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Abstract
Theoretical units of interest often do not alignwith the spatial units at which data are available. This problem

is pervasive in political science, particularly in subnational empirical research that requires integrating data

across incompatible geographic units (e.g., administrative areas, electoral constituencies, and grid cells).

Overcoming this challenge requires researchers not only to align the scale of empirical and theoretical units,

but also to understand the consequences of this change of support for measurement error and statistical

inference. We show how the accuracy of transformed values and the estimation of regression coefficients

depend on the degree of nesting (i.e., whether units fall completely and neatly inside each other) and on the

relative scale of source and destination units (i.e., aggregation, disaggregation, and hybrid). We introduce

simple, nonparametricmeasures of relative nesting and scale, as ex ante indicators of spatial transformation
complexity and error susceptibility. Using election data and Monte Carlo simulations, we show that these

measures are strongly predictive of transformation quality across multiple change-of-support methods. We

propose several validation procedures and provide open-source software to make transformation options

more accessible, customizable, and intuitive.

Keywords: GIS, geospatial, geostatistics, change-of-support, nesting, scale, aggregation

Misaligned units of analysis present challenges for users of geospatial data. Researchers studying

legislative elections in the United States might observe data for variables at the electoral district

level (e.g., campaign strategies) and at the county level (e.g., crime). To understand how, for

example, local crime influences campaign strategies, one must integrate two datasets, using

measured values at the county level to estimate levels of crime in each legislative district. Statis-

tically, this represents a change-of-support (CoS) problem: making inferences about a variable at

one geographic support (destination units) using measurements from a different support (source
units). Changes of support entail information loss, potentially leading to consequential measure-
ment error and biased estimation. Substantively, this is a general problem of mismatch between

needing data at theoretically relevant levels and the reality that datamay be unavailable at those

levels.

How prevalent are such problems in social science? They are quite common, routinely appear-

ing in studies of subnational (within-country) variation, where data are accessible at disparate

levels of analysis, reflecting varying geographic precision, or different definitions of the same

units across data sources. Units and scales (e.g., administrative areas, postal codes, and grids)

do not always correspond to theoretical quantities of interest. Nor do they always relate in

straightforward ways. While some units perfectly nest (e.g., U.S. counties and states), others

overlap only partially (e.g., counties and legislative districts).1

If testing the implications of theory requires data at one geographic support (e.g., electoral

constituency), but theoretically relevant data exist at another support (e.g., administrative unit),

1 While CoS problems can include data transformations involving points, lines, and continuous surfaces (rasters), we limit
our scope to areal units (polygons).
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researchers face consequential choices: conduct tests not commensurate with spatial levels at

which theory is specified, or convert data to appropriate units. Converting data can be a messy

step, whichmany researchersmake implicitly or explicitly at some point in the datamanagement

process. We reviewed subnational empirical research in top political science journals since 2010,

and found that 20% of articles, across all major subfields, change the geographic support of

key variables.2 For example, Benmelech, Berrebi and Klor (2015) explore relationships between

house demolitions and suicide attacks in Israel by aggregating data on places of residence to

the district level. Branton et al. (2015) examine impacts of protests on public opinion regarding
immigration policy, combining data across multiple geographic units with county-level data on

survey responses and protests. Rozenas and Zhukov (2019) study effects of famine on elections,

protests, and violence in Ukraine, transforming several historical datasets to 1933-era Soviet

districts.

It is tempting to treat changes of support as routine, similar to merging two tables by com-

mon ID. But integratingmisaligned geospatial data is error-prone (Gotway and Young 2002, 2007;

Matheron 1989), and the literature currently lacks common standards for evaluation. Much of

the canonical geostatistical literature relates to geology and environmental science (e.g., Cressie

1996). Whilemultiple transformation options exist (see Comber and Zeng 2019), there is no “silver

bullet.” Despite efforts to address CoS problems in political science (Darmofal and Eddy 2020;

Donnay and Linke 2016; Goplerud 2016; Lee and Rogers 2019), economics (Eckert et al. 2020), and
public health (Zhu, Waller, and Ma 2013), there are no prevailing best practices.

Wemake three contributions. First is a framework for diagnosing and addressing CoSproblems

involving discrete geographic areas, focusing on the relative degree of nesting (i.e., whether one

set of units falls completely and neatly inside the other), and the relative scale of source and des-

tination units (i.e., aggregation, disaggregation, and hybrid). We propose simple, nonparametric

measures of nesting and scale that can help assess ex ante the complexity of transformations.
Second, we show, using examples with U.S. and Swedish electoral data, that relative nesting

and scale are consequential for the performance of common spatial transformation methods,

including overlays, interpolation, and kriging. Election data present challenges theoretically and

empirically; they also offer opportunities to study CoS problems. Electoral units—districts, con-

stituencies, precincts—can be oddly shaped, and shapes can change endogenously, frustrating

attempts to measure and explain how one community’s voting behavior evolves over time. We

transform electoral data across spatial units and validate the results with “ground truth” data

from precincts, confirming the intuition that measurement error and biased estimation of regres-

sion coefficients are most severe when disaggregating non-nested units, and least severe when

aggregating nested units. We generalize the problem inMonte Carlo analyses with random spatial

units. While much of the literature has highlighted the risks of over-aggregation, we show that

disaggregation can also create severe threats to inference (Cook and Weidmann 2022).

Third is practical advice, recommending (a) the reporting of nesting and scale metrics for

all spatial transformations, (b) checking the face-validity of transformations where possible,

and (c) performing sensitivity analyses with alternative transformation methods, particularly if

“ground truth” data are not available. Additionally, we introduce open-source software (SUNGEO

Rpackage) toequip researcherswith routinesanddocumentation to implement these techniques.

No one-size-fits-all solution exists. Our goals are to make spatial transformation options more

intuitive, and reveal the conditions under which certain options may be preferable.

2 See Section A1 of the Supplementary Material for a full enumeration of articles and journals included in this review.
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1 Problem Setup
The geographic support of a variable is the area, shape, size, and orientation of its spatial

measurement. CoS problems emergewhenmaking statistical inferences about spatial variables at
one support using data from another support. One general case occurs when no data for relevant

variables are available for desired spatial units. For example, theory may be specified at the level

of one unit (e.g., counties), but available data are either at smaller levels (e.g., neighborhoods), at

larger levels (e.g., states) or otherwise incompatible (e.g., grid cells, legislative districts, and police

precincts). The second case arises when multiple data sources define the same units differently.

Data on geographic areas vary in precision and placement of boundaries, with few universally

accepted standards for assigning and classifying units (e.g., handling disputed territories). A third

case involves variation in unit geometries over time. Historical changes in the number of units

(e.g., splits, consolidations, and reapportionment), their boundaries (e.g., annexation, partition,

and redistricting), and their names can all occur.

Changes of support involve potentially complex and interdependent choices, affecting data

reliability and substantive inferences. Yet a CoS is often unavoidable, since the alternative—using

data from theoretically inappropriate units—is itself feasible only if all other data are available for

those units.

CoS problems relate to others: ecological inference (EI)—deducing lower-level variation from

aggregate data (Robinson 1950)—themodifiable areal unit problem (MAUP)—that statistical infer-

ences depend on the geographical regions at which data are observed (Openshaw and Taylor

1979)—and Simpson’s paradox—a more general version of MAUP, where data can be grouped

in alternative ways affecting inference. In each case, inferential problems arise primarily due

to segmenting of data into different units (e.g., in geographic terms, “scale effect” in MAUP, or

“aggregation bias” in EI), or due to differences in unit shape and the distribution of confounding

variables (e.g., “zoning effect” in MAUP, or “specification bias” in EI) (Morgenstern 1982).

Geostatisticians view EI and MAUP as special cases of CoS problems (Gotway and Young

2002). Inpolitical science, cross-level inferenceproblemshavebedeviled research intomicro-level

attitudes andbehavior. Because information is inevitably lost in aggregation, using aggregate data

to infer information about lower-level phenomena likely introduces error (see survey in Cho and

Manski 2008). We focus on more general transformations from one aggregate unit to another,

involving not only disaggregation (as in EI), but also possible combinations of disaggregation

and aggregation across non-nested units. As with EI and MAUP, no general solution to CoS

problems exists. But we can identify conditions under which these problems becomemore or less

severe.

1.1 A General Framework for Changes of Support
Destination unit here refers to the desired spatial unit given one’s theory, and source unit refers
to the unit at which data are available. Consider two dimensions. The first, relative nesting,
captures whether source units fall completely and neatly inside destination units. If perfectly

nested, CoS problems become computationally simpler, and can sometimes be implemented

without geospatial transformations (e.g., aggregating tables by common ID, like postal code). If

units are not nested, CoS requires splitting polygons across multiple features, and reallocating

or interpolating values. Nesting is a geometric concept, not a political one: even potentially

nested units (e.g., counties within states) may appear non-nested when rendered as geospa-

tial data features. Such discrepancies may be genuine (e.g., historical boundary changes), or

driven by measurement error (e.g., simplified vs. detailed boundaries), or differences across

sources.

The second dimension, relative scale, adds additional, useful information. It captures whether
source units are generally smaller or larger than destination units. If smaller, transformed values
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Figure 1. Spatial data layers (U.S. state of Georgia).

will represent aggregation of measurements taken at source units. If larger, transformed values

will entail disaggregation—a more difficult process, posing nontrivial EI challenges (Anselin and

TamCho 2002; King 1997). Many practical applications represent hybrid scenarios, where units are

relatively smaller, larger, or of similar size, depending on location. For instance, U.S. congressional

districts in large cities are smaller than counties, but in rural areas they are larger than counties.

To illustrate, consider relative nesting and scale among three sets of polygons in Figure 1:

(a) electoral precincts in the U.S. state of Georgia in 2014, (b) Georgia’s electoral constituencies

(congressional districts) in 2014, and (c) regular hexagonal grid cells (half-degree in diameter)

covering the state. Georgia is an interesting case study due to its diverse voting population and

judicial history surrounding elections. Legal challenges and court rulings require that the state’s

data on electoral boundaries be accurate and publicly available at granular resolution (Bullock III

2018).

Precincts report to constituencies during the administration of elections, so units in Figure 1a

should be fully nested within and smaller than those in Figure 1b. The intersection in Figure 1d

confirms that every precinct falls inside a larger constituency, and—except for small border

misalignments on the Atlantic coast—the transformation does not split precincts into multiple

parts. If constituency IDs are available for precincts, a change of support from (a) to (b) could be

reduced to calculating group sums, a straightforward procedure.

The hexagonal grid in (c) presents more difficulty. The grid cells were drawn independently

of the other two layers, and are not nested. A transformation from (b) to (c) requires splitting

constituencies acrossmultiple grid cells, and vice versa. Theoverlay in Figure 1e suggests that cells

are smaller thanmost, but not all, constituencies (e.g., Atlantametro area). Changes of support to

and from (c) therefore require complex spatial operations, accounting for differences in scale and
misalignment of boundaries.

While visual assessments of nesting and scale can be informative, they introduce subjectivity

and are often infeasible. Small geometric differences are difficult to detect visually, and partial

degrees of nesting are hard to characterize consistently. Visual inspections are also slow and not

scalable for batch processing, which requires automated subroutines.

We thus propose two nonparametric measures of relative nesting and scale. Let GS be a set

of source polygons, indexed i = 1, . . . ,NS , and let GD be a set of destination polygons, indexed

j =1, . . . ,ND . LetGSXD be the intersectionof thesepolygons, indexed i X j =1, . . . ,NSXD :NSXD ě
max(NS ,ND ). Let ai be the area of source polygon i, let aj be the area of destination polygon j, and
let aiXj be the area of i X j : aiXj ďmin(ai , aj ).3 LetMSXD be an NSXD ˆ3matrix of indices map-

ping each intersection i X j to its parent polygons i and j.MiXD is a subset of this matrix, indexing

the NiXD intersections of polygon i (see Section A2 of the Supplementary Material for examples).
Let 1(¨) be a Boolean operator, equal to 1 if “¨” is true.

3 We recommend using an equal area map projection for area calculations.
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Table 1. Relative scale and nesting of polygons in Figure 1.

(a) Relative scale (RS ) (b) Relative nesting (RN )

Source Destination Source Destination

(a) (b) (c) (a) (b) (c)

(a) Precincts – 1.00 1.00 (a) Precincts – 0.98 0.92

(b) Constituencies 0.00 – 0.12 (b) Constituencies 0.01 – 0.29

(c) Grid cells 0.00 0.89 – (c) Grid cells grid 0.05 0.54 –

Our firstmeasure—relative nesting (RN )—captures how closely source and destination bound-
aries align, and whether one set fits neatly into the other:

RN =
1

NS

NS∑
i

NiXD∑
iXj

(
aiXj

ai

)2
, (1)

which reflects the share of source units that are not split across destination units. Values of 1

indicate full nesting (no source units are split across multiple destination units), and a theoretical

lower limit of 0 indicates no nesting (every source unit is split across many destination units).

RN has similarities with the Herfindahl–Hirschman Index (Hirschman 1945) and the Gibbs–Martin

index of diversification (Gibbs and Martin 1962), which the electoral redistricting literature has

used to assess whether “communities of interest” remain intact under alternative district maps

(Chen 2010). A value of RN = 1, for example, corresponds to redistricting plans in which every

source unit is assigned to exactly one destination unit (e.g., “Constraint 1” in Cho and Liu 2016).

The second measure—relative scale (RS )—captures whether a CoS task is generally one of
aggregation or disaggregation:

RS =
1

NSXD

NSXD∑
iXj

1(ai ă aj ) (2)

which is the share of intersections in which source units are smaller than destination units. Its

range is 0 to 1, where 1 indicates pure aggregation (all source units are smaller than intersecting

destination units) and 0 indicates no aggregation (all source units are at least as large as destina-

tion units). Values between 0 and 1 indicate a hybrid (i.e., some source units are smaller, others are

larger than destination units).

Table 1 reports pairwise RN and RS measures for the polygons in Figure 1, with source units

in rows and destination units in columns. The table confirms that precincts are always smaller

(RS = 1) andalmost fully nestedwithin constituencies (RN = 0.98),with the small difference likely

due tomeasurement error. Precincts are also smaller than (RS = 1) andmostly nestedwithin grid

cells (RN = 0.92). At the opposite extreme, obtaining precinct-level estimates from constituencies

or grid cells would entail disaggregation (RS = 0) into non-nested units (0.01 ď RN ď 0.05). Other

pairings show intermediate values: hybrids of aggregation and disaggregation, where changes of

support require splitting many polygons.

Before proceeding, let’s briefly consider howRN andRS relate to each other, withmore details

in the Supplementary Material. Note, first, the two measures are not symmetric (i.e., RSS ,D �
1´ RSD ,S , RNS ,D � 1´ RND ,S ), except in special cases where the outer boundaries of GS and

GD perfectly align, with no “underlapping” areas as in Figure 1e. Section A2 of the Supplementary

Material considers extensions of these measures, including symmetrical versions of RS and RN ,

conditional metrics defined for subsets of units, measures of spatial overlap, and metrics that

require no area calculations at all.
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Second, as Table 1 suggests (and Section A2 of the Supplementary Material shows), the two

measures are positively correlated. Relatively smaller units mostly nest within larger units. Yet

because RN is more sensitive to small differences in shape, area, and orientation, unlike RS , it

rarely reaches its limits of 1 or 0. Even pure aggregation (e.g., precinct-to-grid,RS = 1)may involve

integratingunits that are technicallynot fullynested (RN = 0.92).Onebarrier to reachingRN =1 is

that polygon intersections often result in small-area “slivers” due tominor bordermisalignments,

but these can be easily excluded from calculation.4

RN andRS candiverge,withina limited range, like in theprecinct-to-grid example inTable 1. As

SectionA3of theSupplementaryMaterial showsusing randomlygeneratedmaps, suchdivergence

reflects the fact that the distributions of RN and RS have different shapes: RS is bimodal, with

peaks around RS = 0 and RS = 1, while RN is more normally distributed, with a mode around

RN =0.5. The relationshipbetween the twomeasures resemblesa logistic curve,wherenumerical

differences are largest in the tails and smallest in the middle. Differences between the measures

tend to be numerically small. We observe no cases, for instance, where RS ą 0.5 and RN ă 0.5

(or vice versa) for the same destination and source units.

2 HowNesting and Scale Affect Transformation Quality
How do the accuracy and bias of transformed values vary with relative nesting and scale? We

evaluated the performance of several CoS algorithms in two applications: (1) transformations of

electoral data across the polygons in Figure 1, and (2) a Monte Carlo study of CoS operations

across randomly generated synthetic polygons. A comprehensive review of CoS methods, their

assumptions and comparative advantages, is beyond the scope of this paper (see summary in

Section A4 of the Supplementary Material). Instead, we focus on how relative scale and nesting

affect the reliability of spatial transformations in general, holding one’s choice of CoS algorithm

constant. Specifically, we compare transformed values in destination units to their “true” values

across multiple CoS operations.

Let K be a set of CoS algorithms. Each algorithm, indexed k P {1, . . . ,K }, specifies a trans-

formation fk (¨) between source units GS and destination units GD . These transformations range

from relatively simple operations that require no data beyond two sets of geometries, to more

complex operations that incorporate information from covariates. Let xGS be an NS ˆ 1 vector

of observed values in source units GS , and let xGD be the ND ˆ 1 vector of “true” values in

destinationunitsGD . Let x̂GD
(k )

= fk (xGS ) bea vectorof estimatedvalues forxGD , calculatedusing

CoS algorithm k. These transformed values are typically point estimates, although somemethods
provide uncertainty measures.

Consider the following CoS algorithms:

• Simple overlay. This method requires no re-weighting or geostatistical modeling, and is
standard for theaggregationof eventdata. For eachdestinationpolygon, it identifies source

features that overlap with it (polygons) or fall within it (points and polygon centroids), and

computes statistics (e.g., sum and mean) for those features. If a source polygon overlaps

with multiple destination polygons, it is assigned to the destination unit with the largest

areal overlap. Advantages: speed, ease of implementation. Disadvantages: generatesmiss-

ing values, particularly if NS ! ND .

• Area weighted interpolation. This is a default CoS method in many commercial and open-
source GIS. It intersects source and destination polygons, calculates area weights for each

intersection, and computes area-weighted statistics (i.e., weighted mean and sum). It can

also handle point-to-polygon transformations through an intermediate tessellation step

(Section A4 of the Supplementary Material). Advantages: no missing values, no ancillary

data needed. Disadvantages: assumes uniform distribution in source polygons.

4 The nesting() function in our R package (see below) includes a tolerance parameter, governing the minimum area of
intersections used to calculate RN .
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• Population weighted interpolation. This method extends area-weighting by utilizing

ancillary data on population or any other covariate. It intersects the three layers (source,

destination, and population), assigns weights to each intersection, and computes

population-weighted statistics. Advantages: softens the uniformity assumption. Disad-

vantages: performance depends on quality and relevance of ancillary data.5

• TPRS-Forest. This method uses a nonparametric function of geographic coordinates (thin-
plate regression spline [TPRS]) to estimate a spatial trend, capturing systematic variation or

heterogeneity (Davidson 2022b). It uses a Random Forest to model spatial noise, reflecting

random, non-systematic variation. For each destination unit, it calculates a linear com-

bination of trend and noise. Advantages: needs no ancillary data, provides estimates of

uncertainty. Disadvantages: computationally costly.

• TPRS-Area weights. This is a hybrid of TPRS-Forest and areal interpolation. It decomposes
source values into a non-stationary geographic trend using TPRS, and performs areal

weighting on the spatial residuals from the smooth functional output (Davidson 2022a).

Advantages: provides estimates of uncertainty for area weighting; can optionally incorpo-

rate ancillary data. Disadvantages: computationally costly.

• Ordinary (block) kriging. This model-based approach is widely used as a solution to the
CoS problem in the natural and environmental sciences (Gotway and Young 2007). It uses a

variogram model to specify the degree to which nearby locations have similar values, and

interpolates values of a random field at unobserved locations (or blocks representing desti-

nation polygons) by using data fromobserved locations. Advantages: provides estimates of

uncertainty. Disadvantages: can generate overly smooth estimates, sensitive to variogram

model selection, assumes stationarity.

• Universal (block) kriging. This extends ordinary kriging by using ancillary information. It
interpolates values of a random field at unobserved locations (or blocks), using data on the

outcomeof interest fromobserved locationsand covariates (e.g., population) atboth setsof
locations. Advantages: relaxes stationarity assumption. Disadvantages: ancillary data may

not adequately capture local spatial variation.

• Rasterization. This is a “naive” benchmark against which to compare methods. It converts
source polygons to raster (i.e., two-dimensional array of pixels), and summarizes the values

of pixels that fall within each destination polygon. Advantages: no modeling, re-weighting

or ancillary data. Disadvantages: assumes uniformity.

We employ two variants of the first three methods, using (a) polygon source geometries, and

(b) points corresponding to source polygon centroids. These approaches represent different

use cases: a “data-rich” scenario where full source geometries are available, and a “data-poor”

scenario with a single address or coordinate pair. We also implement two variants of TPRS-Forest:

(a) spatial trend only, and (b) spatial trend plus residuals.

We use three diagnostic measures: (1) root mean squared error,
b∑

j
1
ND
(xj GD ´ �xj GD )2, (2)

Spearman’s rank correlation for xGD and x̂GD , and (3) estimation bias, E [β̂(x̂GD )
] ´ β(xGD ), from

an OLS regression of a synthetic variable y (see below) on transformed values x̂. The first two

diagnostics capture how closely the numerical values of the transformed variable align with true

values, and the direction of association. The third captures the downstream impact of the CoS

operation for model-based inference. For measures 1 and 3, values closer to zero are preferred.

For measure 2, values closer to one are preferred.

2.1 Illustration: Changing the Geographic Support of Electoral Data
Our first illustration transformselectoral dataacross thepolygons in Figure 1.Wedemonstrategen-

eralizability throughaparallel analysis of Swedishelectoral data (SectionA5of theSupplementary

Material).6

5 A more general disadvantage of CoSmethods reliant on ancillary data is that using a covariate z to impute values of xwill
bias (predetermine), by construction, any later estimate of association of x̂with z.

6 Weuseddata onGeorgia’s 2014 elections to theU.S. House of Representatives, andSweden’s 2010 elections to theRiksdag,
due to the availability of high-precision boundary information and vote tallies.
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The variable we transformed was Top-2 Competitiveness, scaled from 0 (least competitive) to 1

(most competitive):

Top-2 Competitiveness = 1´winning party vote share margin (3)

=
valid votes´ (votes for winner´votes for runner-up)

valid votes
. (4)

We obtained “true” values of competitiveness for precincts (Figure 1a) and constituencies

(Figure 1b) from official election results, measuring party vote counts and votes received by all

parties on the ballot (Kollman et al. 2022). For grid cells (Figure 1c), we constructed aggregates of
valid votes and their party breakdown from precinct-level results.

Our analysis did not seek to transform Top-2 Competitiveness directly from source to destina-

tion units. Rather, we transformed the three constitutive variables in Equation (4)—valid votes,

and votes for the top-2 finishers—and reconstructed the variable after the CoS. In Section A6 of

the Supplementary Material, we compare our results against those from direct transformation.

Because the purpose of much applied research is not univariate spatial transformation, but

multivariate analysis (e.g., effect of xony), we created a synthetic variable, yi = α +βxi +εi , where

xi is Top-2 Competitiveness in unit i, α = 1, β = 2.5, and ε „ N (0,1). We assess how changes of

support affect the estimation of regression coefficients, in situations where the “true” value of

that coefficient (β = 2.5) is known.

Figure 2 shows transformed values of Top-2 Competitiveness (x̂GD
(k )
) alongside true values in

destination units (xGD ), where darker areas are more competitive. Figure 2a reports the results

of precinct-to-constituency transformations (corresponding to “a X b” in Figure 1d). Figure 2b

reports constituency-to-grid transformations (“b X c” in Figure 1e). Of these two, the first set

of transformations (where RN = 0.98, RS = 1) more closely resembles true values than the

second set (RN = 0.29, RS = 0.12), with fewermissing values and implausibly smooth or uniform

predictions.

Figure 3 reports fit diagnostics for the full set of CoS transformations across spatial units in

Georgia (vertical axes), as a function of the transformations’ relative nesting and scale (horizontal

axes). Each point corresponds the quality of fit for a separate CoS algorithm. The curves represent

fitted values from a linear regression of each diagnostic on source-to-destination RN and RS

coefficients. Gray regions are 95% confidence intervals.

The results confirm that the accuracy of CoS transformations increase in RN and RS . RMSE is

lower, correlation is higher, andOLS estimation bias is closer to 0where source units are relatively

smaller (Figure 3a) andmore fully nested (Figure 3b). OLS bias is negative (i.e., attenuation) when

RN and RS are small and shrinks toward 0 as they increase.

Our analysis also reveals substantial differences in relative performance of CoS algorithms.

Overall, simpler methods like overlays and areal interpolation produce more reliable results. For

example, median RMSE—across all levels of RN and RS—was 0.22 or lower for both types of

simpleoverlays, compared to0.43 foruniversal kriging.Mediancorrelation for simpleoverlayswas

0.85 or higher, compared to 0.12 for universal kriging. Simple overlays also returned the smallest

OLS bias, with amedian of´0.15, compared to a quite severe underestimation of OLS coefficients

for universal kriging (´2.4). Similar patterns emerge in our analysis of Swedish electoral data

(Section A5 of the Supplementary Material).

Because theTop-2Competitiveness variable is a functionof other variables,we consideredhow

transformation quality changes when we transform this variable directly versus reconstructing it

from transformed components. The comparative advantages of these approaches depend on the

relative nesting and scale of source and destination units: indirect transformations performbetter
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Figure 2.Output from change-of-support operations (Georgia).
É
: source features are polygons.

⊙
: source

features are polygon centroids.

when RN and RS are closer to 1, direct transformations are preferable as RN and RS approach 0

(Section A6 of the Supplementary Material).

2.2 Illustration: Monte Carlo Study with Synthetic Polygons
To generalize, we performed Monte Carlo simulations with artificial boundaries and variables on

a rectangular surface. This analysis compares fit diagnostics from the same CoS algorithms, over

a broader set of transformations covering the full range of RN and RS .

We consider two use cases. First, we change the geographic support of an extensive variable,
like population size or number of crimes. Extensive variables depend on the area and scale of

spatial measurement: if areas are split or combined, their values must be split or combined

accordingly, such that the sum of the values in destination units equals the total in source units

(i.e., satisfying the pycnophylactic, ormass-preserving, property). Second,we change the support

of an intensive variable, like temperature or elevation. Intensive variables do not depend on the
size of spatial units; quantities of interest in destination units are typically weighted means. Two

ormoreextensive variables cancombine tocreateanew intensive variable, likepopulationdensity

or electoral competitiveness. In Section A6 of the Supplementary Material, we consider themerits

of (re-)constructing these variables before versus after a CoS.

While real-world data rarely conform to a known distribution, we designed the simulated

geographic patterns to mimic the types of clustering and heterogeneity that are common in data

on political violence and elections (see examples in Section A7 of the Supplementary Material).
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(a) Relative nesting (b) Relative scale

Figure 3. Relative nesting, scale and transformations of election data (Georgia).

At each iteration, our simulations executed these steps:

1. Draw random source (GS ) and destination (GD ) polygons.Within a rectangular bounding box
B, we sampled a randomset ofNS points and createdNS tessellatedpolygons, such that for

any polygon l i P {1, . . . ,NS } corresponding to point i P {1, . . . ,NS }, all points inside l i were

closer to i than to any other point ´i . We did the same for ND destination polygons. The

relative number of source-to-destination polygons (NS :ND ) ranged from 10:200 to 200:10.

Figure 4a shows one realization of GS ,GD , with NS = 200,ND = 10.

2. Assign “true” values of a random variable X to units in GS and GD . For extensive variables,

we simulated values from an inhomogeneous Poisson point process (PPP). For intensive

variables,wesimulatedvalues fromamean-zeroGaussian randomfield (GRF), implemented
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Figure 4. Examples of spatial data layers used in Monte Carlo study. Dotted lines are source units (GS ), solid
lines are destination units (GD ).

with the sequential simulation algorithm (Goovaerts 1997).7 Figure 4b,c illustrates examples

of each. In both cases, while we sought to imitate the spatially autocorrelated distribution

of real-world social data, we also simulated spatially random values as benchmarks (see

Section A7 of the Supplementary Material).8 As before, we also created a synthetic variable

Y = α +Xβ +ε, with α = 1, β = 2.5, ε „ N (0,1).

3. Change the geographic support of X from GS to GD , using the CoS algorithms listed

above. We then compared transformed values x̂GD to the assigned “true” values xGD ,

and calculated the same summary diagnostics as before, adding a normalized RMSE(b∑
j

1
NGD

(xj GD ´ �xj GD )2/(max(xGD )´min(xGD )
) )
for extensive variables.

We ran this simulation for randomly generated polygons with NS P [10, . . . ,200] and ND P
[10, . . . ,200], covering cases from aggregation (NS = 200,ND = 10) to disaggregation (NS =

10,ND = 200). We repeated the process 10 times, with different random seeds.

To facilitate inferences about the relationship between nesting and the diagnostic measures,

we estimated semi-parametric regressions of the form:

Mkm = f (RNkm )+Methodk +εkm , (5)

where k indexes CoS algorithms, and m indexes simulations. Mkm is a diagnostic measure for

CoS operation km (i.e., [N]RMSE, correlation, OLS bias), f (RNkm ) is a cubic spline of RN (or RS ),

Methodk is a fixed effect for each CoS algorithm, and εkm is an i.i.d. error term. This specification

restricts inferences to theeffects of nesting and scalewithingroupsof similar operations, adjusting
for baseline differences in performance across algorithms.

Figure 5 reports predicted values of [N]RMSE, Spearman’s correlation, and OLS bias across all

methods at different levels of RN , for both (a) extensive and (b) intensive variables. Section A8

of the Supplementary Material reports results for the RS coefficient, which generally align with

these. As source units become more nested and relatively smaller, [N]RMSE and OLS bias trend

toward 0, while correlation approaches 1. The primary difference between extensive and intensive

variables is in the estimation of OLS coefficients. For extensive variables, we see attenuation bias,

which becomes less severe as RN approaches 1. For intensive variables, we see attenuation bias

as RN approaches 1, but inflation bias as RN approaches 0.

Figure 6 shows the Monte Carlo results by CoS algorithm, for (a) extensive and (b) intensive

variables. In each matrix, the first, left-most column reports average statistics for each algorithm,

pooled over all values of RN . The remaining columns report average statistics in the bottom

decile of RN (0%–10%), the middle decile (45%–55%), and the top decile (90%–100%). The

7 We used the (rasterized) PPP and GRF as ancillary data for population-weights and universal kriging.
8 We modeled autocorrelation in the PPP by allowing intensity to vary as a spherical function of spatial coordinates. We
modeled autocorrelation in the GRF with a Matern covariance semi-variogrammodel.
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Figure 5. Relative nesting and transformations of synthetic data.

bottom row presents median statistics across algorithms. Darker colors represent better-fitting

transformations (i.e., closer to 0 for [N]RMSE and bias; closer to 1 for correlation).

First, the relativeperformanceof all CoSalgorithmsdepends, strongly, onRN (andRS , seeSec-

tion A8 of the Supplementary Material). In most cases, the largest improvements in performance

occur between the lowest and middling ranges. Where values of RN are low (bottom 10%), most

algorithms fare poorly. Performance improves as RN increases, especially in the first half of the

range. For example, median RMSE (intensive variables) is 1.02 for CoS operations with low RN ,

0.63 for intermediate values, and 0.35 for the top decile. Most algorithms will perform better even

at middling levels of RN—0.4 and up—than at lower levels.

Second, while no CoS algorithm clearly stands out, some perform consistently worse than oth-

ers. For example, populationweighting offers no discernible advantages in transforming intensive

variables (but seemingly plenty of disadvantages) relative to simple areaweighting. Ancillary data

from covariates, these results suggest, do not always improve transformation quality. Centroid-

based simple overlays also fare poorly throughout.

Third, some CoS algorithms are more sensitive to variation in RN than others. For example,

simple overlays produce credible results for extensive variables when RN is high, while areal and

population weighting results are more stable.

Are RN and RS redundant? After we condition on RN , for example, does RS add any explana-

tory value in characterizing the quality of CoS operations (i.e., measurement error and bias of
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Figure 6. Transformation quality at different percentiles of relative nesting.

transformed values)? As we show in Section A3 of the Supplementary Material, RN is more

strongly predictive of transformation quality than RS when considering the two metrics sepa-

rately. But RS is not redundant; including information about both RN and RS accounts for more

variation in transformation quality than does information about RN alone.9

In Section A3 of the SupplementaryMaterial, we consider howdivergence betweenRN andRS

affects the relative performance of CoSmethods. Notmuch, we conclude. The absolute proximity

of RS and RN to 0 or 1 is far more predictive of transformation quality than their divergence.

Our simulations confirm that patterns from our analysis of election data—higher RN and RS

are better—hold in more general sets of cases. These include changes of support between units

of highly variable sizes and degrees of nesting, and transformations of variables with different

properties and distributional assumptions.

3 What Is to Be Done?
Changes of support withmedium to high relative nesting and scale tend to produce higher quality

transformations, in terms of lower error rates, higher rank correlation, and lower OLS estimation

bias. These patterns persist across CoS algorithms, in applications involving both extensive and

9 Because the purpose of our analysis is not to maximize model fit, but to illuminate how each measure relates to
transformation quality, we used the simpler specifications here.
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intensive variables. While some CoS methods do perform better than others in specific contexts,

no method stands out unconditionally dominating the rest. We were unable to find a “winner” in

our comparisonof adozenalgorithms, usingdata fromelections andMonteCarlo simulations that

mimic different geospatial patterns.

What does this mean for analysts performing CoS operations? We recommend reporting RN

and RS coefficients for all CoS operations as ex antemeasures of transformation complexity. This
requires no data beyond the geometries of source and destination polygons, and enables readers

to assess risks of poor inference: the higher the numbers, themore reliable the potential results—

andmidrange numbers typically give one far more confidence than lower numbers. Also, for face

validity of transformed values, good practice is tomap the newdistribution, and visually inspect it

for strangediscontinuities,missingness, “unnatural” smoothnessoruniformity, andotherobvious

errors (as in Figure 2). We urge researchers to implement sensitivity analyses with alternative CoS

methods, to show that their results do not rest on assumptions of particular algorithms.

Beyond this, advice depends on the availability of two types of “ground truth” data relevant to

changes of support: atomic-level information on the distribution of variables being transformed

(e.g., precinct-level vote tallies and locations of individual events), and information on the proper

assignment of units (e.g., cross-unit IDs).

If researchers have access to irreducibly lowest-level (ILL) data—in addition to aggregate values

in source units—we recommend using ILL data to validate spatial transformations directly. Exam-

ples of ILL data include precinct-level votes, point coordinates of events, ultimate sampling units,

individual-level (micro) data, and other information that cannot be disaggregated further. With

such data, one can implement CoS methods as in the above analyses, and select the algorithm

that yields the smallest errors andhighest correlationwith aggregates of true values in destination

units. Alternatively, researchersmay simply use the ILL data as their source features, since they are

likely to have high RN and RS scores with destination units.

If IDs for destination polygons are available for source units and RN and RS are sufficiently

high, then spatial transformations via CoS algorithms may be unnecessary. For each destination

polygon, one needs only to identify the source features that share the common identifier (e.g.,

county name and state abbreviation), and compute group statistics for those features. The ID

variablemust exist, however, and provide a one-to-one ormany-to-onemapping. A source feature

assigned to more than one destination unit needs additional assumptions about how source

values are (re-)distributed.

What if thereareno lower-leveldata for validation, andnocommon IDs forunit assignment?Our

general advice—reporting RN and RS , visually inspecting the results, and performing sensitivity

analyses—still holds. Yet the third of these steps has pitfalls. Since we cannot know which set of

estimates is closest to true values, rerunning one’s analysis with alternative CoS algorithms can

create temptations either to be biased and choose the numbers one likes best, or to give equal

weight to all algorithms, including some that could be wildly off the mark.

While cross-validation without ground truth data is a difficult topic that is beyond the scope of

this article, we briefly illustrate one potential path in Section A9 of the Supplementary Material.

Specifically, one can report the results of multiple CoS methods, along with a measure of how

divergent each set of results is from the others, using outlier detection tests. As an analogy, this is

like usingmultiple, imperfect instruments to detect the amount of oil underground.Wemay never

know the true amount. But learning (for instance) that only one of the instruments has detected

the presence of hydrocarbons is useful, both in the search for oil—that instrument might get it

right—but also in evaluating the outlier instrument for future efforts. We caution that no set of

results shouldbe includedorexcluded fromanalysis solelyon thebasis of anoutlier detection test.

It is possible for an outlier to be more accurate than the average, and alternatively, an algorithm

giving results close toaveragemaybequite inaccurate. Yet if aCoSmethod frequently givesoutput
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that differs systematically from other CoS methods, further investigation may be warranted into

the deviant algorithm. At the very least, this would help contextualize one’s results.

Toprovide researcherswith routines, documentation, and source code to implement these and

other procedures with their own data, we developed an open-source software package (SUNGEO),
available through the Comprehensive R Archive Network and GitHub. It includes functions to

calculate RN , RS and relatedmetrics, aswell as functions to execute—and compare—most of the

CoS methods discussed in this article. These tools should enable researchers to explore options,

elucidate the consequences of choices, and design CoS strategies to meet their needs.

4 Conclusion
When integratingdata across spatial units, seemingly benignmeasurementdecisions canproduce

nontrivial consequences. The accuracy of spatial transformations depends on the relative nesting

and scale of source and destination units. We introduced two simple, nonparametric measures

that assess the extent towhich units are nested and the range fromaggregation to disaggregation.

We have shown that the two measures are predictive of the quality of spatial transformations,

with higher values of RN and RS associated with lower error rates, higher correlation between

estimated and true values, and less severe OLS estimation bias. These measures can serve as ex
ante indicators of spatial transformation complexity and error-proneness, even in the absence
of “ground truth” data for validation. We also provide open-source software to help researchers

implement these procedures.

Because changes of support entail information loss, the consequences of these problems will

depend in part on whether one uses spatially transformed estimates for description or inference.

Researchers have leeway when using transformed measures for mapping and visualization, so

long as these transformed estimates correlate with the (unobserved) ground truth. The situations

become more precarious when using interpolated measures for inference. Both Type II and Type

I errors are possible. In the case of extensive variables, transformations with lower RN and RS

scores generally result in the under-estimation of OLS coefficients, increasing the chances of false

negatives. Yet there are also caseswhere estimationbias is in theoppositedirection (e.g., intensive

variableswith low RN and RS ), increasing the chances of false positives. More research is needed

on these situations.

We reiterate that CoS problems are ignored at the peril of accurate inference, and there is no

silver bullet. Researchers should document their measurement choices. This includes reporting

relative nesting and scale, checking the face validity of the output, and avoiding reliance on

a single CoS algorithm. We encourage future research to explore new methods for integrating

spatially misaligned data.
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