed qualitatively by following the
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Roughness on liquid-infused surfaces due to capillary waves

travelling waves on the interface in figure 4(a,b). More quantitatively, the space–time
correlations of the interface height for We = 100 and We = 200 give c+ = 15.1 and
c+ = 10.5, respectively (see figure S8 of the supplementary material).

Compared to We = 100, the lower phase speed for We = 200 results in a lower position
of the critical layer. When the height of the critical layer approaches the interface and
satisfies (3.14), the growth rate coefficient β of the waves (3.13) is large. This is confirmed
by our simulations, where we observe in figure 4(c) that both the growth rate and interface
amplitudes are larger for We = 200 compared to We = 100.

We use an inviscid model here to get a tractable analytical solution, and to illustrate the
important physics involved. It has been shown that the effect of introducing viscosity on
capillary waves with relevant wavenumbers would be a slight damping (Jeng et al. 1998).
However, it is possible that viscosity influences the velocity induced by the waves deep
inside the grooves to a higher extent.

3.3. Implications for the design of LISs
The conditions (3.12), (3.14) and (3.15) can be used as design criteria for LISs. One
may expect a high-performing LIS by choosing a groove width and a surface tension of
the infused liquid such that – for relevant friction Reynolds numbers – the design falls
within the smooth region of figure 1(a). This region is defined by (We+, w+), where
y+

c ≥ 1.5w+/π, and thus from (3.15) very small growth rates of capillary waves are
predicted. Conversely, the rough region in figure 1(a) shows (We+, w+), where y+

c ≤
0.5w+/π, and therefore waves will amplify rapidly. Here, we may expect either a very
low-performing LIS or even a drag-increasing LIS due to roughness effects. In between
the smooth and rough domains, we show in figure 1(a) a transitional region (grey), which
corresponds to 0.5w+/π ≤ y+

c ≤ 1.5w+/π. Here, we cannot predict if the resulting waves
induce roughness effects using our analytical approach. It should be mentioned that the
boundaries of the transitional region in figure 1(a) are determined in three steps: (i) given
w+, determine y+

c from (3.14) (lower boundary) or (3.15) (upper boundary); (ii) given y+
c ,

determine c+ (phase speed) from U+( y+
c ) = c+, where U+( y) is a turbulent mean profile

of a smooth wall; and finally (iii) given c+, assume c+ ≈ c+0
w,min and determine We+ from

(3.12) (or the exact coefficient of (3.12) given in the supplementary material).
Figure 1(a) also shows scaling laws between smooth and rough regions. For small

w+ (and thus y+
c ), we may assume that the critical-layer velocity is U+

c ≈ y+
c . This is

acceptable right above the viscous sublayer where the mean flow has some curvature.
Then (3.12) gives that the height of the lowest critical layer is y+

c ≈
√

π/(We+w+). By
assuming that y+

c ∼ w+/π, we obtain

w+∼(We+)−1/3, (3.16)

which is shown with the dashed line in figure 1(a). It is observed that this asymptotic
relation represents a reasonable scaling law for w+ � 20.

For larger w+, away from the viscous sublayer, we assume U+ = (1/κ) log( y+) + B,
where B is a constant. This gives a nonlinear relation

1/(
√

We+w+) ∼ 1/κ log(w+/π). (3.17)

This curve is shown in figure 1(a) with a dashed-dotted line, and provides a scaling of the
neutral curve for w+ � 30.
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Figure 6. (a) If θ < φ < θ + 90◦, the contact line remains pinned according to Gibbs’ criterion (grey area).
This is illustrated for θ = 45◦. If φ is outside this range, the contact line depins, and moves in the direction
indicated by the arrows. (b) The p.d.f. of φ from simulations for the pinned cases with w+0 = 18, θ = 45◦,
μi/μ∞ = 0.5 (dashed line), μi/μ∞ = 1 (solid line) and μi/μ∞ = 2 (dashed-dotted line) and the Weber
numbers We = 100 (blue) and We = 150 (red). The boundaries of the interval corresponding to a probability
of 95 % for the widest p.d.f. are also shown (dotted line).

The scaling laws illustrate that, when w+ increases, there needs to be rapid decrease of
We+ to remain in the smooth region. For example, for w+ ≈ 70, we need We+ ≈ 3 × 10−4,
which corresponds to We ≈ 10. This is relevant for drag reduction, since the width of the
grooves should be maximised for a given surface tension to optimise DR (see figure 3), but
without entering the rough zone in figure 1(a). Note that, for a fixed geometry, increasing
the flow speed, and thereby uτ , increases both We+ and w+, so that the design needs to be
made for the largest flow speed to which the surface is exposed.

Finally, in figure 1(a), the values of our numerical simulations are shown with
symbols. These also include more extreme Weber numbers, We = 50 and We = 400
(using μi/μ∞ = 1), which resulted in a drag reduction of 9.3 % and −15 %, respectively,
confirming the trend of the other simulations. In addition to the simulations at w+0 = 18,
we also show points (circles) for larger grooves of width w+0 = 36 (also using μi/μ∞ =
1). For these grooves, there was a drag reduction by 18 % for We = 25 (purple circle) and
17 % for We = 50 (green circle), whereas for We = 100 (blue circle), the drag reduction
was lowered to 2 % and we observed large waves. This implies that the growth rate rapidly
increases between the last two cases as they fall in the transitional zone in figure 1(a).

3.4. Contact line depinning
The capillary waves modify the contact angle between the interface and the wall, and may
potentially result in a depinning of the interface from the corners of the ridges. According
to Gibbs’ criterion, which is a purely geometrical criterion, the interface remains pinned if
θ < φ < 90◦ + θ , where φ is the angle the interface makes to the inner wall of the groove.
The lower limit is the limit for when the contact line moves into the groove, while the
upper is the limit for when it moves on top of the ridge (Gibbs 1906). This is illustrated
in figure 6(a). In contrast to the cases We = 100 or 150 (figure 2), we observed that for
We = 200 the interface depinned occasionally due to the waves on the interface.

The measured probability density functions (p.d.f.s) of φ for We = 100 and 150 with
θ = 45◦ are plotted in figure 6(b) for all three viscosity ratios. Since the contact line was
observed to remain pinned for these parameters, the p.d.f.s are independent of θ and can be
used to predict limits for the contact angle. It can be noted that the p.d.f.s for all parameters
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shown are centred around φ = 90◦ and that φ is unlikely to reach below 70◦ or above 110◦.
The interval between these values corresponds to a probability of more than 95 % for the
widest p.d.f. The standard deviation of φ decreases with μi/μ∞ and increases with We,
as is indicated by the width of the p.d.f. This is to be expected, since the dissipation rate
increases with the viscosity and the restoring force of surface tension becomes weaker
with increasing We.

A restoring force for the contact line also comes from mass conservation. If the contact
line occasionally does depin into the groove on one position, it will be raised elsewhere.
Based on this observation and the statistics in figure 6(b), depinning is not the main failure
mode of LISs for the geometry chosen in this study. Depinning is, however, expected to be
important for a LIS with grooves of finite length.

4. Conclusions

We have explored the behaviour of LISs in a turbulent channel flow with square
longitudinal grooves for Reτ ≈ 180. By allowing the interface and the contact line to
move, we could investigate the unconstrained motion of the interface. For a fixed groove
width, we found a rapid increase in drag of LISs above a certain Weber number due to
the appearance of large capillary waves. The generation mechanism of these waves was
elucidated using the theory developed by Miles (1957). The limit for when these waves
act as roughness is set by the width of the grooves w+ and the Weber number We+, as
illustrated in figure 1(a). It should also be noted that these non-dimensional parameters
depend on the flow speed. Using an analytical analysis, we have provided scaling laws
and design criteria for robust drag-reducing LISs. Specifically, the relations show how
to achieve a balance between large groove widths (enhancing drag reduction) and high
surface tension of the infused liquid (enhancing stability) for different flow speeds.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2021.241.
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