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This paper establishes a mean-field equation set and an energy theorem to provide a
theoretical basis in view of the development of self-consistent, physics-based turbulent
transport models for mean-field transport codes. A rigorous averaging procedure identifies
the exact form of the perpendicular turbulent fluxes which are modelled by ad hoc
diffusive terms in mean-field transport codes, next to other closure terms which are
not commonly considered. Earlier work suggested that the turbulent E × B particle and
heat fluxes, which are thus identified to be important closure terms, can be modelled
to reasonable accuracy using the kinetic energy in the E × B velocity fluctuations (kE).
The related enstrophy led to further modelling improvements in an initial study, although
further analysis is required. To support this modelling approach, transport equations are
derived analytically for both quantities. In particular, an energy theorem is established
in which the various source and sink terms of kE are shown to couple to mean-field
and turbulent parallel kinetic energy, kinetic energy in the other perpendicular velocity
components, the thermal energy and the magnetic energy. This provides expressions for
the interchange, drift-wave and Reynolds stress terms amongst others. Note that most
terms in these energy equations are in turn closure terms. It is suggested to evaluate these
terms using reference data from detailed turbulence code simulations in future work.

Keywords: plasma nonlinear phenomena, plasma sheaths, plasma flows

1. Introduction

Turbulent transport processes have been established to largely determine the outward
power and particle fluxes in the plasma edge of tokamaks (Scott 2003; Wesson 2004;
Fundamenski 2010). Thus, properly modelling these processes is crucial to correctly
predicting the load on the divertor. However, doing so using acceptable computational
resources remains challenging. The aim of this paper is to provide a generally valid
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mean-field equation set to serve as a theoretical basis in the development of self-consistent,
physics-based mean-field turbulent transport models for plasma edge transport codes.

The turbulent fluctuations driving the transport perpendicular to the magnetic field
lines occur at very small time and length scales, typically of the order of (ρΩ/L⊥)−1

and ρ, respectively, with Ω and ρ the ion gyro-frequency and radius and L⊥ a typical
length scale of the average perpendicular gradients of the profiles (Scott 2003, 2007;
Fundamenski 2010). At first order, the details of this very fine scale dynamics are not
of interest to the design of future fusion reactors. Moreover, they are very expensive to
resolve computationally since very fine meshes and time steps are required. It is rather
the average behaviour of the turbulence and the resulting average profiles of density and
pressure that are of interest. These averaged or so-called mean-field quantities of the
turbulent flow are calculated in mean-field transport codes such as SOLPS-ITER (Wiesen
et al. 2015; Bonnin et al. 2016), SOLEDGE2D (Bufferand et al. 2015), UEDGE (Rognlien
et al. 1999), EDGE2D-EIRENE (Reiter 1992; Wiesen 2006; Simonini et al. 2018) and
DivOpt (Dekeyser 2014; Dekeyser, Reiter & Baelmans 2014), which are computationally
less demanding.

However, the current approach in mean-field modelling is, basically, to take the
full (fluid) turbulence equations and to evaluate them with mean-field quantities. In
addition to this, ad hoc diffusion or advection terms are added to model the radial
turbulent transport. Due to turbulent fluctuations, these equations are not equivalent to
the turbulent equations and forego the actual dynamics of the turbulence. This paper,
on the other hand, derives mean-field equations that do correspond to the underlying
turbulence equations analytically through a rigorous averaging methodology. This
averaging operation introduces terms which depend on the correlation between turbulent
fluctuations in the mean-field equations. These ‘closure terms’ require modelling.

Rather recently, a number of models have been proposed that relate the mean-field
turbulent transport coefficients to the characteristics of the underlying turbulence (Miki
et al. 2012; Bufferand et al. 2016; Baschetti et al. 2018a,b, 2019, 2021; Carli et al. 2020;
Coosemans, Dekeyser & Baelmans 2020, 2021b, 2022; Coosemans 2022; Dekeyser et al.
2022). These characteristics of the turbulence (turbulent kinetic energy, possibly turbulent
enstrophy or turbulent kinetic energy dissipation) are obtained self-consistently by solving
additional mean-field equations for these quantities. In general, these additional mean-field
transport equations, in turn, contain a number of closure terms. While the degree of
realism used in modelling these equations differs between the cited references, an ad hoc
phenomenological description is often used.

Coosemans et al. (2020, 2021b, 2022) started the modelling of the turbulent kinetic
energy (k⊥) and enstrophy (ζ⊥) from the analytical transport equations for these
quantities derived there. However, these analytical equations are only strictly valid
for the simplified case of two-dimensional (2-D) interchange-dominated, electrostatic,
E × B-only turbulence in the scrape-off layer (SOL) studied there. For a more general
case, Scott (2003) derived mean-field energy equations already. The current paper revisits
these derivations, while improving on the exact definition of the averaging operators and
retaining a number of additional terms. Furthermore, these equations will be extended
to provide equations for the kinetic energy in the E × B velocity fluctuations specifically.
Given that mainly the turbulent E × B fluxes need to be modelled, this quantity is expected
to be of particular relevance.

The remainder of this paper is organised as follows. First, § 2 presents the instantaneous
(fluid) equations describing the E × B-dominated drift turbulence in the plasma edge.
Next, § 3 describes a rigorous averaging procedure and applies this to the turbulent
equations to derive mean-field equations describing the average transport. This identifies
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the closure terms which are due to the turbulent fluctuations. To facilitate the
understanding and modelling of these closure terms, § 4 presents analytical transport
equations for the various energy forms in the plasma (thermal energy, perpendicular and
parallel mean-field and turbulent kinetic energy and mean-field and fluctuating magnetic
energy). Section 5 then zooms in on the kinetic energy in the E × B velocity fluctuations
in particular. Section 6 recapitulates the main steps taken to model the average E × B
turbulent transport in earlier publications and comments on future extensions based on
the analytical framework presented in the present paper. Finally, § 7 summarises the main
conclusion of this work.

2. Turbulence equations

This section presents the quasi-neutral fluid equations which describe the instantaneous
dynamics of the plasma edge, incorporating in particular the dynamics of the turbulence.
This fluid assumption is often made in plasma edge modelling (Ricci et al. 2012; Halpern
et al. 2016; Tamain et al. 2016; Stegmeir et al. 2019; Bufferand et al. 2021) despite the fact
that edge plasmas are in practice often just marginally collisional (Stangeby 2000), limiting
the strict validity of the fluid treatment. Even though these fluid equations are, in principle,
well known in the community, we explicitly include them as they form the starting point
for the following derivations. In particular, this is of interest for the different contributions
to the polarisation current as it will be defined here. The ion continuity, electron continuity,
ion thermal energy, electron thermal energy, ion momentum and electron momentum
equations take the following form:

∂ni

∂t
+ ∇ · (niV ) = Sni, (2.1)

∂ne

∂t
+ ∇ · (neV e) = Sne, (2.2)

3
2

∂pi

∂t
+ ∇ ·

(
5
2

piV + qi

)
= V · ∇pi − Π : ∇V T − Qei + SH,i, (2.3)

3
2

∂pe

∂t
+ ∇ ·

(
5
2

peV e + qe

)
= V e · ∇pe + J

ene
· Rei + Qei + SH,e, (2.4)

∂mniV
∂t

+ ∇ · (mniV V ) = −∇pi − ∇ · Π + eniE + eniV × B − Rei + Sm, (2.5)

−∇pe − eneE − eneV e × B + Rei = 0. (2.6)

In these equations, t is time, ni and ne the ion and electron particle densities, V and V e the
ion and electron velocities, Sni and Sne the ion and electron particle sources, pi and pe the
ion and electron pressures, qi and qe the ion and electron conductive heat fluxes, Π the
(ion) viscous stress tensor, Qei the electron–ion heat exchange, SH,i and SH,e the ion and
electron heat sources, J the current density, Rei the electron–ion friction force, m the ion
mass, e the electron charge, E the electric field, B the magnetic field and Sm the (ion)
momentum source. In this manuscript we consider plasmas consisting of only a single
hydrogen isotope (Zi = 1) such that n = ni = ne and J = en(V − V e). Hence, only one
continuity equation, (2.1) or (2.2) needs to be used, not both. Furthermore, the electron
inertia is neglected.

Direct numerical solution of (2.1)–(2.6) is very difficult, in particular for the
perpendicular components of the ion momentum equation (2.5) which are strongly
dominated by the force terms on the right-hand side, with the inertial terms on the
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left-hand side being much smaller. In order to arrive at a more workable equation set, the
equations are typically rewritten in such a way that the fluxes parallel to the magnetic field
(in the magnetic field direction b = B/B) and the fluxes perpendicular to it are decoupled.
Taking the cross-product of B with the momentum equations (2.5) and (2.6) and rewriting
yields expressions for the perpendicular components of the ion and electron fluxes. The
difference between both provides an expression for the perpendicular plasma current

Γ ⊥,i = nV ⊥ = − m
eB

(
∂nV
∂t

+ ∇ · (nV V )

)
× b︸ ︷︷ ︸

nV p,0

−∇pi × b
eB︸ ︷︷ ︸

nV ∗,i

+ nE × b
B︸ ︷︷ ︸

nV E

−∇ · Π

eB
× b + Sm × b

eB︸ ︷︷ ︸
nV p,Π

−Rei × b
eB

, (2.7)

Γ ⊥,e = nV ⊥,e = ∇pe × b
eB︸ ︷︷ ︸

nV ∗,e

+ nE × b
B︸ ︷︷ ︸

nV E

−Rei × b
eB

, (2.8)

J⊥ = e(Γ ⊥,i − Γ ⊥,e)

= −m
B

(
∂nV
∂t

+ ∇ · (nV V )

)
× b︸ ︷︷ ︸

J p,0

−∇p × b
B︸ ︷︷ ︸

J ∗

−∇ · Π

B
× b + Sm × b

B︸ ︷︷ ︸
J p,Π

. (2.9)

In these expressions, we defined the ion particle flux perpendicular to the magnetic
field Γ ⊥,i, the polarisation velocity V p = V p,0 + V p,Π , the ion and electron diamagnetic
velocities V ∗,i and V ∗,e, the E × B velocity V E, the current perpendicular to the magnetic
field J⊥, the polarisation current J p = J p,0 + J p,Π and the diamagnetic current J ∗ as
indicated. In these equations, the total particle flux is decomposed in a parallel and a
perpendicular component as Γ = Γ ‖ + Γ ⊥, where Γ ‖ � (Γ · b)b and Γ ⊥ � −b × (b ×
Γ ). Note that we use bold symbols to represent vectors, while non-bold symbols are
scalars. In particular, the parallel component of a vector is denoted with a subscript ‖,
e.g. V ‖ = V‖b. Later on, we will use the symbol ∇‖ = b · ∇ as a scalar parallel gradient
operator. The ∇⊥ operator is considered a vector operator of course, i.e. ∇⊥ = ∇ − b∇‖.
Using these conventions, we can for example write V ‖ · ∇p = V‖∇‖p or A‖ · J ‖ = A‖J‖
without loss of generality.

A rigorous ordering of the drift terms in (2.7)–(2.9) shows that the E × B and
diamagnetic drifts are typically the dominant terms, while the polarisation drift is of
higher order (Goldston & Rutherford 1995; Simakov & Catto 2004; Fundamenski 2010).
Moreover, we will neglect the perpendicular contributions to the electron–ion friction Rei
and thus the corresponding drifts altogether from this point on. Hence, we consider the
velocity

V 0 = V ‖ + V E + V ∗, (2.10)

the dominant contribution to the plasma (ion) momentum (the electron momentum having
been neglected from the start).

In view of later derivations, we will henceforth distinguish the velocity used in the
ion convection operators and the velocity considered for the inertia. For this reason, we
define the symbol V C for the ion convective velocity and avoid writing specific velocity
components for it in the plasma momentum equations (charge balance and plasma parallel
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momentum). It will be assumed that the ion convective velocity V C is the same in the
plasma momentum equations and in the ion continuity equation, as should be the case
in theory. For reasons of energetic consistency, this implies V C = V 0 + V p. Note that we
will not explicitly make use of the so-called ‘gyro-viscous cancellation’ in this paper; this
cancellation is not used in the charge balance equation (2.20) (in the definition of J p) nor
in the parallel momentum equation (2.23). This would allow cancelling part of the viscous
stress tensor ∇ · Π with a part of the momentum transport (approximately ∇ · mnV ∗,iV 0).
The details of this cancellation remain a topic of study in the community (Rognlien et al.
1999; Rozhansky et al. 2001; Ramos 2005). As such, the stress tensor Π represents the full
Braginskii stress tensor and the convective velocity V C includes the diamagnetic velocity
V ∗,i. The separate notation for the convective and inertial velocities might, however,
facilitate subsequent derivations making use of the gyro-viscous cancellation in future
work.

Assuming V 0 is the dominant velocity for the inertia and writing V C for the convective
velocity, the inertial contribution to the polarisation velocity can thus be written as

−J p,0 = m
B

(
∂nV 0

∂t
+ ∇ · (nV CV 0)

)
× b

= m
B

∂nU0

∂t
+ m

B
∇ · (nV CU0) + Db

Dt
× mnV 0

B
, (2.11)

where we introduced the notation

U0 � V 0 × b = ∇⊥φ

B
+ ∇⊥pi

enB
,

D
Dt

= ∂

∂t
+ V C · ∇. (2.12a,b)

For future reference, we already decompose this inertial contribution to the polarisation
current as

J p,0 � J p,‖ + J p,E + J p,∗, (2.13)

with

−J p,‖ �
(

∂nV ‖
∂t

+ ∇ · nV CV ‖

)
× mb

B
= Db

Dt
× mnV ‖

B
, (2.14)

−J p,E �
(

∂nV E

∂t
+ ∇ · (nV CV E)

)
× mb

B

= m
B

∂nUE

∂t
+ m

B
∇ · (nV CUE) + Db

Dt
× mnV E

B
, (2.15)

−J p,∗ �
(

∂nV ∗,i

∂t
+ ∇ · (nV CV ∗,i)

)
× mb

B

= m
B

∂nU∗,i

∂t
+ m

B
∇ · (nV CU∗,i) + Db

Dt
× mnV ∗,i

B
. (2.16)

In the latter equations, we used the notation

UE � V E × b = ∇⊥φ

B
, U∗,i � V ∗,i × b = ∇⊥pi

enB
. (2.17a,b)

A priori, it could be expected that the Db/Dt terms in J p,E and J p,∗ provide but a
small correction because of the limited changes in time and space of the magnetic field
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direction b. On the other hand, it could be imagined that J p,‖ does have a certain relevance
as it also contains the large parallel velocity component; J p,‖ will moreover be shown to
lead to specific coupling terms in the perpendicular kinetic energy equation, see §§ 4.1,
5.1 and 5.2.

As the E × B drift velocity is of prime importance in the perpendicular direction,
the treatment of the magnetic field and the electric field are crucial. From the drift
hydrodynamic (DHD) description (Fundamenski 2010) and/or the low β assumption, it
follows that the externally imposed magnetic field (i.e. by the toroidal field coils and
the plasma current in the core) far exceeds the magnetic field fluctuations generated by
electromagnetic effects in the plasma edge. For these reasons, the magnetic field B will be
assumed to be constant in time and externally imposed (with the exception of its treatment
in the parallel electric field). The net transport as a result of magnetic field lines fluctuating
around their equilibrium position (magnetic flutter transport) is neglected in this work.

We then write the electric field as

E = −∇φ − ∂A‖
∂t

. (2.18)

In this equation φ is the electrostatic potential and A‖ is the parallel component of the
magnetic vector potential A defined as B � ∇ × A with ∇ · A � 0. The electrostatic
contribution to the electric field is widely accepted to be dominant in the plasma edge,
and the electromagnetic contribution is often neglected (low β). The parallel magnetic
vector potential A‖ is retained, however, since the literature indicates it may play a
role in the dynamics of the turbulence in the plasma edge through its influence on the
drift-wave coupling (see § 4) (Scott 2003, 2005; Ribeiro & Scott 2005; Fundamenski
2010). Furthermore, this term is also responsible for inducing a loop voltage in the
tokamak through the transformer action of the central solenoid. The contribution of A⊥
is neglected because it is found to be small for the rather slow time scales assumed in the
DHD ordering (Simakov & Catto 2004; Fundamenski 2010).

Note that, whether the parallel magnetic vector potential is taken into account or not,
the E × B velocity can be written as

V E = b × ∇φ

B
, (2.19)

and is thus determined by the electrostatic potential (and the magnetic field that is assumed
to be constant in time in this expression, i.e. without influence of A‖). Then, an equation for
the electrostatic potential is still needed to be able to calculate the E × B velocity. Since the
plasma is assumed to be quasi-neutral, the net space charge is zero and Gauss’ law cannot
be used. Instead, the charge balance condition ∇ · J = 0, which maintains the neutrality
of the plasma, provides an equation for the electrostatic potential. Note that this expression
can be derived by combining the ion and electron continuity equations (2.1)–(2.2) under
quasineutrality. Using expression (2.9), this charge balance equation can be rewritten as

− ∇ · J p = ∇ · J ‖ + ∇ · J ∗. (2.20)

The parallel magnetic vector potential A‖ can be calculated from the projection of the
electron momentum equation (2.6) on the parallel direction b

en
∂A‖
∂t

= ∇‖pe − en∇‖φ − enη‖J‖ + 0.71n∇‖Te. (2.21)

In this above equation, which is also referred to as ‘Ohm’s law’, the Braginskii closure
for the parallel friction force Rei,‖ = Rei · b = enη‖J‖ − 0.71n∇‖Te is used. The parallel
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current density is then calculated using the equation

∇2
⊥A‖ = −μJ‖, (2.22)

stemming from Ampère’s law. Note that, in the fully electrostatic case, i.e. ∂A‖/∂t = 0,
(2.21) can just be solved for J ‖.

Finally, the parallel ion velocity is solved from projecting the total plasma momentum
equation (the sum of the ion and electron momentum equations (2.5) and (2.6)) on the
parallel direction

∂mnV‖
∂t

+ ∇ · (mnV CV‖) = −∇‖p − (∇ · Π) · b + mn
Db
Dt

· V 0,⊥ + Sm,‖. (2.23)

The third term on the right-hand side of this equation enters due to changes in time or in
space of the magnetic field direction. Note that this term is simplified as Db/Dt · V 0 =
Db/Dt · V 0,⊥ since Db/Dt · b = 0 for the unit vector b.

To summarise, the drift-reduced equations to be solved are the continuity equation for
ions or electrons (2.1) or (2.2), the thermal energy equations for ions (2.3) and electrons
(2.4), the parallel momentum equations for the electrons and for the plasma as a whole
(2.21) and (2.23), the charge balance equation (2.20) and Ampère’s law (2.22). In all
these equations, the dominant perpendicular drift velocities and currents in expressions
(2.7)–(2.9) can be filled out where appropriate. If electromagnetic effects are ignored,
(2.21) is solved for the parallel current J ‖ and (2.22) is obsolete. Finally, expressions for
the sources Sn, Sm, SH,i, SH,e, the viscous stress Π, the friction force Rei, the heat fluxes qi
and qe and the electron–ion heat exchange Qei are still required. Such expressions can be
found for example in Braginskii (1965) and Fundamenski (2010).

3. Basic mean-field equations

In the previous section, the fluid equations describing the instantaneous dynamics
of the edge plasma have been presented. These equations tend to develop a chaotic,
turbulent flow with large fluctuations. In general, it is rather the average behaviour of the
turbulence and the resulting average profiles of density and pressure that are of interest.
However, the turbulent fluctuations introduce a number of closure terms in the mean-field
equations which need to be modelled. Typically, the treatment of these closure terms
in mean-field codes is minimal and very ad hoc. The current approach in mean-field
modelling is basically to take the full turbulence equations from the previous section
and to evaluate them with mean-field quantities. In addition to this, ad hoc diffusion (or
sometimes advection) terms are added to model the average radial turbulent transport. Due
to turbulent fluctuations, these equations are not equivalent to the turbulent equations and
forego the actual dynamics of the turbulence. As a contribution of this paper, this section
derives mean-field equations that do correspond to the underlying turbulence equations
analytically through a rigorous averaging methodology. The resulting equations will give
more insight into which terms are being modelled and/or neglected in the mean-field
codes. Furthermore, this will allow to evaluate the terms to be modelled using reference
data. The methodology followed for analytically deriving these mean-field equations is
inspired by Scott (2003).

In order to derive the averaged, mean-field equations, all quantities are split in a
mean-field component and a fluctuating component, as is done in the Reynolds-Averaged
Navier–Stokes (RANS) methodology for hydrodynamic turbulence. Both the Reynolds
and the Favre decomposition of turbulent quantities will be used. The Reynolds
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decomposition of a general quantity u is (Pope 2015)

u = ū + u′, (3.1)

ū � lim
N→∞

1
N

N∑
i=1

u(i). (3.2)

In this work, we assume the turbulent flows to be ergodic such that a long time statistical
steady state of the flow exists, of which the time average converges to the ensemble average

ū � lim
N→∞

1
N

N∑
i=1

u(i) = lim
T→∞

1
T

∫ T

0
u dt. (3.3)

In this definition, u(i) is the value that the quantity u would take (at a given time and
position) in the ith (hypothetical) realisation of the same flow conditions. Due to the
stochastic nature of turbulence, if the same conditions were created N times, the (details
of the) resulting flow would nonetheless be different every time. Here, an average is taken
over N such ‘realisations’ in the limit of N going to infinity. In addition to the Reynolds
average, the Favre or density weighted average will also be used. This is defined as follows
(Canuto 1997):

u = ũ + u′′, (3.4)

ũ � nu
n̄

. (3.5)

This Favre average is particularly useful when transport equations with variable density
need to be averaged, as it allows us to limit the number of closure terms in that case. Held
et al. (2018) and Wiesenberger & Held (2020) have for example used such Favre averaging
techniques to account for the effect of density fluctuations in the study of zonal flow and
angular momentum generation.

As discussed in the previous section, this paper only considers low β plasmas. Hence,
it is assumed that strong time-constant magnetic fields are externally applied and that
fluctuations of the magnetic field can be neglected. As such, the magnetic fields can be
brought out of the averaging operators. An exception to this is again the treatment of A‖ in
the parallel momentum equations.

Reynolds averaging, i.e. applying the ensemble average operator defined in (3.2) to the
continuity equations (2.1) and (2.2), the thermal energy equations (2.3) and (2.4), the
parallel momentum equations (2.21) and (2.23) the charge balance equation (2.20) and
Ampère’s law (2.22), the following mean-field equations are obtained:

∂ n̄
∂t

+ ∇ · (Γ n,‖ + Γ n,E + Γ n,∗,i + Γ n,p) = S̄ni, (3.6)

∂ n̄
∂t

+ ∇ · (Γ n,‖ − J̄ ‖/e + Γ n,E + Γ n,∗,e) = S̄ne, (3.7)

3
2

∂ p̄i

∂t
+ ∇ ·

(
3
2
Γ pi,E + 5

2
Γ pi,‖ + 5

2
Γ pi,p + 5

2
b × ∇piTi

eB
+ q̄‖,i

)
= −pi∇ · V E + V‖∇‖pi + V p · ∇pi − Π : ∇V T

0 − Q̄ei + S̄H,i, (3.8)
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3
2

∂ p̄e

∂t
+ ∇ ·

(
3
2
Γ pe,E + 5

2
Γ pe,‖ + 5

2
b × ∇peTe

eB
+ q̄‖,e

)

= −pe∇ · V E + V‖∇‖pe − J‖
ne

∇‖pe + J‖
en

Rei,‖ + Q̄ei + S̄H,e, (3.9)

∂Ā‖
∂t

= ∇‖pe

en
− ∇‖φ̄ − Rei,‖

en
, (3.10)

∂mn̄Ṽ‖
∂t

+ ∇ · (mn̄Ṽ CṼ‖ + mnV ′′
CV ′′

‖ )

= −∇‖p̄ − (∇ · Π̄) · b + mn
Db
Dt

· V 0,⊥ + S̄m,‖, (3.11)

∇ · m
B

[
∂

∂t
n̄Ũ0 + ∇ ·

(
n̄Ṽ CŨ0 + nV ′′

CU ′′
0

)]
= ∇ · J̄ ‖ + ∇ · J̄ ∗

− ∇ ·
(∇ · Π̄

B
× b

)
− ∇ ·

(
Db
Dt

× mnV 0

B

)
+ ∇ ·

(
S̄m × b

B

)
, (3.12)

∇2
⊥Ā‖ = −μJ̄‖. (3.13)

Note that, while the ensemble averaging operation used to derive these equations is
unambiguously defined, the use of either a Reynolds or a Favre decomposition for each
of the quantities in the equations is a choice. In making this choice (here and further on in
this manuscript), we have generally been guided by an attempt to minimise the number of
closure terms, and by considerations related to the numerical strategies typically used to
solve these equations. We will come back to some of these choices later on. In (3.6)–(3.13),
we used the following notation:

Γ n,‖ � n̄Ṽ ‖, (3.14)

Γ n,E � nV E = Γ n,m,E + Γ n,t,E, Γ n,m,E � n̄V̄ E, Γ n,t,E � n′V ′
E, (3.15a–c)

Γ n,∗,i � b × ∇p̄i

eB
, Γ n,∗,e � −b × ∇p̄e

eB
, (3.16a,b)

Γ n,p � n̄Ṽ p � J̄ p/e, (3.17)

Γ pi/e,E � nTi/eV E � Γ pi/e,m,E + Γ pi/e,t,E,

Γ pi/e,m,E � T̃i/eΓ n,E, Γ pi/e,t,E � nT ′′
i/eV

′′
E,

}
(3.18a–c)

Γ pi,‖ � nTiV ‖ = T̃iΓ n,‖ + nT ′′
i V ′′

‖ (3.19)

Γ pe,‖ � nTeV ‖ − peJ ‖
en

= T̃eΓ n,‖ + nT ′′
e V ′′

‖ − T̃eJ̄ ‖
e

− T ′′
e J ‖
e

(3.20)

Γ pi,p � nTiV p = n̄T̃iṼ p + nT ′′
i V ′′

p. (3.21)

In (3.6)–(3.9) the convective velocities have explicitly been filled out on the left-hand side
to highlight the turbulent fluxes. In principle, this could also be done for the momentum
equations (3.11) and (3.12).
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10 R. Coosemans, W. Dekeyser and M. Baelmans

In (3.8) and (3.9), it was assumed that the only important conductive heat fluxes are the
parallel ones q‖ and the one due to the diamagnetic drift. The latter is combined with the
diamagnetic heat convection to obtain the one but last term on the left-hand side of (3.8)
and (3.9) (Scott 2003). The pressure work on the diamagnetic velocity is ∇p · V ∗ ≡ 0.

In theory, this system of equations could be used to obtain the following mean-field
quantities. The continuity equation (3.6) or 3.7 is to be solved for the average density n̄ (as
mentioned in § 2 already it suffices to solve one of both for a quasi-neutral single species
hydrogenic plasma in which n = ne = ni), the mean-field thermal energy equations (3.8)
and (3.9) for the average pressures p̄i and p̄e (which allows calculating the Favre-averaged
temperatures T̃i = p̄i/n̄ and T̃e = p̄e/n̄) and the mean-field plasma parallel momentum
equation (3.11) for the Favre-averaged parallel ion velocity Ṽ‖. The mean-field Ohm’s
law 3.10 is solved for Ā‖, which then yields J̄‖ through (3.13). Through the dependence of
U0 on φ (see (2.12a,b)), the mean-field charge balance equation (3.12) is then solved for
the average potential φ̄. However, a whole number of closure terms arise in (3.6)–(3.13)
when averaging the nonlinear terms. Any of the terms in the equations (above and later
on in this manuscript) that feature Reynolds fluctuations (e.g. φ′), Favre fluctuations (e.g.
V ′′

E) or any other averaged nonlinear term that cannot be expressed in terms of the resolved
mean-field quantities (e.g. V‖∇‖p) forms a closure term. These closure terms depend on the
correlation between fluctuations and cannot directly be determined based on the ‘given’
mean-field quantities only. As such, solving these equations is not as simple as that since
the equation set is not closed. On another note, we remark that the ∂Ā‖/∂t term in the
electron momentum equation (3.10) is typically neglected in both turbulence codes and
mean-field codes. In stationary tokamak operation, this term would ideally be constant
(i.e. Ā‖ increasing linearly in time) to maintain a constant loop voltage, while the average
magnetic field (B̄ = ∇ × Ā) is maintained constant in time.

In this article, we focus on modelling the turbulent E × B particle flux Γ n,t,E (see
(3.15a–c)) and the turbulent E × B heat fluxes Γ pi/e,E (see (3.18a–c)) since these are known
to dominate the outward transport of particles and heat across magnetic flux surfaces
in the plasma edge (Scott 2003; Wesson 2004; Fundamenski 2010). The divergence
of the diamagnetic fluxes of particles (Γ n,∗,i/e) and thermal energy (penultimate term
on the left-hand side of (3.8) and (3.9)) can be shown to be proportional to gradients
of the magnetic field strength1. As the length scale of magnetic field strength variations in
the plasma edge is typically large, these terms are expected to be rather small (Tsai et al.
1970; Scott 2007). Moreover, (3.16a–c) shows that the diamagnetic particle fluxes are not
really closure terms since they can be calculated exactly from the mean-field pressures,
which are available from thermal energy equations (3.8) and (3.9). The (ion) particle and
(ion) thermal energy fluxes (Γ n,p and Γ pi,p) due to the (ion) polarisation velocity V p do
entail a number of closure terms. However, since the polarisation velocity is of higher
order than the other velocities in the continuity and thermal energy equations (Goldston
& Rutherford 1995; Simakov & Catto 2004; Fundamenski 2010), its contribution can be
assumed to be negligible in these equations. Finally, there are also parallel turbulent fluxes
(see (3.19) and (3.20)). To the knowledge of the authors, these parallel turbulent heat
fluxes are not included in mean-field transport codes and have not yet been addressed
in literature. It is left for future work to carefully investigate whether they are indeed

1For the E × B transport, the advective component remains, i.e. ∇ · nV E = V E · ∇n − V E · ∇ ln B2, while
it disappears for the diamagnetic transport terms ∇ · nV ∗ = −nV ∗ · ∇ ln B2 and ∇ · ( 5

2 (b × ∇pT/eB)) =
− 5

2 (b × ∇pT/eB) · ∇ ln B2 (Tsai, Perkins & Stix 1970; Scott 2007). Note that terms proportional to ∇ × B have been
neglected in all three expression under a low-β assumption.
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negligible compared with the large mean-field convective fluxes and the conductive heat
flux q‖ driven by fast classical collisional transport.

Note that all fluxes in expressions (3.14)–(3.21) except for the E × B particle flux are
decomposed using Favre averages, which allows limiting the number of closure terms.
For the E × B drift, a similar Favre average does not make sense, since in mean-field
modelling, the Reynolds average potential φ̄ is solved for from the average charge balance
equation (3.12) and not the Favre-averaged potential. In this equation, the divergences of
parallel current and diamagnetic current on the right-hand side are typically dominant,
since the other terms are of higher order (Goldston & Rutherford 1995; Simakov & Catto
2004; Fundamenski 2010). As such, it is mostly important to treat the averages of these two
terms with care. The average diamagnetic current J ∗ = −∇p̄ × b/B does not lead to any
closure terms. In Ohm’s law (3.10) and Ampère’s law (3.13), which together determine
the parallel current, the Reynolds-averaged electrostatic potential φ̄ appears naturally.
Moreover, using φ̄ allows us to obtain the three components of ∇φ = ∇φ̄ with one scalar,
while an alternative formulation in terms of ∇̃φ 
= ∇φ̃ would require modelling them
separately. As a result, a Reynolds average is also used for the mean-field E × B drift
i.e. V̄ E = b × ∇φ̄/B and the n′V ′

E closure for the E × B flux is required in the average
E × B particle flux in (3.15a–c). Note that, after modelling n′V ′

E, the Favre-averaged
E × B velocity can be calculated as Ṽ E = V̄ E + n′V ′

E/n̄. With these averaging choices,
the left-hand side of (3.12) can thus be rewritten using the following identity:

∂

∂t
n̄Ũ0 + ∇ · (n̄Ṽ CŨ0 + nV ′′

CU ′′
0) = ∂

∂t

(
n̄∇⊥φ̄

B
+ n′∇⊥φ′

B
+ ∇⊥p̄i

eB

)

+ ∇ ·
(

n̄Ṽ C∇⊥φ̄

B
+ Ṽ Cn′∇⊥φ′

B
+ Ṽ C∇⊥p̄i

eB

)

+ ∇ ·
(

nV ′′
C(∇⊥φ)′′

B
+ nV ′′

C

eB

(∇⊥pi

n

)′′)
. (3.22)

Next to the turbulent fluxes of particles and heat, there are also turbulent momentum
fluxes. These show up as the Reynolds stresses mnV ′′

CV ′′
‖ in the ion parallel momentum

equation (3.11) and mnV ′′
CU ′′

0 in the polarisation current in the charge balance equation
(3.12) (or equivalently the terms in the last line of expression (3.22)). If desired, these
fluxes could also be decomposed into different contributions due to the various velocities
in V C. Note that Ũ0 is not a (new) closure term in this equation, as it is equal to Ũ0 =
(Ṽ E + Ṽ ∗,i) × b, where Ṽ E and Ṽ ∗,i are known as soon as the perpendicular particle fluxes
are modelled. On the other hand, (3.22) illustrates that the E × B turbulent particle flux
does contribute to the polarisation current and thus to the charge balance equation for the
mean-field potential φ̄.

Many more closure terms are present apart from the aforementioned convective
fluxes. The terms on the right-hand side of (3.8)–(3.12), depending on multiple plasma
state quantities, will obviously give rise to a part which can be determined based on
mean-field quantities and a part which cannot, e.g. V‖∇‖p = Ṽ‖∇‖p̄ + V ′′

‖ ∇‖p. Lastly,
any nonlinear dependence on the plasma state in the classical transport expressions (Π,
Rei,‖, q‖, Qei) or source terms (Sn, Sm, Sp) will likewise give rise to closure terms. The
collisional plasma viscous stress, parallel friction force and parallel heat fluxes typically
scale with ∼ T3/2

e and a plasma state gradient, possibly leading to strong nonlinearities.
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12 R. Coosemans, W. Dekeyser and M. Baelmans

The interaction between the turbulence and neutral particles likewise introduces
nonlinearities in the particle, momentum and energy sources terms. These closure terms
are always neglected in mean-field transport codes as far as the authors are aware. Future
work will have to determine if these hypotheses are warranted.

The mean-field equations derived in this section bridge the theoretical gap between the
turbulent equations presented in the previous section, which describe the instantaneous
dynamics of the turbulence and the equations solved in mean-field transport codes
which describe the transport on longer time and length scales. The mean-field equations
derived here correspond analytically to the instantaneous equations of the previous chapter
through the rigorous averaging methodology that is followed. Comparing these equations
with the equations solved in mean-field transport codes gives a clear interpretation and
mathematical definition of the terms being modelled in these codes and which terms are
being neglected. Moreover, it clearly defines the exact averages that are being used and
thus allows us to give a precise meaning to the quantities which are being solved for in
mean-field transport codes. It shows for example that the density which is solved for is
indeed the Reynolds or ensemble average density, while temperatures and parallel velocity
are to be interpreted as Favre or density weighed quantities.

Evaluating the closure terms using data from turbulence codes (providing data on the
instantaneous fluctuations) will allow to establish which closure terms are important and
should be added to mean-field codes, and which ones can be neglected. A further analysis
of these closure terms and turbulence code data will then allow to develop simplified
models which can be used to model these terms more reliably in mean-field codes. This
article will mostly consider the turbulent E × B particle and heat transport, which are
considered to be of crucial importance, and which are indeed known to be large compared
with the mean-field fluxes (Scott 2003; Wesson 2004; Fundamenski 2010). Moreover, the
information gained from modelling this relatively simple term could be used to further
develop the applied methodology to assess the important terms and to elaborate models
for the dominant closure terms.

As Γ n,t,E, Γ pi,t,E and Γ pe,t,E have been shown to be governed by the correlations between
density, temperature and potential fluctuations, we aim to find a measure for the intensity of
these fluctuations, and relate it to the resulting fluxes. The E × B turbulent kinetic energy
(kE, see (5.1a–c) for definition) provides a direct measure of the characteristic E × B drift
velocity of particles in the fluctuating electrostatic field. The eddies and convection cells
formed by fluctuations in the electrostatic field are exactly the motions that cause the
anomalous transport observed in the SOL that is of interest here (Scott 2003; Balescu
et al. 2004; Wesson 2004; Fundamenski 2010). Hence, a link between kE and the effective
turbulent diffusion coefficient is expected and has indeed been observed in earlier work
(Coosemans et al. 2020, 2021b; Coosemans, Dekeyser & Baelmans 2021a; Coosemans
et al. 2022).

To further refine scalings for the turbulent fluxes, the turbulent enstrophy (ζE, see
(A10a–c) for definition) can also be considered. It also provides a measure for the
intensity of the turbulence and is also conserved in 2-D inviscid hydrodynamic turbulence.
However, the cascade dynamics (inverse cascade for the kinetic energy, direct cascade for
enstrophy) and through that the length scales which mostly contribute to both quantities
(enstrophy concentrated on shorter length scales) differ (Camargo, Biskamp & Scott 1995;
Yakhot 2004; Alexakis & Doering 2006; Fundamenski 2010; Coosemans et al. 2020).
Hence, they are expected to provide complementary information. In practical terms, the
enstrophy allows us to complete the scaling for the transport coefficients with a turbulent
time scale. It could be argued that, while

√
kE/m defines a velocity scale for the particles in
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the E × B eddies,
√

m/ζE adds a time scale. Coosemans et al. (2020) showed that including
the enstrophy does indeed allow a more accurate prediction of the turbulent fluxes.

4. Mean-field energy theorem

This section and the next will derive equations for the kinetic energy and enstrophy in
the turbulent fluctuations, which can serve as a theoretical basis for modelling the turbulent
kinetic energy and enstrophy and through that the turbulent fluxes. Moreover, equations
will be derived for other energy forms in the plasma as well, yielding an energy theorem.
This in turn provides an interesting viewpoint into the turbulence dynamics in the plasma
edge.

4.1. Perpendicular kinetic energy equations
This section will focus on the kinetic energy in the perpendicular velocity fluctuations
and its relation to the other energy forms in the plasma. We define the perpendicular total
(Ek,⊥), mean-flow (Ek,m,⊥) and turbulent (k⊥) kinetic energies as

Ek,⊥ �
mV 2

0,⊥
2

, Ek,m,⊥ �
mṼ

2
0,⊥

2
, n̄k⊥ �

mnV ′′2
0,⊥

2
, (4.1a–c)

where V 0,⊥ contains the perpendicular velocity components that are relevant for the ion
inertia. As discussed in the previous section, we assume that V 0,⊥ = V E + V ∗,i. Note that
Ek,⊥ varies rapidly in time and space as it follows the instantaneous fluctuations, while
Ek,m,⊥ and k⊥ are ensemble-averaged quantities that do not change at these small scales.
The latter two are constant in time in a statistical steady state, while the former is not.
Note also that the sum of mean flow and turbulent kinetic energy per unit volume equals
the averaged total kinetic energy per unit volume

nEk,⊥ = n̄Ek,m,⊥ + n̄k⊥. (4.2)

The derivation of the turbulent kinetic energy equation presented here is based on the
procedure applied by Scott (2003). Garcia et al. (2006) and Tran et al. (2019) likewise
followed a similar scheme. These derivations are refined here by taking the density
fluctuations into account in the averaging operators and by considering a number of terms
which were neglected in these references. To limit the number of closure terms, we make
use of the Favre averages introduced in § 3. Note that an analogous procedure has also
been applied to a reduced turbulence description for a 2-D, electrostatic, sheath-limited,
E × B-only SOL in earlier work (Coosemans et al. 2021b).

The total perpendicular kinetic energy equation is obtained by multiplying the charge
balance equation (2.20) with the electrostatic potential

φ∇ · J p = −φ∇ · J ‖ − φ∇ · J ∗, (4.3)

and rewriting the different terms. The polarisation current on the left-hand side introduces
the kinetic energy in the equation. This term is first rewritten as

φ∇ · J p = ∇ · φJ p −
(

∇⊥φ + ∇⊥pi

en

)
· J p + ∇⊥pi · V p. (4.4)
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In this expression, the second term on the right-hand side is in turn rewritten as

−
(

∇⊥φ + ∇⊥pi

en

)
· J p = ∂nEk,⊥

∂t
+ ∇ · (nEk,⊥V C + Π · V 0,⊥)

− Π : ∇V T
0,⊥ + mnV‖

Db
Dt

· V 0,⊥ + Ek,⊥Sn,i − Sm · V 0,⊥.

(4.5)

In this derivation, we made use of continuity equation (2.1) and the definition of the
polarisation current (2.9) (supplemented with (2.11)), with the convection velocity given
by V C in both equations. Furthermore, common vector calculus identities were used.

The first term on the right-hand side of (4.3) is straightforwardly rewritten as φ∇ · J ‖ =
∇ · φJ ‖ − J‖∇‖φ. Following Scott (2003), the second term is then rewritten as

−φ∇ · J ∗ = −∇ · φJ ∗ + ∇φ · J ∗ = −∇ · φJ ∗ − ∇p · V E

= −∇ · (φJ ∗ + pV E) + p∇ · V E. (4.6)

Filling out expressions (4.4)–(4.6) in (4.3), the total perpendicular kinetic energy equation
is found

∂nEk,⊥
∂t

+ ∇ · (nEk,⊥V C + Π · V 0,⊥ + φJ + pV E) = J‖∇‖φ + p∇ · V E

+ Π : ∇V T
0,⊥ − ∇⊥pi · V p − mnV‖

Db
Dt

· V 0,⊥ − Ek,⊥Sni + Sm · V 0,⊥. (4.7)

To arrive at equations for Ek,m,⊥ and k⊥ defined in (4.1a–c), the Ek,⊥ equation (4.7) should
be averaged and split in a contribution due to mean flows and a contribution due to
fluctuations. The procedure to obtain an equation for Ek,m,⊥ is rather similar to that used
for Ek,⊥. For this, we start from the averaged charge balance equation multiplied with the
average electrostatic potential

φ̄∇ · J̄ p = −φ̄∇ · J̄ ‖ − φ̄∇ · J̄ ∗. (4.8)

The terms on the right-hand side will be manipulated in exact analogy to those in the total
kinetic energy equation. Some slight complications arise for the polarisation current term,
however, because we need the dot product between J̄ p and the Favre-averaged potential
gradient to form the time rate of change of the mean-field perpendicular kinetic energy
Ek,m,⊥

φ̄∇ · J̄ p = ∇ · φ̄J̄ p −
(

∇̃⊥φ + ∇⊥p̄i

en̄

)
· J̄ p + ∇⊥p̄i · Ṽ p + J̄ p

n̄
· n′∇φ′. (4.9)

The last term on the right-hand side, which we will call ‘Favre averaging term’, arises
because Favre averages and gradients do not commute. This then leads to the following
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equation:

∂ n̄Ek,m,⊥
∂t

+ ∇ · (n̄Ek,m,⊥Ṽ C + mnV ′′
CV ′′

0 · Ṽ 0,⊥ + Π̄ · Ṽ 0,⊥ + φ̄J̄ + p̄V̄ E)

= J̄‖∇‖φ̄ + p̄∇ · V̄ E + mnV ′′
CV ′′

0,⊥ : ∇Ṽ
T
0,⊥ + Π̄ : ∇Ṽ

T
0,⊥ − ∇⊥p̄i · Ṽ p

− mnV‖
Db
Dt

· Ṽ 0,⊥ − J̄ p

n̄
· n′∇φ′ − Ek,m,⊥S̄ni + S̄m · Ṽ 0,⊥. (4.10)

Taking the difference between the time average of (4.7) and (4.10), an equation for the
perpendicular turbulent kinetic energy is finally obtained

∂ n̄k⊥
∂t

+ ∇ ·
(

n̄k⊥Ṽ C + mnV ′′2
0 V ′′

C

2
+ Π · V ′′

0,⊥ + φ′J ′ + p′V ′
E

)
= J′

‖∇‖φ′ + p′∇ · V ′
E − mnV ′′

CV ′′
0,⊥ : ∇Ṽ

T
0,⊥ + Π : ∇V ′′T

0,⊥ − ∇⊥pi · V ′′
p

− mnV‖
Db
Dt

· V ′′
0,⊥ + J̄ p

n̄
· n′∇φ′ − mSni V

′′2
0,⊥

2
− mṼ 0,⊥ · V ′′

0,⊥Sni + Sm · V ′′
0,⊥.

(4.11)

The manipulations performed in this section and the equations in which they resulted have
largely been based on the seminal paper by Scott (2003). However, a clearer definition
of the averaging operators has been used here, which consistently includes density
fluctuations. Next to changes in the exact form of some terms in terms of averages and
fluctuations, this leads to the appearance of the ‘Favre term’ in (4.10) and (4.11) (seventh
term on the right-hand side). Furthermore, particle and momentum sources (Sn and Sm)
have been retained in the equation set (including their possible fluctuations) as well as the
Db/Dt term which were not included in the paper by Scott (2003). Also, we chose to keep
the general form of the viscous stress tensor Π instead of assuming a particular model
for it. On the other hand, magnetic field fluctuations have been neglected here, while they
were (partly) maintained in the original paper.

We leave a discussion of the perpendicular kinetic energy equations (4.7), (4.10) and
(4.11) and the physics they included for § 4.4.

4.2. Parallel kinetic energy equations
There is also kinetic energy in the parallel ion plasma velocity, both in the mean-field and
the fluctuating component. In analogy with the perpendicular kinetic energies, we write
the parallel kinetic energies as

Ek,‖ �
mV 2

‖
2

, Ek,m,‖ �
mṼ

2
‖

2
, n̄k‖ �

mnV ′′2
‖

2
. (4.12a–c)

Transport equations for the parallel kinetic energy can be obtained in a rather
straightforward way which is very similar to the typical procedure used in hydrodynamic
turbulence. An equation for Ek,‖ can be obtained by multiplying the parallel momentum
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equation (2.23) with V‖

∂

∂t
(nEk,‖) + ∇ · (nV CEk,‖ + Π · V ‖)

= Π : ∇V T
‖ − V‖∇‖p + mV‖

Db
Dt

· nV 0,⊥ − Ek,‖Sni + V‖Sm,‖. (4.13)

In this derivation, the ion continuity equation (2.1) has been used, in which the convection
velocity is assumed to be V C, as in the ion momentum equation. Likewise, a mean-field
parallel kinetic energy equation is constructed by multiplying the average of (2.23) with
Ṽ‖. This yields

∂

∂t
(n̄Ek,m,‖) + ∇ · (mn̄Ṽ CEk,m,‖ + mnV ′′

CV ′′
‖ · Ṽ ‖ + Π̄ · Ṽ ‖)

= mnV ′′
CV ′′

‖ : ∇Ṽ
T
‖ + Π̄ : ∇Ṽ

T
‖ − Ṽ‖∇‖p̄ + mṼ‖

Db
Dt

· nV 0,⊥

− Ek,m,‖S̄ni + Ṽ‖S̄m,‖. (4.14)

Taking the difference between the average of (4.13) and (4.14), an equation for the parallel
turbulent kinetic energy is found as

∂

∂t
(n̄k‖) + ∇ ·

(
n̄Ṽ Ck‖ + mnV ′′

CV ′′2
‖

2
+ Π · V ′′

‖

)

= −mnV ′′
CV ′′

‖ : ∇Ṽ
T
‖ + Π : ∇V ′′T

‖ − V ′′
‖ ∇‖p + mV ′′

‖
Db
Dt

· nV 0,⊥

− Sni V
′′2
‖

2
− Ṽ‖V ′′

‖ Sni + V ′′
‖ Sm,‖. (4.15)

Beside the Db/Dt terms, the interpretation of these equations is rather standard and
deviates little from that for the kinetic energy in hydrodynamic turbulence. We will come
back to this interpretation in § 4.4.

4.3. Magnetic energy equations
As mentioned above, the magnetic field can be described in terms of the magnetic vector
potential

B = ∇ × A = ∇ × A‖ + ∇ × A⊥. (4.16)

The magnetic energy can then be decomposed as

B2

2μ
= (∇ × A‖)2

2μ
+ (∇ × A⊥)2

2μ
+ ∇‖A⊥ · ∇⊥A‖

μ
, (4.17)

where the last term enters through reworking the scalar product between ∇ × A‖ and ∇ ×
A⊥. In this work, we will only study the first term. The dynamics of the second contribution
is not included in the equation set considered here, i.e. A⊥ is in equilibrium at the time
scales of interest. The third term could be assumed to be small on the hypothesis that the
parallel gradient of the equilibrium quantity A⊥ is small.
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Hence, we define the (relevant part of the) total, mean-field and turbulent magnetic
energies as

EB � (∇ × A‖)2

2μ
, EB,m � (∇ × Ā‖)2

2μ
, kB �

(∇ × A′
‖)2

2μ
. (4.18a–c)

Note that a regular Reynolds decomposition is used in these definitions since the magnetic
energy per unit volume is independent of the density. Remark also that the sum of
mean-field and turbulent magnetic energy equals the averaged total magnetic energy

EB = EB,m + kB. (4.19)

Following Scott (2003), an equation for the total magnetic energy is derived by taking the
product of the parallel current with Ohm’s law (2.21) divided by en

J‖
∂A‖
∂t

= J‖
∇‖pe

en
− J‖∇‖φ − J‖

Rei,‖
en

. (4.20)

The left-hand side can be rewritten using (2.22) to find

J‖
∂A‖
∂t

= 1
2μ

∂

∂t
(∇⊥A‖)2 − 1

μ
∇ ·

(
∂A‖
∂t

∇⊥A‖

)
. (4.21)

For the first term in the above equation, it is easy to show that

(∇⊥A‖)2

2μ
= (∇ × A‖)2

2μ
= EB. (4.22)

So finally, we get the total magnetic energy equation

∂EB

∂t
− ∇ ·

(
∂A‖
∂t

∇⊥A‖
μ

)
= J‖

∇‖pe

en
− J‖∇‖φ − J‖

Rei,‖
en

. (4.23)

Following an exactly analogous derivation using the average parallel current J̄‖ and the
average Ohm’s law (3.10), the mean-field magnetic energy is found as

∂EB,m

∂t
− ∇ ·

(
∂Ā‖
∂t

∇⊥Ā‖
μ

)
= J̄‖

(∇‖pe

en

)
− J̄‖∇‖φ̄ − J̄‖

(
Rei,‖
en

)
. (4.24)

We remark here that J̄‖∂Ā‖/∂t is in general non-zero during stationary tokamak operation.
This is in fact the power inserted into the plasma due to the electromagnetic induction
of the main transformer. This term is decomposed in ∂EB,m/∂t, which would ideally
be zero in a stationary state (constant average magnetic field) and the transport term
−∇ · (∇⊥Ā‖/μ∂Ā‖/∂t). In § 3, it has already been discussed that ∂Ā‖/∂t is non-zero in
stationary operation. Secondly, −∇⊥Ā‖/μ is related to the total plasma current enclosed
by the flux surface on which it is evaluated and should thus be non-zero as well. Hence,
−∇⊥Ā‖/μ∂Ā‖/∂t can be interpreted as an influx of magnetic energy from the boundary
of the computational domain, as induced by the central solenoid.

Taking the difference between the average of (4.23) and (4.24), an equation for the
energy in the magnetic field fluctuations is obtained

∂kB

∂t
− ∇ ·

(
∂A′

‖
∂t

∇⊥A′
‖

μ

)
= J′

‖

(∇‖pe

en

)′
− J′

‖∇‖φ′ − J′
‖

(
Rei,‖
en

)′
. (4.25)
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4.4. Energy theorem
This section illustrates the energetic couplings between the perpendicular kinetic energy
(mean-field (4.10) and turbulent (4.11)), thermal energy (electron (3.9) and ions (3.8)),
parallel kinetic energy (mean-field (4.14) and turbulent (4.15)) and magnetic energy
(mean-field (4.24) and turbulent (4.25)) and thus of the different pathways for the energy to
get into and out of the turbulence. This discussion is largely based on the insight provided
by Scott (2003).

Our main interest is the perpendicular turbulent kinetic energy which is supposedly
driving the turbulent transport of heat and particles. As such, we first consider the left-hand
side of (4.11). The first term is the time rate of change of the turbulent kinetic energy. Then,
all terms under the divergence operator represent fluxes transporting turbulent kinetic
energy from one location to another. The first flux is the convection of k⊥ by the mean-field
velocity, the second one the convection by turbulent fluctuations and the third one a flux
due to viscous stresses. These terms also appear in regular hydrodynamic turbulence, see
for example Pope (2015) and Canuto (1997). Next, a flux due to electrostatic potential and
current fluctuations follows and then a flux of pressure due to E × B velocity fluctuations.
Scott (2003) argues that that ∇ · (φ′J ′ + p′V ′

E) ≈ ∇ · φ′J ′
‖, since pV E cancels with φJ⊥

due to Pointing cancellation. Furthermore, it can be shown that −∇ · (φJ ∗ + pV E) =
∇ · (∇(p̄φ) × b/B), which vanishes in 1-D radial geometries (Coosemans et al. 2021b).
The remaining transport due to φ′J ′

‖ thus constitutes a non-convective parallel transport
term that does not have an equivalent in hydrodynamic turbulence. Note that all these
transport terms, except for mean-field convection, constitute closure terms, and that little
quantitative information is available for them a priori. Singh & Diamond (2020) focus on
the radial transport of turbulence intensity and investigate when the associated terms are
important. As far as the authors are aware, the φ′J ′

‖ flux has received very little attention
in the literature. However, § 6 will argue it may play an important role in plasma edge
turbulence.

Next, the coupling between mean-field and turbulent kinetic energy is considered. As
in hydrodynamic turbulence, the Reynolds stress (RS) term (third term on the right-hand
side of (4.10) and (4.11), different sign in both) exchanges energy between the turbulent
and mean-field kinetic energy. While in 3-D hydrodynamic turbulence this term typically
drives the turbulence, in plasma edge physics it is expected to act like a sink of k⊥ and
thus a source of Ek,m,⊥ because of the inverse energy cascade. Hence, this term is expected
to be important close to the separatrix, where strong shear flows tend to develop, which
are partly fed by the turbulent kinetic energy by tearing apart small eddies. Moreover,
this term is also expected to play an important role in the generation of these shear flows
(Diamond et al. 2005; Manz et al. 2012; Held et al. 2018). However, when the turbulence is
sufficiently damped and when the flow shear is sufficiently strong, the RS term may act like
a source of k⊥ through the Kelvin–Helmholtz (KH) instability (Rogers & Dorland 2005;
Myra et al. 2016; Giacomin & Ricci 2020). In addition, the ‘Favre term’, seventh term
on the right-hand side in both equations, also exchanges energy between mean-field and
turbulent kinetic energy. This term appeared due to the non-commutativity of the gradient
and Favre averaging operators. Thus, this term only appeared in the equation because of
the rigorous average techniques that have been applied and had not been identified in the
literature before as far as the authors are aware. The RSs clearly constitutes a closure term.
The Favre term contains closure terms in J̄ p, while the n′∇φ′ factor can be calculated from
Γ n,t,E.

Comparing the right-hand side of the thermal energy equations (3.8) and (3.9) with
that of the kinetic energy equations (4.10) and (4.11), it can be seen that interchange
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terms involving p∇ · V E appear in all of them. Hence, the fluctuations of this interchange
term exchange energy between the turbulence and the thermal energy. This energy transfer
could occur in both directions (from thermal energy to turbulence and vice versa), see § 6.
However, it is expected that this interchange term will provide an important source of the
turbulence on the outboard side of the tokamak, especially in the SOL (Scott 2003, 2005;
Ribeiro & Scott 2005). While the interchange term is a closure term, an analytical model
for it has been found; see these same references and § 6. The viscous stress and ∇⊥pi · V p
terms likewise exchange energy between the kinetic energy (both mean-field and turbulent)
and ion thermal energy. The former acts like a sink dissipating kinetic energy into thermal
energy. Coosemans et al. (2021b, 2022) found it to be of secondary importance for the
k⊥ balance for simulations with the TOKAM2D turbulence code (Sarazin & Ghendrih
1998; Moulton et al. 2014; Baudoin et al. 2016; Marandet et al. 2016; Nace 2018). Further
research is required to quantify the importance of the latter term. Again, both terms appear
as closure terms in the k⊥ equation.

Then, the terms involving J‖∇‖φ in the Ek,m,⊥ and k⊥ equation can be shown to exchange
energy with the mean-field and turbulent magnetic energy ((4.24) and (4.25) respectively).
Furthermore, the other two terms on the right-hand side of (4.24) and (4.25) exchange
energy between this magnetic energy and the electron thermal energy in (3.9). The last
term in the magnetic energy equations is due to electron–ion friction and is expected
to dissipate magnetic energy, providing a unidirectional transfer to the thermal energy.
The first term on the right-hand side of the equation is assumed to allow energy transfer
from thermal energy to magnetic energy and from there to the turbulent kinetic energy.
Hence, this constitutes a second channel by which energy can be injected from the thermal
energy into the turbulence (next to the interchange channel) (Scott 2003, 2005). This
transfer channel is related to the dynamics parallel to the magnetic field and especially
the drift-wave (DW) instability is expected to act on this channel. Because the parallel
dynamics has more freedom to evolve in the closed field line region than in the SOL, it is
expected to be especially important there (Scott 2003, 2005; Ribeiro & Scott 2005).

Note that, in the electrostatic case in which A′
‖ = 0, the left-hand side of (4.25) vanishes.

Nonetheless, the DW coupling remains active, be it in a slightly simplified form. The terms
−J′

‖(∇‖pe/(ne))′ + J′
‖(Rei,‖/(ne))′ in the electron thermal energy equation (3.9) could then

be replaced by −J′
‖∇‖φ′, such that the coupling is directly between the thermal energy and

the turbulent kinetic energy (without the mediation of the magnetic energy). Furthermore
we remark that the left-hand side of the mean-field magnetic energy equation (4.24)
actually represents the power induced in the plasma through electromagnetic induction
by the central solenoid. As this power is injected into the magnetic energy, it could in
theory not just be dissipated through the resistive term, but may also find its way to the
mean-field kinetic energy through the J̄‖∇‖φ̄ term.

Next, the Db/Dt terms in the perpendicular kinetic energy equations (4.10) and (4.11)
exchange energy with the parallel kinetic energies in (4.14) and (4.15). These terms are due
to changes in the magnetic field direction. Notice that the Db/Dt term in the k⊥ equation
not only exchanges energy with k‖, but also with Ek,m,‖. Likewise, this term allows energy
transfer from Ek,m,⊥ to Ek,m,‖ and k‖. Note that these terms only appear in the perpendicular
kinetic energy equations because the J p,‖ contribution to the polarisation current (defined
in (2.14)) has been retained (which is why they were not included in Scott 2003). The
Db/Dt contributions to the J p,E and J p,∗ (see definitions (2.15) and (2.16)) to the contrary
do not individually lead to additional terms in any of the energy equations. The importance
of these energy transfer channels is unknown. It may be expected that their magnitude
and sign depend on the direction of the magnetic field in the reactor (forward field or
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reverse field). Note that these terms represent the only direct coupling between parallel
and perpendicular kinetic energies. However, energy could also be transferred between
them by the mediation of the ion and electron thermal energy. Furthermore, it is very
possible that the parallel kinetic energy dynamics implicitly impacts the turbulence, for
example by its impact on or competition with other energy transfer channels.

The interpretation of the other terms in the parallel kinetic energy equations (4.14) and
(4.15) is rather standard and deviates little from that for the kinetic energy in hydrodynamic
turbulence. The terms on the left-hand side under the divergence represent kinetic energy
fluxes due to mean-field convection, turbulent convection and viscous transport. On
the right-hand side, the first term is the viscous dissipation of kinetic energy which is
converted into ion thermal energy. The second term contains RSs acting on the gradients
of the parallel (ion) velocity and exchanges energy between turbulent and mean-field
parallel kinetic energy again. The third term is the work done by the pressure gradient
on the parallel velocity. Both for mean-field and turbulent energy this exchanges energy
with the ion and electron thermal energy. This energy transfer might again take place in
either direction. The last three terms are due to particle and momentum sources, which are
expected to be mainly due to plasma–neutral interactions.

Finally, the last three terms on the right-hand side of the perpendicular turbulent kinetic
energy equation (4.11) are due to particle and momentum sources in the plasma. The prime
particle and momentum sources in the plasma are expected to be due to the ionisation of
neutral particles and collisions with neutrals. These source terms are again closure terms,
about which very limited information is available a priori.

Now, all source/sink terms on the right-hand side of the energy equations (3.8), (3.9),
(4.10), (4.11), (4.14), (4.15), (4.24) and (4.25) appear in two equations with opposite signs,
hence conserving their total energy. The energetic couplings between the different energy
forms in plasma edge turbulence are illustrated in figure 1. The figure aims to give an
overview of some of the couplings which are expected to be important, but does not
contain all the energy transfer channels. This figure is inspired by a similar figure in Scott
(2003).

5. Decomposition of perpendicular kinetic energy equations

At this point, it is important to recall (cf. § 3) that mainly the turbulent fluxes Γ n,t,E,
Γ pi,t,E and Γ pe,t,E (see (3.15a–c) and (3.15a–c)) due to the E × B drift require modelling. It
could be expected that these E × B fluxes are more closely related to the turbulent kinetic
energy in the E × B velocity fluctuation only than to the total turbulent kinetic energy
due to the total perpendicular V 0,⊥ consisting of both the E × B and the ion diamagnetic
velocity. As such, this section will derive an equation for the kinetic energy in the E × B
drift velocity only. In addition, equations for the energy in the diamagnetic drift velocity
will likewise be derived.

5.1. The E × B-only kinetic energy equations
In analogy to the total kinetic energies, we define the E × B-only kinetic energies as

EE � mV 2
E

2
, EE,m � mṼ

2
E

2
, n̄kE � mnV ′′2

E

2
. (5.1a–c)

An equation for EE is likewise derived starting from the charge balance equation (4.3),
as was done to obtain the equation for Ek,⊥. However, the diamagnetic drift contribution

https://doi.org/10.1017/S0022377824000163 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000163


Transport equations and energy theorem for the plasma edge 21

FIGURE 1. Schematic representation of the main energy transfer channels between the
different energy forms in plasma edge turbulence. Adapted from Scott (2003).

to the polarisation current is now kept separate in the equivalent to (4.4)

φ∇ · J p = ∇ · φJ p − ∇φ · J p = ∇ · φJ p − ∇φ · (J p,E + J p,‖ + J p,Π) − ∇φ · J p,∗,
(5.2)

where the decomposition of J p introduced in (2.9) and (2.13) is used. In analogy to
expression (4.5), the second term on the right-hand side in the previous expression yields
the time rate of change of the E × B-only kinetic energy

− ∇⊥φ · (J p,E + J p,Π + J p,‖) = ∂nEE

∂t
+ ∇ · (nEEV C + Π · V E)

− Π : ∇V T
E + mnV‖

Db
Dt

· V E + EESni − Sm · V E. (5.3)

Filling out expressions (5.2)–(5.3) together with the manipulation (4.6) derived before into
(4.3), the equation for EE is finally obtained

∂nEE

∂t
+ ∇ · (nEEV C + Π · V E + φJ + pV E) = J‖∇‖φ + p∇ · V E + Π : ∇V T

E

+ ∇φ · J p,∗ − mnV‖
Db
Dt

· V E − EESni + Sm · V E. (5.4)

The form of this equation is very similar to (4.7). However, Ek,⊥ is ‘replaced’ by EE
and V 0,⊥ by V E. Furthermore, the ∇pi · V p term is no longer present in the equation,
while the last term on the right-hand side of (5.2) comes in to include the diamagnetic
drift contribution to the polarisation current. Thus the latter is not neglected. Instead,
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it is chosen to account for it as a current divergence term instead of including it in the
kinetic energy on the left-hand side, as was done in the total kinetic energy case in
§ 4.1. When the diamagnetic drift contribution to the polarisation current is small or is
neglected, the φ∇ · J p,∗ term can also be neglected. On the other hand, it is worth noting
that the DW and interchange terms remain unchanged between the total perpendicular and
the E × B-only kinetic energy equations. Note that (5.4) could of course also have been
derived directly from (4.7) by algebraic manipulation. This derivation proved, however,
much more tortuous and tedious.

A mean-field E × B-only kinetic energy equation is derived by starting from (4.8) again.
Applying analogous averaging operations as used in § 4.1 to the derivation made just
before for the total E × B kinetic energy, we find

∂ n̄EE,m

∂t
+ ∇ · (n̄EE,mṼ C + mnV ′′

CV ′′
E · Ṽ E + Π̄ · Ṽ E + φ̄J̄ + p̄V̄ E)

= J̄‖∇‖φ̄ + p̄∇ · V̄ E + mnV ′′
CV ′′

E : ∇Ṽ
T
E + Π̄ : ∇Ṽ

T
E + ∇φ̄ · J̄ p,∗

− mnV‖
Db
Dt

· Ṽ E −
(

J̄ p,E + J̄ p,Π

n̄

)
· n′∇φ′ − EE,mS̄ni + S̄m · Ṽ E. (5.5)

Taking the difference between the average of (5.4) and (5.5) again yields an equation for
the turbulent kinetic energy, in the E × B drift fluctuations this time

∂ n̄kE

∂t
+ ∇ ·

(
n̄kEṼ C + mnV ′′2

E V ′′
C

2
+ Π · V ′′

E + φ′J ′ + p′V ′
E

)
= J′

‖∇‖φ′

+ p′∇ · V ′
E − mnV ′′

CV ′′
E : ∇Ṽ

T
E + Π : ∇V ′′T

E + ∇φ′ · J ′
p,∗ − mnV‖

Db
Dt

· V ′′
E

+
(

J̄ p,E + J̄ p,Π

n̄

)
· n′∇φ′ − mSni V

′′2
E

2
− mṼ E · V ′′

ESni + Sm · V ′′
E. (5.6)

Comparing these E × B-only kinetic energy equations (5.5) and (5.6) with the total
perpendicular kinetic energy equations (4.10) and (4.11), the same changes as for the total
kinetic energy can be observed. In addition, it is worth remarking that the RSs (second
term on the right-hand side) have also changed now, in the sense that these now include
only the E × B velocity (and V C). Likewise, in the Favre averaging term (seventh term on
the right-hand side) the diamagnetic drift polarisation current is no longer present.

5.2. Ion-diamagnetic-drift-only kinetic energy equations
To complement the equations for the E × B-energy and to deepen the energy theorem, we
derive equations for the kinetic energy in the ion diamagnetic drift in this section and in
the ‘mixed’ E × B-ion diamagnetic kinetic energy in the next section. The total, mean-field
and turbulent diamagnetic kinetic energies are defined as

E∗ �
mV 2

∗,i

2
, E∗,m �

mṼ
2
∗,i

2
, n̄k∗ �

mnV ′′2
∗,i

2
. (5.7a–c)
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In analogy to (4.5) and (5.3), a transport relation for the total kinetic energy in the
diamagnetic drift velocity can be obtained as

− ∇⊥pi

en
· (J p,∗ + J p,Π + J p,‖) = ∂nE∗

∂t
+ ∇ · (nE∗V C + Π · V ∗,i)

− Π : ∇V T
∗,i + mnV‖

Db
Dt

· V ∗,i + E∗Sn,i − Sm · V ∗,i. (5.8)

Slightly rewriting readily yields the total diamagnetic kinetic energy equation as

∂nE∗
∂t

+ ∇ · (nE∗V C + Π · V ∗,i) = Π : ∇V T
∗,i − ∇⊥pi · (V p,∗ + V p,Π + V p,‖)

− mnV‖
Db
Dt

· V ∗,i − E∗Sn,i + Sm · V ∗,i. (5.9)

An analogous derivation starting from ∇⊥p̄i · (Ṽ p,∗ + Ṽ p,Π + Ṽ p,‖) yields an equation
for the mean-field kinetic energy in the diamagnetic drift velocity

∂ n̄E∗,m

∂t
+ ∇ · (n̄E∗,mṼ C + mnV ′′

CV ′′
∗,i · Ṽ ∗,i + Π̄ · Ṽ ∗,i)

= mnV ′′
CV ′′

∗,i : ∇Ṽ
T
∗,i + Π̄ : ∇Ṽ

T
∗,i − ∇⊥p̄i · (Ṽ p,∗ + Ṽ p,Π + Ṽ p,‖)

− mnV‖
Db
Dt

· Ṽ ∗,i − E∗,mS̄ni + S̄m · Ṽ ∗,i. (5.10)

Taking the difference between the average of (5.9) and (5.10), an equation for the turbulent
diamagnetic kinetic energy is obtained

∂ n̄k∗
∂t

+ ∇ ·
(

n̄k∗Ṽ C + mnV ′′2
∗,iV

′′
C

2
+ Π · V ′′

∗,i

)
= −mnV ′′

CV ′′
∗,i : ∇Ṽ

T
∗,i + Π : ∇V ′′T

∗,i − ∇⊥pi · (V ′′
p,∗ + V ′′

p,Π + V ′′
p,‖)

− mnV‖
Db
Dt

· V ′′
∗,i −

mSni V
′′2
∗,i

2
− mṼ ∗,i · V ′′

∗,iSni + Sm · V ′′
∗,i. (5.11)

5.3. Mixed kinetic energy equations
At this point, it is important to remark that the sum of the E × B-only kinetic energy
(see definition (5.1a–c)) and the ion-diamagnetic-drift-only kinetic energy (see definition
(5.7a–c)) is not equal to the total perpendicular kinetic energy (see definition (4.1a–c)).
Decomposing the total perpendicular kinetic energy as

Ek,⊥ �
mV 2

0,⊥
2

= m(V E + V ∗,i)
2

2

= mV 2
E

2
+ mV 2

∗,i

2
+ mV E · V ∗,i � EE + E∗ + Emix, (5.12)

it is noted that there is a kinetic energy contribution from the ‘mixed’ E × B-ion
diamagnetic kinetic energy. We define this mixed kinetic energy as

Emix � mV E · V ∗,i, Emix,m � mṼ E · Ṽ ∗,i, n̄kmix � mnV ′′
E · V ′′

∗,i. (5.13a–c)
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Note that these mixed kinetic energies can be negative when V E and V ∗,i are
counter-aligned. As such, the term ‘energy’ might strictly speaking be somewhat of a
misnomer.

According to (5.12), an equation for the total mixed kinetic energy can be calculated as
the difference between (4.7) and (5.4) and (5.9). Likewise, an equation for the mean-field
mixed kinetic energy is obtained from the difference between (4.10) and (5.5) and (5.10),
and for the turbulent mixed kinetic energy from the difference between equation (4.11) and
equations (5.6) and (5.11). This then yields

∂nEmix

∂t
+ ∇ · nEmixV C = −∇⊥pi · V p,E − ∇φ · J p,∗ − EmixSni, (5.14)

∂ n̄Emix,m

∂t
+ ∇ · (n̄Emix,mV C + mnV ′′

CV ′′
E · Ṽ ∗,i + mnV ′′

CV ′′
∗,i · Ṽ E)

= mnV ′′
CV ′′

E : ∇Ṽ
T
∗,i + mnV ′′

CV ′′
∗,i : ∇Ṽ

T
E − ∇⊥p̄i · Ṽ p,E

− ∇φ̄ · J̄ p,∗ − eṼ p,∗ · n′∇φ′ − Emix,mS̄ni, (5.15)

∂ n̄kmix

∂t
+ ∇ · (n̄kmixṼ C + mnV ′′

E · V ′′
∗,iV

′′
C)

= −mnV ′′
CV ′′

E : ∇Ṽ
T
∗,i − mnV ′′

CV ′′
∗,i : ∇Ṽ

T
E − ∇⊥pi · V ′′

p,E − ∇φ′ · J ′
p,∗

+ eṼ p,∗ · n′∇φ′ − mSni V
′′
E · V ′′

∗,i − mṼ E · V ′′
∗,iSni − mṼ ∗,i · V ′′

ESni . (5.16)

5.4. Refined energy theorem
The sources and sinks on the right-hand side of (5.4)–(5.6), (5.9)–(5.11) and (5.14)–(5.16)
again represent the energetic couplings between the different energy equations. Firstly,
this shows that the interchange and DW terms really transfer energy with the E × B
kinetic energy only, and not with the other perpendicular kinetic energy contributions. The
viscous stresses, on the other hand, transfer energy between the ion thermal energy (3.8)
and the E × B-only and diamagnetic kinetic energy individually, acting on the respective
velocities of the latter. The kinetic energy source due to momentum sources and the Db/Dt
terms are likewise split between both forms of kinetic energy. The kinetic energy source
due to the particle source acts independently on all three kinds of kinetic energy.

In addition, the pressure work on the polarisation velocity exchanges energy between
the ion thermal energy and E∗ and Emix separately. Thus, it can be seen that, somewhat
surprisingly, the diamagnetic kinetic energy equation is not directly coupled to the other
perpendicular kinetic energy equations at all. Then, the ∇φ · J p,∗ term exchanges energy
between EE and Emix. Thus, the latter ‘mixed’ form of kinetic energy exchanges energy
with the ion thermal energy and the E × B kinetic energy.

Lastly, the various forms of the RS and Favre terms exchange energy between
the mean-field kinetic energy equation and the corresponding turbulent kinetic energy
equation.

The fact that the interchange and DW mechanisms, generally assumed to be the main
turbulence drives in the plasma edge, exchange energy with the E × B energy only,
seems to be in line with the E × B fluctuations being stronger than the diamagnetic ones.
Moreover, the diamagnetic and mixed kinetic energies have much less (direct) couplings,
especially to the thermal energy reservoirs which are supposedly the most important ones.
This could be expected to further limit the strength of the turbulence in these components.
It is particularly interesting to observe that only the E × B kinetic energy is coupled to the
electron thermal energy and to the magnetic energy.
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FIGURE 2. Schematic representation of the energy transfer channels between the different
perpendicular kinetic energy forms in plasma edge turbulence.

Figure 2 shows a schematic representation of the energy couplings split out over the
different components of the perpendicular kinetic energy. Note that the contributions
presumed to be important that were shown in figure 1 are actually all between the
E × B-only kinetic energy and other energy forms, never involving the diamagnetic or
mixed kinetic energy. As such, we do not put the mathematical expressions for the
couplings of the E × B-only kinetic energy (indicated with green arrows) in figure 2 since
they were already denoted in figure 1.

6. Towards a turbulence closure model

The general framework of mean-field equations and the strategy to be followed for their
closure presented in the previous sections made no assumptions on the dimensionality
of the turbulence. However, earlier work has largely focused on purely 2-D plasma edge
turbulence, accounting for the parallel direction through approximate volumetric sinks
(Coosemans et al. 2020, 2021a,b, 2022). While this allowed us to gain valuable insights
into the basic dynamics of the perpendicular turbulent transport, the considered cases
were still rather far from a reactor relevant case. Reducing the assumptions compared
with this earlier work as well as compared with Scott (2003) leads to a more complex
set of mean-field equations. However, we would like to stress that the final model for
the closure terms should not necessarily include all the new terms that are identified.
The full set should only be used to check which terms do need to make it into the final
reduced mean-field model. On the other hand, a reduced model can only be expected
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to approximate reality when it takes into account all the relevant terms. Nonetheless, it is
expected that the basic physics modelled for the reduced cases can be extrapolated to more
complex cases to some extent. This section will look ahead considering the implications
of the models developed earlier in view of the general mean-field equations presented
here for mean-field transport in general and discuss the elements of the model that require
further refinement.

6.1. Modelling mean-field turbulent fluxes
Section 3 established that the average turbulent E × B particle flux Γ n,t,E in the average
continuity equation (3.6) or (3.7) and heat fluxes Γ pi,t,E and Γ pe,t,E in the thermal energy
equations (3.8) and (3.9) are vital closure terms to be modelled. Following the common
practise in mean-field transport modelling (LaBombard et al. 2000; Aho-Mantila et al.
2012; Reimold et al. 2015; Dekeyser et al. 2016), Coosemans et al. (2020, 2021a,b, 2022)
suggested to model these fluxes through diffusion relations

Γ n,t,E ≈ −D∇⊥n̄, Γ pi,t,E ≈ −χin̄∇⊥T̃i, Γ pe,t,E ≈ −χen̄∇⊥T̃e, (6.1a–c)

and to relate the effective turbulent transport coefficients D, χi and χe to
characteristic quantities for the turbulence, i.e. D = D(kE, ζE, . . .), χe = χe(kE, ζE, . . .),
χi = χi(kE, ζE, . . .). Coosemans et al. (2022) found that the three transport coefficient
are proportional to one another up to a constant of order unity for the investigated
2-D, electrostatic, interchange-dominated, sheath-connected SOL cases. It remains to be
confirmed if this scaling holds more generally. For now, it is assumed that this results holds
to a certain extent in more complex cases as well. It stands to reason to propose a similar
diffusion relation for the turbulent E × B flux of parallel momentum

Γ nV ‖,E � nV ′′
EV ′′

‖ ≈ −νn̄∇⊥Ṽ‖, (6.2)

and to assume that ν ∼ D as well.
Under these assumptions, it suffices to model only one of the transport coefficients

to obtain a model for all four. Drawing on Coosemans et al. (2020, 2021a,b, 2022) and
Coosemans (2022), an elaborate scaling of the form

D = CD
kE√

mζE + CSmSm
sin(Ψ ), (6.3)

may be suggested. The philosophy of this model is that kE provides a velocity scale for
the turbulence, while the enstrophy ζE and the flow shear rate Sm provide competing
time scales for the turbulence. Finally, the effective phase difference between the density
and potential fluctuations Ψ provides an additional correction. This phase difference is
typically a characteristic of the turbulent regime, and could presumably be modelled based
on which terms are (locally) dominant in the kE equation. It might still be necessary to
adjust the coefficients CD and/or CS depending on the turbulence regime (open or closed
field lines, interchange- or DW-dominated case, sheath connected or not). This transport
coefficient model, how general it is and how far case-specific parameter tuning is needed,
certainly require further investigation in realistic 3-D cases. However, given its rather
robust performance in Coosemans et al. (2021b, 2022), it seems reasonable to assume
that the basic scaling

D ∼ ρ
√

kE/m, (6.4)

will hold to some extent, even though the proportionality factor may not take a strictly
fixed value that works for all cases. Assuming that this scaling holds, the next section
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will summarise the progress that has been made in modelling the transport equation of
kE, and which terms and effects require further attention. Besides the relevance for the
transport coefficients themselves, this also led to insights into the dynamics and drivers of
the turbulence itself.

6.2. Modelling the turbulent kinetic energy equation
The general E × B turbulent kinetic energy equation for a low β edge plasma has been
derived in § 5.1 as (5.6). We start by simplifying this equation ignoring a number of terms
presumed to be of minor importance

∂ n̄kE

∂t
+ ∇ ·

(
n̄kEṼ C + mnV ′′2

E V ′′
C

2
+ φ′J ′

‖

)
= J′

‖∇‖φ′ + p′∇ · V ′
E − mnV ′′

CV ′′
E : ∇Ṽ

T
E + ∇φ′ · J ′

p,∗

− mnV‖
Db
Dt

· V ′′
E − mSni V

′′2
E

2
− mṼ E · V ′′

ESni + Sm · V ′′
E. (6.5)

Firstly, the sum of the transport terms ∇ · (φ′J ′
⊥ + p′V ′

E) has been neglected. Even though
each of these terms individually may be large, Scott (2003) argues that their sum is
small due to Poynting cancellation. Moreover, under a low β approximation the subterm
∇ · (φ′J ′

∗ + p′V ′
E) = ∇ · (∇(p′φ′) × b/B) can be shown to depend solely on magnetic

field gradients, of which the length scale is supposed to be much larger than the turbulent
length scale (Scott 2003; Coosemans et al. 2021b). Next, the terms involving the viscous
stresses have likewise been neglected. On evaluations of this kE equation for simplified
TOKAM2D cases, these terms were observed to always play a secondary role (Coosemans
et al. 2020, 2021b, 2022). This complies with the general assumption that plasma edge
turbulence is dominated by an inviscid dynamics (Camargo et al. 1995). Lastly, the Favre
term has likewise been left away since all earlier TOKAM2D results showed it to be small
as well.

The interchange term (second term on the right-hand side of (6.5)) is widely accepted to
act like the major drive of the turbulence in the SOL on the low field side (LFS) in many
cases. A general analytical equation has been derived for this term by Coosemans et al.
(2021b, 2022). This starts by rewriting (Scott 2003)

∇ · V E = −V E · ∇ ln B2 + ∇φ

B2
· ∇ × B, (6.6)

where the second term can be neglected by a low-β approximation. Rewriting the
fluctuations and using the definitions of the E × B particle and heat fluxes in (3.15a–c)
and (3.15a–c), it is found that (Coosemans et al. 2022)

p′∇ · V ′
E = −p′V ′

E · ∇ ln B2 = −(T̃n′V ′
E + nT ′′V ′′

E) · ∇ ln(B2)

= −(T̃Γ n,t,E + Γ pi,t,E + Γ pe,t,E) · ∇ ln(B2). (6.7)

Hence, if closure models are available for the E × B fluxes, whether of the form suggested
in § 6.1 or not, the interchange source of kE can be evaluated analytically. This provides a
very convenient ingredient for a closure model. Moreover, it also automatically induces
a ballooning character into a turbulent transport model as already remarked in earlier
publications (Coosemans et al. 2020, 2021b, 2022). Indeed, the turbulent heat fluxes will
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normally be outward everywhere, while the magnetic field gradient is only opposed to this
flux on the LFS. As a result, the interchange term tends to act like a source on the LFS,
while it acts like a sink on the high field side (HFS). This behaviour has been confirmed in
2-D mean-field simulations with SOLPS-ITER in which a model based on the k⊥ equation
presented here has been implemented (Dekeyser et al. 2022). Note that this interchange
model holds in general and is thus not only relevant in interchange-dominated turbulence
regimes. It is interesting to remark that, even when another term would provide a more
poloidally uniform drive of k⊥, the turbulence on the HFS would be decreased and that on
the LFS increased due to the resulting turbulent E × B heat fluxes.

In sheath-connected interchange-dominated LFS SOL cases studied with the
TOKAM2D code, it was found that this interchange term is balanced by the parallel loss
to the sheath (Coosemans et al. 2020, 2021b, 2022). This term is the equivalent of the
transport part of the parallel current contribution (fourth term on the left-hand side of
(6.5)). It was also found that the underlying ‘anomalous’ parallel flux φ′J ′

‖ largely exceeds
the equivalent of the mean-field and the turbulent parallel convection.

This has interesting implications for the distribution of k⊥ in tokamaks. The exploratory
SOLPS-ITER case presented by Dekeyser et al. (2022) had the interchange term as
the dominant source of k⊥ with this fast transport acting like the main compensation
mechanism. The resulting balance showed strong production of turbulence around the
outer midplane (OMP), which is quickly removed by the fast parallel transport. In the SOL,
this allows saturation of the turbulence by removal of k⊥ to the divertor targets, which is
reminiscent of the physics of the TOKAM2D cases. In the core region, on the other hand,
k⊥ can be transported away from the OMP to the HFS, where it may be dissipated by
the interchange term acting like a sink in that region. Hence, this term adds a strongly
non-local element to the balance of k⊥ and thus to the turbulent transport of particles and
heat. Furthermore, this increased parallel spreading of k⊥ also means that the resulting
turbulent transport is less ballooned than would have been the case had the interchange
source (on the LFS) been balanced by a local sink. More research, however, is needed to
develop a reliable model for this anomalous parallel flux.

It is not claimed in this article that this flow picture or the corresponding saturation
mechanism is generally valid in any tokamak operating regime. Nonetheless, the insights
provided by them and the role of the φ′J ′

‖ flux in enhancing the parallel spreading of
the turbulence are believed to be novel and may in general be considered in the overall
flow picture in tokamaks. Many other effects which were not yet taken into account may,
however, modify this dynamics.

6.3. Limitations of the k⊥ model
In the current stage of its development, the validity of the k⊥ model as presented by
Coosemans et al. (2022) and Dekeyser et al. (2022) is limited since it has mostly been
developed and tested for 2-D, interchange-dominated, sheath-connected, electrostatic SOL
cases. A number of terms which are expected to be important in the kE transport equation
(6.5) in different cases were neglected.

The first and third terms in (6.5) associated with the DW and RS energy transfer channel
(see § 4.4) have for example not yet been duly modelled, even though they are expected
to be of primary importance for many machine-relevant cases. The exact form of these
terms in the equation for kE in particular allows their further analysis in the context of
the development of an improved k⊥ model. From a preliminary analysis for a limited
number of cases in Coosemans (2022), it seems that the DW term can change significantly
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depending on the regime the turbulence is in and how exactly the competition with other
terms occurs. Much more analysis is thus required to model this term.

The RS term is expected to be of minor importance in the SOL because the flow shear
is limited by the electrostatic potential being tied to the sheath potential at the end of the
field lines. However, around the separatrix and in the core region, strong poloidal flows,
which are sheared in the radial direction, may develop, such that the mnV ′

C,rV
′′
E,θ ∂rṼE,θ

contribution in particular may become important. Primarily, this term is expected to break
up the turbulent eddies and as such act like a sink of k⊥ (in line with the inverse energy
cascade Yakhot 2004; Alexakis & Doering 2006; Fundamenski 2010). However, when
the turbulence is sufficiently damped and when the flow shear is sufficiently strong, the
KH instability may come into play. This secondary instability might then lead the RS
term to act like a source of k⊥ (Rogers & Dorland 2005; Myra et al. 2016; Giacomin &
Ricci 2020). Furthermore, as indicated in (6.3), strong flow shear could also influence
the diffusion relation itself. Hence, flow shear is expected to lead to both a reduction
of kE and a reduction of the transport coefficients at the same kE. In addition, since both
effects depend on the flow shear, a model for ∂rṼE,θ itself is required. While the mean-field
E × B velocity can be calculated from the mean-field charge balance equation (3.12) for
the electrostatic potential, the closure terms in this equation need further attention.

Furthermore, the effects of perpendicular turbulent transport of kE might also require
further attention. In the TOKAM2D cases studied earlier, its contribution to the balance
of k⊥ was found to be small. However, this may not be the case in general (Ghendrih
et al. 2007). In regions where the perpendicular gradients of k⊥ are steeper, more radial
transport of it would likewise be expected (Singh & Diamond 2020). Such strong gradients
are expected around the separatrix due to strong flow shear, and perhaps also in the divertor
at the boundary between the private flux region and the SOL.

The phenomena included in the last five terms in (6.5) have been subject to far less study
as far as the authors are aware. This makes it interesting to first evaluate these terms with
detailed reference data, from turbulence code simulations for example. This way, either it
could be found that they have rightfully not been given much consideration, or it might
open the door to valuable new insights. In a next step, the relevant terms could then be
modelled and incorporated in an extended k⊥ model.

The last three terms in (6.5) arise through (fluctuating) particle and momentum
source terms. These source terms are expected to be mainly caused by plasma–neutral
interactions. While these interactions have long been considered in mean-field transport
modelling (Reiter 1992; Rognlien et al. 1999; Wiesen 2006; Dekeyser 2014; Dekeyser et al.
2014; Bufferand et al. 2015; Wiesen et al. 2015; Bonnin et al. 2016; Simonini et al. 2018),
their study in the context of edge turbulence and their integration in turbulence codes has
only been picked up more recently (Marandet et al. 2013; Wersal & Ricci 2015; Thrysøea
et al. 2018; Fan et al. 2019; Bufferand et al. 2021; Zholobenko et al. 2021; Giacomin et al.
2022). While the recent results obtained show the neutrals to have an important influence
on the turbulence, it remains to be established if the source terms identified in (6.5) are
large (in certain regimes and regions), or whether their effect is more indirect.

Likewise, the literature has already found that including the contribution of the
diamagnetic drift to the polarisation current changes the dynamics of the turbulence
(Madsen et al. 2011; Bisai & Kaw 2013; Baudoin 2018). This contribution is taken into
account in most modern turbulence codes, although Coosemans (2022) showed that care
should be taken to not introduce unphysical terms when implementing this. However, this
effect has not yet been duly studied in the context of source terms for kE (fourth term
on the right-hand side of (6.5)). Again, further research should investigate if this term
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is large, or whether the influence of the inertia of the diamagnetic drift is through other
(indirect) mechanisms. For this, the diamagnetic and mixed kinetic energy equations (5.11)
and (5.16) might likewise be studied.

Finally, the Db/Dt term is commonly neglected in the polarisation current defined in
(2.11) which enters in the charge balance equation (2.20) and in the parallel ion momentum
equation (2.23). This is also the case in modern turbulence codes. As such, the energetic
coupling between the parallel and perpendicular kinetic energy and the fifth term on
the right-hand side of (6.5) is not taken into account in these codes. Being the only
direct transfer channel between parallel and perpendicular kinetic energy and in particular
coupling kE with the mean-field parallel flows which are known to be large, it might be
speculated to provide, however, a significant source of energy to the turbulence. Evaluating
the Db/Dt term in the kE equation (a posteriori) would allow to verify this assumption.
If it were found to be important, it could allow to improve the accuracy of the turbulence
codes. Later on, it could then be further studied and modelled for use in an extended k⊥
model as well.

Depending on which of the terms in the k⊥ equation are dominant in a certain case, i.e.
which regime the turbulence is in, it can be expected that the structure of the turbulence
is different. As a result, it is likely that the exact relation between the intensity of
the turbulence (e.g. k⊥) and the transport resulting from it (i.e. the turbulent transport
coefficients) will be different. Hence, it is possible that depending on the regime, different
model constants might be needed in (6.4) or even a different form of the transport relation
itself. The occurrence of different turbulence regimes and the threshold values for the
transition between them have been studied in the literature, see for example Scott (2005),
Mosetto et al. (2013), Giacomin & Ricci (2020) and Eich et al. (2021).

Furthermore, models that are not purely diffusive for the turbulent fluxes could be of
interest since the literature indicates that particle and heat transport in the plasma edge is in
fact driven by radially propagating structures such as avalanches and blob filaments. They
would rather induce intermittent convective/ballistic transport with a strong non-local
character (Politzer et al. 2002; Garcia et al. 2006; Naulin 2007; Krasheninnikov, D’Ippolito
& Myra 2008; Ghendrih et al. 2009; D’Ippolito, Myra & Zweben 2011). It might, however,
be expected that a well-chosen diffusion model can give a reasonable approximation of
the long time scale average particle flux caused by all the instantaneous filaments with
high and low density structures moving respectively outward and inward in a seemingly
random way. Note also that the models for the transport coefficients do not need to use
local quantities only. The transport of kE introduces a non-local effect in the mean-field
model for example. This transport allows turbulent kinetic energy created in one location
to increase turbulent transport in another.

Hence, it is expected that a basic scaling between the transport coefficients
and well-chosen quantifiers of the turbulence can be used to get an idea of the
characteristics of the transport. It has indeed been proven in earlier work (Coosemans
et al. 2020, 2021b, 2022) that such models can provide very accurate predictions for
particular regimes such as electrostatic interchange-dominated E × B turbulence in a
sheath-connected SOL.

7. Conclusion

Recently, models incorporating information about turbulent quantities have been
developed to self-consistently model the turbulent fluxes in mean-field transport codes.
While these efforts seem to be relatively successful for the investigated cases, a complete
theoretical set of basic equations to guide this model development had not yet been
published.

https://doi.org/10.1017/S0022377824000163 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000163


Transport equations and energy theorem for the plasma edge 31

This paper has addressed this issue by providing mean-field equations for the continuity
equation, thermal energy equations, parallel momentum equations and charge balance
equations through a rigorous averaging procedure applied to Braginskii-like equations
underlying the plasma models of mean-field edge codes. This provides an exact
interpretation in terms of fluctuations and averages of both the mean-field terms which are
included naturally in mean-field transport codes and turbulent fluxes which are typically
added in an ad hoc fashion. In addition, a number of further turbulent closure terms which
are not commonly incorporated are identified. While it is argued that the turbulent E × B
fluxes of heat and particles in particular are crucial closure terms to be modelled, it is
left for future research to investigate which other closure terms are important and require
modelling, and which ones can (remain to be) neglected. To this end, it is envisaged to
evaluate these terms using reference data from (fluid) turbulence codes.

Following the ansatz developed in earlier work (Bufferand et al. 2016; Baschetti et al.
2018a,b, 2019, 2021; Coosemans et al. 2020, 2021a,b, 2022; Coosemans 2022) that these
turbulent closure terms and the turbulent E × B fluxes especially can be modelled to a
satisfactory accuracy from the turbulent kinetic energy, energy equations are developed
for the plasma edge. An energy theorem has been developed in which the transfer channels
between perpendicular and parallel, mean-field and turbulent (ion) kinetic energy, thermal
energy of ions and electrons and mean-field and turbulent magnetic energy (in the parallel
magnetic vector potential) are identified. Transport terms in space for these different
energy forms are likewise derived. These equations are in line with Scott (2003), but
improve on the rigour of the averaging operators and retain a number of additional effects.

This analysis has taken another step forward by deriving equations for the kinetic energy
in the E × B velocity fluctuations specifically. That is, the perpendicular kinetic energy is
decomposed into contributions due to the E × B velocity, the ion diamagnetic velocity
and a mix between the previous two. This analysis shows that the commonly considered
interchange and DW transfer channels exchange energy with the E × B kinetic energy
specifically. A specific form of the RSs is also found to act on this energy specifically.
Next to these well-known effects, a number of other closure terms are found as well.
Earlier work (Coosemans et al. 2020, 2021b, 2022; Coosemans 2022) has found a term
transporting kE in the parallel direction by the effect of parallel current and potential
fluctuations to be a major player. For the other terms, further research will again have
to establish which ones are to be retained. It may be particularly enlightening to apply
the dominant balance analysis framework as presented by Callaham et al. (2021) to
automatically identify regions in space or time where certain subsets of terms dominate
the dynamics, and possibly to find scaling laws delimiting these regions.

While these theoretical derivations are interesting in their own right since they provide
insight in the sources, sinks and transport effects in plasma edge turbulence, the goal is
to develop a practical model for the average turbulent transport based on this physics. A
preliminary model incorporating a subset of this dynamics has already been presented by
Dekeyser et al. (2022). Most notably, it uses a generally valid relation for the interchange
term (Coosemans et al. 2021b, 2022) of kE, which automatically introduces a ballooning
of the turbulent transport coefficients. The ‘anomalous’ transport of kE through parallel
current fluctuations leads to spreading of the turbulence in the parallel direction and
removes the turbulence to the target plates in the SOL. The analytical set of mean-field
equations presented here will clearly guide the further development of this k⊥ transport
model. In this way, this work represents a crucial stepping stone for the development of
self-consistent turbulent transport models for mean-field simulations.
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Appendix A. Enstrophy equations
A.1. Vorticity equations

The charge balance equation (2.20) is commonly rewritten as a transport equation for
a quantity that approximates the parallel component of the vorticity, which we will call
the pseudo-vorticity W. This is usually the form of the charge balance equation that is
solved in plasma edge turbulence codes. In this paper, we follow the definition of the
pseudo-vorticity used in the TOKAM3X code (Tamain et al. 2016)

W = WE + W∗ � ∇ · ∇⊥φ

B2
+ ∇ · ∇⊥pi

enB2
� ∇ · UE

B
+ ∇ · U∗,i

B
. (A1)

In this equation, we at once defined the E × B and the (ion) diamagnetic pseudo-vorticities
WE and W∗. Through algebraic manipulation, the original charge balance equation can then
be written as (Coosemans 2022)

m
∂nW
∂t

+ ∇ · mnWV C = ∇ · J ‖ + ∇ · J ∗ + ∇ · J p,Π + SW,cor, (A2)

SW,cor � e∇n · V p,0 − mn∇V C : ∇U0

B
− mnW

D ln B
Dt

− mnU0

B
· ∇

(
D ln B

Dt
+ Sni

n

)
− mn∇ ·

(
Db
Dt

× V 0

B

)
. (A3)

An equation for the E × B-only pseudo-vorticity can likewise be obtained as (Coosemans
2022)

m
∂nWE

∂t
+ ∇ · mnWEV C

= ∇ · J ‖ + ∇ · J ∗ + ∇ · J p,Π + ∇ · J p,∗ + ∇ · J p,‖ + SWE,cor, (A4)

SWE,cor � e∇n · V p,E − mn∇V C : ∇UE

B
− mnWE

D ln B
Dt

− mnUE

B
· ∇

(
D ln B

Dt
+ Sni

n

)
− mn∇ ·

(
Db
Dt

× V E

B

)
. (A5)
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A.2. Total enstrophy equations
In this work, we define the total, mean-field and turbulent (pseudo-)enstrophies based on
pseudo-vorticity that we just introduced

ζtot � mW2

2
, ζmean � mW̃2

2
, n̄ζturb � mnW ′′2

2
. (A6a–c)

To analytically derive transport equations for the enstrophy, we follow a procedure
similar to the work Tran et al. (2019), but allow independent density fluctuations, and
we split the resulting equation into mean flow and turbulent contributions. An equation for
the total enstrophy is readily be obtained by multiplying (pseudo-)vorticity equation (A2)
with the (pseudo-)vorticity W

∂nζtot

∂t
+ ∇ · nζtotV C = W∇ · J ‖ + W∇ · J ∗ + W∇ · J p,Π + WSW,cor − ζtotSni . (A7)

A mean-field enstrophy equation is then obtained by taking the product of W̃ and the
average of the vorticity equation (A2)

∂ n̄ζmean

∂t
+ ∇ · (n̄ζmeanṼ C + mnW ′′V ′′

CW̃)

= W̃∇ · J̄ ‖ + W̃∇ · J̄ ∗ + W̃∇ · J̄ p,Π + mnW ′′V ′′
C · ∇W̃ + W̃S̄W,cor − ζmeanS̄ni . (A8)

The difference between the average of (A7) and (A8) then allows us to write the turbulent
enstrophy equation as

∂ n̄ζturb

∂t
+ ∇ ·

(
n̄ζturbṼ C + mnW ′′2V ′′

C

2

)
= W ′′∇ · J ‖ + W ′′∇ · J ∗

+ W ′′∇ · J p,Π − mnW ′′V ′′
C · ∇W̃ + W ′′SW,cor − W ′′2Sni

2
− W̃W ′′Sni . (A9)

A.3. The E × B-only enstrophy equations
In complete analogy to the previous section, we define the E × B-only (pseudo-)enstrophies
as

ζtot,E � mW2
E

2
, ζmean,E �

˜mWE
2

2
, n̄ζturb,E � mnW ′′2

E

2
, (A10a–c)

and derive equations for them based on (A2)

∂nζtot,E

∂t
+ ∇ · nζtot,EV C = WE∇ · J ‖ + WE∇ · J ∗ + WE∇ · J p,Π

+ WE∇ · J p,∗ + WE∇ · J p,‖ + WESWE,cor − ζtot,ESni, (A11)

∂ n̄ζmean,E

∂t
+ ∇ · (n̄ζmean,EṼ C + mnW ′′

EV ′′
CW̃E)

= W̃E∇ · J̄ ‖ + W̃E∇ · J̄ ∗ + W̃E∇ · J̄ p,Π + W̃E∇ · J̄ p,∗ + W̃E∇ · J̄ p,‖

+ nW ′′
EV ′′

C · ∇W̃E + W̃ES̄WE,cor − ζmean,ES̄ni, (A12)
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∂ n̄ζturb,E

∂t
+ ∇ ·

(
n̄ζturb,EṼ C + mnW ′′2

E V ′′
C

2

)
= W ′′

E∇ · J ‖ + W ′′
E∇ · J ∗ + W ′′

E∇ · J p,Π + W ′′
E∇ · J p,∗ + W ′′

E∇ · J p,‖

− nW ′′
EV ′′

C · ∇W̃E + W ′′
ESWE,cor − W ′′2

E Sni

2
− W̃EW ′′

ESni . (A13)
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