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Chinese herbal medicine (CHM), which includes herbal slices and proprietary products, is widely used in China. Shenqi Dihuang
(SQDH) is a traditional Chinese medicine (TCM) formula with ingredients that afect tumor growth. Despite recent advances in
prognosis, patients with renal cell carcinoma (RCC) cannot currently receive curative treatment. Te present study aimed to
explore the potential target genes closely associated with SQDH.Te gene expression data for SQDH and RCCwere obtained from
the TCMSP and TCGA databases. Te SQDH-based prognostic prediction model reveals a strong correlation between RCC and
SQDH. In addition, the immune cell infltration analysis indicated that SQDH might be associated with the immune response of
RCC patients. Based on this, we successfully built the prognostic prediction model using SQDH-related genes. Te results
demonstrated that CCND1 and NR3C2 are closely associated with the prognosis of RCC patients. Finally, the pathways en-
richment analysis revealed that response to oxidative stress, cyclin binding, programmed cell death, and immune response are the
most enriched pathways in CCND1. Furthermore, transcription regulator activity, regulation of cell population proliferation, and
cyclin binding are closely associated with the NR3C2.

1. Introduction

Renal cell carcinoma (RCC) is the second most lethal tumor
of the urinary system’s malignant tumors [1]. Clear-cell renal
cell carcinoma (ccRCC), papillary renal cell carcinoma
(pRCC), and chromophobe renal cell carcinoma (chRCC)
are the most common subtypes of RCC [2]. Te most
common type of RCC in the United States is ccRCC, which
accounted for 85% of all cases in 2019 [3]. In addition,
approximately 74,000 new cases of ccRCCwere diagnosed in
2019. Currently, two major surgical approaches for treating
RCC are laparoscopic partial nephrectomy and radical ne-
phrectomy [4]. However, approximately, 30% of patients
with ccRCC developed distant metastases that could not be
removed surgically. Because ccRCC patients are resistant to
radiotherapy, hormones, and cytotoxic treatments [5],

several targeted therapies have been approved for metastatic
ccRCC, including sunitinib, sorafenib, lenvatinib, and
nivolumab [6]. However, the efcacy of these drugs remains
limited. Although an increasing number of PD-1/PD-L1
blocking immunotherapy drugs have been approved for the
treatment of ccRCC, not all patients respond to them [7].
Terefore, it is clinically signifcant to determine which
patients will beneft from immunotherapy.

Despite recent advances in prognosis over the past decade,
patients with metastatic RCC cannot currently receive curative
treatment. Cytokine radiation and hormonal therapies have all
been studied in combination to reduce relapse rates [8]. Several
antiangiogenic medicines, including VEGF pathway inhibitors
sunitinib and sorafenib, efectively treat patients with meta-
static RCC [9]. Adjuvant sunitinib or sorafenib was superior to
placebo in a phase three trial with locally advanced RCC [10].
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In recent years, many studies have demonstrated the
efcacy of traditional Chinese medicine (TCM) in treating
cancer. TCM is widely accepted in China as an efective
complementary and alternative therapy for cancer patients
[11]. Chinese medicine has been used throughout Asia since
ancient times. Te most common application category of
TCM is Chinese herbal medicine (CHM), which includes
herbal slices and proprietary products [12]. Because CHM is
efective and has fewer side efects, it is used as an alternative
therapy by many cancer patients [13]. Shenqi Dihuang
(SQDH) is a TCM formula containing ingredients that
inhibit tumor growth [14]. Ginseng, Astragalus mem-
branaceus, rehmannia, yam, tuckahoe, paeonol, and dog-
wood are among the ingredients in SQDH.Tere is evidence
that the traditional Chinese herbal formula has fewer side
efects and is more cost-efective than other treatments [15].
Previous studies demonstrated that their efects are medi-
ated by immune cell activation and reprogramming
metabolic-related infammatory responses [16].

With the development of bioinformatics analysis, many
researchers have started exploring the potential prognostic
factors for multiple tumors. Te present study aimed to
investigate the potential correlation between SQDH and
RCC. In addition, immune infltration analysis was used to
reveal the relationship between the immune response of
RCC patients and SQDH. Furthermore, the prognostic
prediction model was developed to investigate the genes
closely associated with the prognosis of RCC patients. Fi-
nally, the pathway enrichment analysis was performed to
explore the potential pathways closely linked to the SQDH.
Our study aims to investigate the role of SQDH in RCC
immunotherapy.

2. Methods

2.1. Datasets Downloaded. Traditional Chinese Medicine
System Pharmacology Database and Analysis Platform
(TCMSP) (http://tcmspw.com/tcmsp.php) was used to ob-
tain SQDH composition and molecular target data. Fur-
thermore, the expression data and clinical characteristics of
RCC patients were downloaded from Te Cancer Genome
Atlas (TCGA) database.

2.2. Diferentially Expressed Analysis. Te Cancer Genome
Atlas (TCGA) database (https://portal.gdc.com) was used to
obtain RNAseq data and associated clinical information.Te
Limma R software package was used to investigate mRNA
expression diferences. A threshold diferential expression
screen for mRNA was defned as “P< 0.05 and log 2 (fold
change)> 2 or log 2 (fold change)<−2.”

2.3. Functional Analysis Based on Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrich-
ment Pathways. Te data were analyzed using feature en-
richment to confrm the possible functions of potential
targets. Using GO, it is a common practice to annotate genes
with functions, particularly molecular function (MF), bi-
ological pathway (BP), and cellular component (CC). An

enrichment analysis based on KEGG can be used to in-
vestigate gene function and related high-level genomic in-
formation. To better understand the oncogenic role of target
genes, ClusterProfler in R was used to analyze the GO
functions and KEGG pathway.

2.4. Protein-Protein Network (PPI) Analysis Based on SQDH-
Related Genes. Te PPI network was then constructed to
investigate the potential correlation between the proteins
encoded by key genes. STRING was used to perform an
interactive analysis of a gene PPI network. Furthermore,
Cytoscape 3.7.2 was used to analyze and visualize PPI
networks when interactions with composite ratings
exceeded 0.9.

2.5. Immune Cell Infltration. To investigate the correlation
between the built MRGS and immune cell infltration, we
estimated the infltration levels of 22 immune cell subtypes
in the RCC cohort using CIBERSORT. Enrichment scores
calculated by ssGSEA of R’s Gene Set Variation Analysis
package were used to quantify immune cell infltration. Tis
analysis revealed information about immune infltration,
such as immune cell species, immune functions, and
immune-related pathways.

2.6. Construction of the Prognostic PredictionModel Based on
the SQDH Target Genes. Te prognostic prediction model
was built using univariate and multivariate COX regression
analyses. In addition, the survival analysis was used to
compare the overall survival (OS) of RCC patients in low-
and high-risk groups. Furthermore, an area under the re-
ceiver curve (AUC) was determined using the receiver
operating characteristic curve (ROC).

2.7. Statistical Analysis. Statistical analysis was performed
using R software. Te diference between groups was sta-
tistically signifcant, with a P value <0.05.

3. Results

3.1. Te Potential SQDH Target Genes Pathways and the
Protein-Protein Network Based on SQDH-Related Proteins.
Based on the ingredients in SQDH, Codonopsis pilosula,
Poria cocos, and Astragalus membranaceus were considered
the most important ingredients. Subsequently, the TCMSP
database was used to obtain the target genes of Codonopsis
pilosula, Poria cocos, and Astragalus membranaceus. A total
of 108 genes were identifed as SQDH target genes. Te GO
and KEGG enrichment analyses were performed to in-
vestigate potential pathways closely associated with SQDH.
Te results demonstrated that most GO BP pathways are
cellular responses to chemical stress, ketone, a steroid
hormone, oxidative stress, and oxygen levels (Figure 1(a)).
Regarding CC, membrane raft, postsynaptic membrane,
membrane microdomain, synaptic membrane, and tran-
scription regulator complex are closely associated with
SQDH-related genes (Figure 1(b)). In addition, the GO MF
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enrichment analysis revealed that the most enriched path-
ways involved in SQDH-related genes are ligand-activated
transcription factor activity, nuclear receptor activity, DNA-
binding transcription factor binding, and ubiquitin-like
protein ligase binding (Figure 1(c)). Te results of the PPI
network revealed that 81 SQDH-related genes were closely
related to one another. Furthermore, some genes, known as
hub genes, had more than 20 interactive counts with other
genes, including ESR1, RELA, FOS, AR, CCND1, NCOA1,
MAPK8, EGFR, HIF1A, NR3C1, MDM2, and PRKCA
(Figure 1(d)).

3.2. Exploration of the Diferentially Expressed Genes between
RCC Patients and Normal People. A total of 532 RCC pa-
tients and 72 normal people were included in the TCGA
cohort. Te fold change was set into 2 to explore the genes
closely associated with RCC. Te diferentially expressed
analysis revealed 695 diferentially expressed genes, in-
cluding 278 upregulated and 417 downregulated genes
(Figures 2(a)–2(b)). Te pathways enrichment analysis
demonstrated that some immune-related pathways, such as
regulation of T cell activation, regulation of T cell pro-
liferation, and T1 and T2 cell diferentiation, are closely
linked to the diferentially expressed genes. In addition, the
most enriched pathways are renal tubule development, renal
system development, kidney morphogenesis, and kidney
epithelium development. Te target genes and active in-
gredients of Codonopsis pilosula, Astragalus membranaceus,
and Poria cocos were then obtained from the TCMSP
dataset. Finally, 108 target genes associated with Codonopsis
pilosula, Astragalus membranaceus, and Poria cocos were
downloaded (Figure 1(c)). Te Venn diagram demonstrated
that ten genes, including HK2, VEGFA, IGFBP3, CAV1,
ALOX5, CCND1, DIO1, NR3C2, ADH1B and PTGER3, are
closely related to the diferentially expressed genes in the
RCC cohort and SQDH targets genes (Figure 2(d)).

3.3. Construction of the SQDH-Related Prognostic Prediction
Model. Based on the previous analysis, ten genes were
thought to be closely related to the prognosis of RCC patients.
Te expression matrix of RCC patients was obtained by
combining the expression data and the clinical information of
RCC patients. Subsequently, the univariate COX regression
analysis reveals that ALOX5, CCND1, NR3C2, and PTGER3
are strongly linked to the prognosis of RCC patients
(Figure 3(a)). Te multivariate COX regression analysis
revealed that the prognostic prediction model was built using
CCND1 and NR3C2. Te risk score is: risk score �

−0.0197007190065525 ∗CCND1+−0.167437463401867 ∗N
R3C2. Ten, we performed a survival analysis based on the
expression level of ALOX5, CCND1, NR3C2, and PTGER3.
Te results demonstrated that the high-expression levels of
CCND1, NR3C2, and PTGER3 are associated with a better
OS in RCC patients. However, the high ALOX5 expression is
associated with poorer OS in RCC patients (Figures 3(b)–
3(e)). In addition, the survival analysis based on the risk score
revealed that RCC patients in the high-risk group have
a poorer OS (Figure 3(f)). Finally, we performed the ROC

curve.Te results demonstrated that the 1-year, 3-year, and 5-
year AUC are >0.6, indicating that the model has a good
predictive value (Figure 3(g)). Furthermore, the clinical-
related ROC curve demonstrated that the prognostic pre-
diction model and clinical characteristics could be used as
predictive factors (Figure 3(h)).

3.4. Te SQDH-Based Prognostic Prediction Model Is Closely
Associated with Many Immune Cells. Te immune cell in-
fltration analysis was then performed using the SQDH-
related prognostic prediction model. Some immune cells
were closely associated with the risk score, including plasma
cells, CD8 T cells, CD4 memory resting T cells, follicular
helper T cell, regulatory T cell, monocyte, and M0, M1, and
M2 macrophages (Figures 4(a) and 4(b)). In addition, the
distribution of some immune cells is linked to the OS of RCC
patients. Te results demonstrated that the RCC tissues with
high resting dendritic cells, resting mast cells, and mono-
cytes have a better OS. However, the higher number of T
regulatory cells and activated memory CD4 T cells is as-
sociated with worse OS (Figures 4(c)–4(g)).

3.5. Some Immune-Related Functions Are Closely Associated
with the SQDH-Based Prognostic PredictionModel. We then
compared immune-related function between low- and high-
risk groups using the risk score for RCC patients and immune
cell infltration analysis. Some immune-related functions,
such as aDCs, immune checkpoint, human leukocyte antigen
(HLA), type I and type II IFN responses, Tcell co-stimulation
and co-inhibition factors, are found to be signifcantly dif-
ferent (Figure 5(a)). In addition, some immune-related
functions are linked to the OS of RCC patients. RCC pa-
tients with higher HLA have a better OS. However, the higher
levels of infammation-promoting factors and T cell co-
inhibition and co-stimulation factors are correlated with
a poorer OS in RCC patients (Figures 5(b)–5(e)).

3.6. CCND1 and NR3C2 Were Closely Associated with Many
Enriched Pathways Involved in RCC Patients. CCND1 and
NR3C2 build the SQDH-based prognostic prediction model.
Subsequently, we aimed to explore the potential pathways
closely linked to CCND1 and NR3C2. Te most enriched
pathways for CCND1 are a response to oxidative stress,
central nervous system development, carbohydrate meta-
bolic process, regulation of cell population proliferation,
cyclin binding, programmed cell death, and immune re-
sponse (Figure 6(a)). In addition, transporter activity, beta-
catenin binding, transcription regulator activity, identical
protein binding, regulation of cell population proliferation,
and cyclin binding are all closely associated with the NR3C2
expression (Figure 6(b)).

4. Discussion

RCC is the sixth most common malignancy in men and the
tenthmost common in women, accounting for 5% and 3% of
all cancers, respectively [17]. Te incidence of RCC has
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increased over time. Although surgery remains the primary
treatment option for patients with locally or locally advanced
disease, a signifcant proportion of patients will eventually
experience disease recurrence [18]. Chemo- and radio-
therapy are inefective in treating RCC. Immunotherapy has
recently been implemented due to a better understanding of
RCC biology [19]. Te antitumor activity of sunitinib can be
attributed to its multichannel nature as a tyrosine kinase
inhibitor [20]. A phase II study conducted independently in
two separate groups revealed that sunitinib signifcantly
delayed tumor progression and had a high treatment re-
sponse rate. Te ORR in both trials was 42%, with a median
time to disease progression (TTP) of 8.7months [21].

Furthermore, sunitinib was more efective in phase III
clinical study of patients with metastatic RCC than IFN-α
[22]. It is also likely to cause serious side efects such as
nausea, vomiting, diarrhea, rash, hand-foot syndrome, and
others that will signifcantly impair the patient’s ability to
adhere to their treatment and live a good life [23]. TCM
treatment is also used to reduce the side efects of targeted

drug therapy and promote recovery of patients’ body
function in advanced cancer patients [24]. In addition,
analysis of the online dataset has been widely applied in the
various of human diseases [25–27].

SQDH consists of ginseng, Astragalus membranaceus,
rehmannia, yam, tuckahoe, paeonol, and dogwood. Te
SQDH boosts the body’s humoral and cellular immunity,
accelerates tumor cell apoptosis, inhibits angiogenesis,
regulates cytokines, and slows metastasis [28]. Poly-
saccharides have immune-regulatory and antitumor prop-
erties in Codonopsis pilosula [29]. A variety of
polysaccharides, saponins, and other compounds found in
Astragalus membranaceus can regulate tumor immunity,
infuence tumor cell autophagy, and inhibit tumor angio-
genesis [30]. Te present study aimed to explore the asso-
ciation between RCC and SQDH using a network
pharmacology approach.

Te main ingredients and target genes of SQDH were
obtained from the TCMSP database, and relative pathways
closely associated with the development and progression of

(a) (b)

(c) (d)

Figure 1: (a) GO BP enrichment analysis based on the SQDH-related genes. (b) GO CC enrichment analysis based on the SQDH-related
genes. (c) GO MF enrichment analysis based on the SQDH-related genes. (d) PPI network based on the SQDH-related genes.
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Figure 2: Continued.
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ccRCC were identifed. Te PPI network based on the
SQDH-related genes also revealed that these genes are
highly correlated. In addition, the TCGA database was
searched for RCC diferentially expressed genes. Te Venn
diagram was then used to investigate the genes linked to
RCC and SQDH. Te SQDH-based prognostic prediction
model reveals that two SQDH target genes (CCND1 and
NR3C2) were closely associated with RCC patient prog-
nosis. Te survival analysis and the ROC curve demon-
strated that the model has an excellent predictive value for
RCC patients. Finally, we investigate the role of the SQDH-

based model in the immune response of RCC patients. Te
fndings revealed that certain immune checkpoints, im-
mune cells, and functions are highly correlated with the risk
model. Our results indicated that CD4+ T cells and mac-
rophages are closely linked to the SQDH-based prognostic
prediction model. In addition, the HLA and immune
checkpoint are also closely associated with the model,
implying that SQDH may play an important role in the
immunotherapy of RCC patients. Further investigation
revealed that CCND1 and NR3C2 are the key SQDH-target
genes closely related to the RCC.
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Figure 2: (a) Te diferential expression analysis based on the RCC cohort in the TCGA database. (b) Te heat map demonstrated the
diferentially expressed genes between RCC and normal tissue. (c)Te GO and KEGG enrichment analysis based on diferentially expressed
genes. (d) Te Venn diagram displayed the genes that are closely associated with RCC and SQDH.
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Figure 3: (a) Te univariate COX regression analysis based on the OS of RCC patients. (b) Survival analysis between low- and high-
expression of ALOX5 groups. (c) Te survival analysis between low- and high-expression of CCND1 groups. (d) Te survival analysis
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survival analysis between low- and high-risk groups. (g) Te clinical-related ROC curve demonstrated the predictive value of clinical
characteristics and risk score. (h) Te time-dependent ROC curve demonstrated the predictive value of prognostic prediction model.
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In conclusion, we identifed the close relationship between
SQDH and RCC. In addition, the SQDH-based prognostic
predictionmodel reveals that SQDHmay infuence the immune
response of RCC patients. In addition, two key genes (CCND1

and NR3C2) may play an important role in the immunotherapy
process for SQDH and RCC patients. By further investigating its
mechanism, it may be possible to develop a basis for combining
TCM and advanced renal cancer.
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Figure 4: (a)–(b) Te diference in immune cells between low- and high-risk groups. (c) Survival analysis based on the resting T cells
expression level. (d) Survival analysis based on the resting mast cells expression level. (e) Survival analysis based on the expression
monocytes level. (f ) Survival analysis based on the regulatory T cells expression level. (g) Survival analysis based on the activated T cells
expression level.
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Figure 5: Continued.
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Figure 5: (a) Te correlation between SQDH-based prognostic prediction model of immune-related functions. (b) Te survival analysis
between low- and high-HLA groups. (c) Te survival analysis between low- and high-infammation-promoting groups. (d) Te survival
analysis between low- and high-co-inhibition T cell groups. (e) Te survival analysis between low- and high-co-stimulation T cell groups.
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