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Compressible turbulent plane Couette flows are studied via direct numerical simulation
for wall Reynolds numbers up to Rew = 10 000 and wall Mach numbers up to Mw = 5.
Various turbulence statistics are compared with their incompressible counterparts at
comparable semilocal Reynolds numbers Re∗

τ,c. The skin friction coefficient Cf , which
decreases with Rew, only weakly depends on Mw. On the other hand, the thermodynamic
properties (mean temperature, density and others) strongly vary with Mw. Under
proper scaling transformations, the mean velocity profiles for the compressible and
incompressible cases collapse well and show a logarithmic region with the Kárman
constant κ = 0.41. Compared with wall units, the semilocal units yield a better collapse for
the profiles of the Reynolds stresses. While the wall-normal and spanwise Reynolds stress
components slightly decrease in the near-wall region, the inner peak of the streamwise
component notably increases with increasing Mw – indicating that flow becomes more
anisotropic when compressible. In addition, the near-wall turbulence production decreases
as Mw increases – due to rapid wall-normal changes of viscosity caused by viscous heating.
The streamwise and spanwise energy spectra show that the length scale of near-wall
coherent structures does not vary with Mw in semilocal units. Consistent with those
in incompressible flows, the superstructures (the large-scale streamwise rollers) with a
typical spanwise scale of λz/h ≈ 1.5π become stronger with increasing Rew. For the
highest Rew studied, they contribute about 40 % of the Reynolds shear stress at the channel
centre. Interestingly, flow visualization and correlation analysis show that the streamwise
coherence of these structures degrades with increasing Mw. In addition, at comparable
Re∗
τ,c, the amplitude modulation of these structures on the near-wall small scales is quite

similar between incompressible and compressible cases – but much stronger than that in
plane Poiseuille flows.
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J. Yao and F. Hussain

1. Introduction

Plane Couette (PC) flow, the fluid motion between two parallel flat plates moving at
different speeds, is one of the simplest canonical configurations for the numerical study
of wall turbulence – its statistics and dynamics. In contrast to the extensive study of plane
Poiseuille (PP) flows (e.g. Kim, Moin & Moser 1987; Lee & Moser 2015; Hoyas et al.
2022), much less attention has been paid to the PC flow. One of the main reasons is
that PC flow contains large-scale structures (streamwise-oriented rollers), distributed in
counter-rotating pairs across the spanwise domain whose resolution requires an extended
computational domain in both the streamwise and spanwise directions. The first direct
numerical simulation (DNS) of turbulent PC flows was conducted by Lee & Kim (1991)
at the friction Reynolds number Reτ = 170 with lengths 4πh × 8π/3h in the streamwise
and spanwise directions. Here, h denotes half-channel-height. They found that the most
energetic motion at the channel centre occurs at wavenumber kxh = 0 and kzh = 1.5.
Later, Komminaho, Lundbladh & Johansson (1996) and Tsukahara, Kawamura & Shingai
(2006), respectively, performed DNS at Reτ = 52 and Reτ = 126 with a relatively large
domain (i.e. 28πh × 8πh for the former and 64h × 6h for the latter). Avsarkisov et al.
(2014) conducted DNS at Reτ up to 550 and showed that the mean velocity profile exhibits
a logarithmic region with a slope of 0.41. DNSs for Reτ up to 986 by Pirozzoli, Bernardini
& Orlandi (2014) showed a secondary outer peak in the streamwise turbulent intensity at
the highest Reτ – related to the presence of the large-scale rollers of spanwise wavelength
λz ≈ 5h. Despite these prior studies, the characteristics of these large-scale motions remain
elusive. Lee & Moser (2018) performed DNS with a very large computational domain
(viz. 100πh × 5πh) for Reτ up to 500. They found that as Reτ increases, the large-scale
structures become more coherent in the streamwise direction. Recently, Cheng, Pullin &
Samtaney (2022) performed wall-resolved as well as wall-modelled large-eddy simulation
(LES) of PC flows at Reτ up to 2600 and 2.8 × 105, respectively. Interestingly, the energy
of the large-scale streamwise rollers was found to decrease with increasing Reτ .

Even fewer studies have targeted the compressible PC flow – most focusing on
the linear stability analysis (Chagelishvili, Rogava & Segal 1994; Duck, Erlebacher &
Hussaini 1994; Hu & Zhong 1998; Ramachandran et al. 2016). For example, Duck et al.
(1994) showed that, unlike the incompressible equivalent, linear unstable modes exist
in compressible PC flow. Malik, Dey & Alam (2008) investigated the linear stability
and the non-modal transient growth for both the uniform shear flow with constant
viscosity and the non-uniform shear flow with stratified viscosity. They found that both
mean flows are linearly unstable for a range of supersonic Mach numbers. Using the
resolvent analysis, Dawson & McKeon (2019) studied how the shape and amplitude
of the optimal disturbances depend on the Mach number in compressible laminar
PC flow.

Regarding DNS of compressible PC flow, the first study was performed by Buell (1991)
at bulk Reynolds number Reb = 3000 and bulk Mach number Mb up to 3. He found
that the large-scale streamwise rollers become less organized at higher Mb. Szemberg
O’Connor’s (2018) DNS of compressible PC at two different bulk-to-shear viscosity ratios
showed that the bulk (dilatational or second) viscosity has a minor effect on mean flow
quantities. To derive an eddy conductivity closure for wall-modelled LES of high-speed
flows, Chen et al. (2022) recently performed DNS of compressible PC flow with different
wall temperatures for wall Mach numbers Mw up to 6.

The present work aims to systematically examine the compressibility effect on PC flow,
mainly focusing on how Reynolds and Mach numbers affect turbulence statistics and
structures. The remaining paper is organized as follows. Section 2 presents the simulation
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Compressible plane Couette flow
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Figure 1. Schematic of the compressible PC flow; x, y and z are the streamwise, wall-normal and spanwise
coordinates, with corresponding velocities u, v and w; Uw and Tw denote the wall velocity and temperature.

methods and parameters. Section 3 discusses the main results, including turbulence
statistics and structures. Conclusions are drawn in § 4.

2. Numerical set-up

2.1. Numerical method
The DNS of the compressible Navier–Stokes equation for the PC flow (figure 1) is
conducted with our in-house code (Yao & Hussain 2020). The fluid considered is a
perfect gas governed by Sutherland’s viscosity law. The seventh-order upwind-biased and
eighth-order centred schemes are used for the convective and viscous terms, respectively
(Li et al. 2010). The low-storage third-order Runge–Kutta algorithm is utilized for time
integration. See Yao & Hussain (2020) for more details on the governing equations and
the simulation methods. The DNS is conducted in a truncated rectangular box with the
dimensions Lx, Ly, Lz in the streamwise (x), wall-normal (y) and spanwise (z) directions.
Periodic boundary conditions are specified in the wall-parallel (x, z) directions with
constant mesh size, and a mapping function is used in the wall-normal direction. The
top and bottom walls move in the streamwise direction with equal and opposite speeds
±Uw, and the isothermal boundary condition is employed for the temperature at the walls
Tw. The solver has been extensively validated in our previous works (Yao & Hussain 2019,
2020) for PP configuration. In Appendix A, the code is further validated by comparing a
low Mach number PC flow with the strictly incompressible dataset of Lee & Moser (2018).

2.2. Simulation parameters
Details on the parameters of the DNS are provided in table 1. In particular, DNS is
performed at three wall Reynolds numbers (namely, Rew ≡ ρbUwh/μw = 1500, 4000 and
10 000), where ρb is the bulk density, and μw is the dynamic viscosity at the wall. For
all these Reynolds numbers, two different wall Mach numbers (subsonic Mw ≡ Uw/cw =
0.8 and supersonic 1.5) are considered. Here, cw represents the speed of sound at the
wall temperature. In addition, two higher Mach number (i.e. Mw = 3 and 5) cases are
considered for Rew = 4000. The computational domain is Lx × Ly × Lz = 24πh × 2h ×
6πh, which, based on the study by Lee & Moser (2018), can yield reasonably good
flow statistics. The effect of domain size on flow physics is further examined for the
Rew = 4000 and Mw = 1.5 case in Appendix B. Both the standard Reynolds (represented
by φ̄) and the density-weighted Favre averaging (φ̃ = ρφ/ρ̄) are used in this study, with φ′
and φ′′ denoting their remaining fluctuations. Hereinafter, quantities non-dimensionalized
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Case Rew Reτ Re∗
τ,c Mw Nx × Ny × Nz �x+ �y+ �z+ Tuτ /h

C2KM08 1500 96.4 86.0 0.8 768 × 129 × 384 9.5 0.22–3.15 4.7 47.6
C4KM08 4000 228.4 202.3 0.8 1536 × 193 × 768 11.2 0.36–4.93 5.6 34.8
C10KM08 10 000 515.9 456.4 0.8 3072 × 257 × 1536 12.6 0.60–8.36 6.3 29.1
C2KM15 1500 104.9 72.6 1.5 768 × 129 × 384 10.3 0.25–3.40 5.1 44.2
C4KM15 4000 251.5 172.2 1.5 1536 × 193 × 768 12.3 0.39–5.44 6.2 33.2
C10KM15 10 000 571.4 389.8 1.5 3072 × 257 × 1536 14.0 0.66–9.26 7.0 28.2
C4KM30 4000 327.2 113.7 3.0 1536 × 193 × 768 16.0 0.51–7.07 8.0 30.9
C4KM50 4000 464.2 74.3 5.0 2048 × 193 × 1024 17.0 0.72–10.02 8.5 25.4

Table 1. Summary of the simulation parameters. The computational domain is Lx × Ly × Lz = 24πh × 2h ×
6πh for all cases, with h the half-channel height, and Tuτ /h the total simulation time without transition.
Quantities with superscript + are non-dimensionalized with the wall units.
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Figure 2. Viscous and turbulent momentum fluxes as a function of y/h for the C10KM15 case.

with semilocal wall units based on the local density and viscosity are represented by
the superscript ∗ (i.e. u∗

τ = √
τw/ρ̄, δ∗ν = ν̄/u∗

τ ). Thus, the semilocal Reynolds number
is defined as Re∗

τ = h/δ∗ν = Reτ
√
(ρ̄/ρ̄w)/(μ̄/μ̄w).

The convergence of our DNSs is checked by examining the mean momentum equation,
which is given as

μdU/dy − ρu′′v′′ = τw. (2.1)

Figure 2 shows the viscous, turbulent momentum fluxes and their sum for the C10KM15
case. Results of other cases, which are quite similar, are not shown here for brevity. For all
cases, the maximum error in the total flux is within 2 % and is comparable to prior DNS
studies (Szemberg O’Connor 2018; Chen et al. 2022).

The incompressible DNS data for the smaller domain size (i.e. 20πh × 5πh) by Lee &
Moser (2018) at Reτ = 93 (ILM93), 220 (ILM200) and 500 (ILM500) are employed for
comparison.

In addition, for better comparison, four additional DNSs at similar Re∗
τ,c ≡

Reτ
√
ρ̄c/ρ̄w/(μ̄c/μ̄w) as C2KM15, C4KM15, C4KM30 and C10KM15 cases are

performed using the same code as Lee & Moser (2018). Details of these incompressible
simulation parameters (e.g. domain sizes and grid resolutions) are listed in table 2.
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Compressible plane Couette flow

Case Rew Reτ Nx × Ny × Nz �x+ �y+ �z+ Tuτ /h

I1KM00 1176 75 512 × 128 × 256 11.0 0.04–1.8 5.5 59.6
I2KM00 1852 112 768 × 128 × 384 11.0 0.06–2.6 5.5 54.9
I3KM00 3030 172 1024 × 128 × 512 12.7 0.1–4.0 6.3 51.3
I8KM00 7519 384 2048 × 192 × 1024 14.1 0.14–5.9 7.1 45.7

Table 2. Summary of the parameters used for the strictly incompressible PC flow. The simulation domain is
24πh × 2h × 6πh.

Case Rew Reτ Mw ρ̄w/ρb ρ̄c/ρb T̄c/Tw 102Mτw 103Cf −102Bq μ( y∗
P)/μw P+

k ( y∗
P)

C2KM08 1500 96.4 0.8 1.09 0.99 1.09 4.73 7.60 1.46 1.056 0.236
C4KM08 4000 228.4 0.8 1.10 0.99 1.10 3.76 5.95 1.32 1.052 0.238
C10KM08 10 000 515.9 0.8 1.10 0.99 1.10 7.07 4.84 1.18 1.049 0.239
C2KM15 1500 104.9 1.5 1.31 0.97 1.34 4.17 7.47 4.74 1.189 0.211
C4KM15 4000 251.5 1.5 1.33 0.98 1.35 8.02 5.92 4.19 1.182 0.213
C10KM15 10 000 571.4 1.5 1.35 0.98 1.36 6.36 4.84 3.75 1.171 0.216
C4KM30 4000 327.2 3.0 2.29 0.93 2.39 10.70 5.82 12.71 1.648 0.157
C4KM50 4000 464.2 5.0 4.56 0.92 4.83 12.72 5.90 25.23 2.521 0.114

Table 3. DNS results for some global parameters: the wall and centreline normalized densities (ρ̄w/ρb and
ρ̄c/ρb); the centreline temperature (T̄c/Tw); the friction Mach number (Mτw = uτ /c̄w); the skin friction
coefficient (Cf = 2τw/(ρbU2

w)); the heat flux at the wall (Bq = q̄w/(cpρ̄wuτTw)); and the viscosity at the
location of peak turbulent kinetic energy production (μ( y∗

P)/μw).

3. Results

3.1. Skin friction and heat flux
Table 3 enumerates some characteristic quantities, including the mean densities at the wall
(ρ̄w) and channel centreline (ρ̄c), the temperature at the centreline (T̄c), skin friction (Cf )
and heat flux (Bq) coefficients, etc.

The skin friction coefficient Cf decreases with increasing Reτ , as expected. For
incompressible cases, Robertson & Johnson (1970) suggested the empirical correlation
for Cf √

Cf

2
= G

log Rew
, (3.1)

where constant G is chosen to fit the DNS results. Various choices for G in the range of
0.18 − 0.21 were proposed (El Telbany & Reynolds 1982; Kitoh, Nakabyashi & Nishimura
2005; Tsukahara et al. 2006; Pirozzoli et al. 2014).

Figure 3 compares the present DNS data with (3.1), together with several incompressible
data available in the literature. The difference in Cf among different Mw cases is minor,
and all closely follow the prediction based on (3.1) with G = 0.21.

As in the compressible PP flows (Yao & Hussain 2020), the magnitude of wall heat flux
Bq for a given Mw decreases with increasing Rew. The Reynolds-averaged energy equation
is given as

∂(e + p)v
∂y

= ∂uσxy

∂y
+ ∂vσyy

∂y
+ ∂wσyz

∂y
+ ∂

∂y

(
k
∂T̄
∂y

)
, (3.2)
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Figure 3. Skin friction coefficient (Cf ) as a function of Rew. The dashed line represents the friction law (3.1)
with G = 0.21, and the inset shows the correlation between Bq and B′

q = −(M2
c (γ − 1)/(2ρwuτ )/(ρbUb))Cf

with the dash-dotted line denoting Bq = B′
q.

where e = ρ(es + uiui/2) is the total energy per unit mass – equal to the sum of internal
(es) and kinetic energies; σij the viscous stress tensor and k = cpμ/Pr is the thermal
conductivity, with cp the specific heat at constant pressure and Pr the Prandtl number.

By integrating (3.2) from the wall surface to the channel centreline, one obtains

qw

(
≡−k

∂T̄
∂y

∣∣∣∣
w

)
= −Uwτw. (3.3)

Then, similar to that obtained by Huang, Coleman & Bradshaw (1995) and Li et al. (2019)
for the compressible PP flows, we have the following correlation between Bq and Cf for
PC:

Bq = − M2
w(γ − 1)

(2ρwuτ )/(ρbUw)
Cf , (3.4)

where γ (= 1.4) is the specific heat ratio.
The inset in figure 3 shows that all DNS results agree well with the proposed correlation

(3.4). Similar to the decomposition for Cf (e.g. Fukagata, Iwamoto & Kasagi 2002; Renard
& Deck 2016), (3.4) enables us to evaluate Bq based on the statistical quantities away from
the wall, which can be more accurately obtained than temperature gradient at the wall.

3.2. Mean velocity profiles
In the presence of compressibility, the van Driest (VD) transformation (Driest 1951)

U+
D ( y) =

∫ U+

0

√
ρ̄

ρ̄w
dU+, (3.5)

is typically employed to transform the mean velocity profiles to an equivalent
incompressible case. Although VD transformation works well for compressible flows
over adiabatic walls (Duan, Beekman & Martin 2010; Pirozzoli & Bernardini 2011;
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Compressible plane Couette flow
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Figure 4. Mean velocity profiles using (a,b) the VD and (c,d) TL transformations for subsonic (i.e.
Mw = 0.8) (a,c) and supersonic (i.e. Mw = 1.5, 3 and 5) (b,d) cases.

Hadjadj et al. 2015), its performance deteriorates for flows over diabatic walls (Duan
et al. 2010). Figures 4(a) and 4(b) display the VD transformed mean velocity profiles for
subsonic (i.e. Mw = 0.8) and supersonic (i.e. Mw = 1.5, 3 and 5) cases, respectively. The
incompressible cases ILM500 and I8KM00 are also included for comparison in (a) and (b),
respectively. For subsonic (Mw = 0.8) cases, the VD transformation yields good collapses
between different cases; for supersonic (particularly Re4KM50) cases, it undershoots and
overshoots the incompressible profile in the viscous and log layer, respectively – consistent
with the previous findings for the compressible PP (Modesti & Pirozzoli 2016; Patel,
Boersma & Pecnik 2016; Yao & Hussain 2020) and boundary layer (Duan et al. 2010;
Zhang, Duan & Choudhari 2018) flows.

To incorporate the non-zero wall heat flux effect, Trettel & Larsson (2016) derived a
velocity transformation based on the log law and stress-balance conditions

U∗( y) =
∫ U+

0

√
ρ̄

ρ̄w

[
1 + 1

2ρ̄
dρ̄
dy

y − 1
μ̄

dμ̄
dy

y
]

dU+. (3.6)

The Trettlel & Larsson (TL) transformation, which is equivalent to Patel et al. (2016),
includes not only the change of density but also the relative change of density and
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Figure 5. The log-law diagnostic function of the TL transformed velocities β = y∗(dU∗/dy∗) for (a) subsonic
and (b) supersonic cases. Note that the IPP500 case in (a) is for incompressible PP flow at Reτ = 500 (Yao,
Chen & Hussain 2019), and the dash-dotted line represents β = 1/κ with κ = 0.41.

viscosity gradient across the channel. It was demonstrated to be able to collapse mean
velocity profiles for compressible PP flows (Modesti & Pirozzoli 2016; Yao & Hussain
2020) and also for non-adiabatic turbulent boundary layers (Zhang et al. 2018). Recently,
Griffin, Fu & Moin (2021) proposed a transformation by accounting for the distinct effects
of compressibility on the viscous and turbulent shear stresses. This yielded comparable
results to the TL transformation for internal (channel and pipe) flows, and better collapse
of the velocity profile for heated, cooled and adiabatic boundary layer flows.

Figure 4(c,d) shows the mean velocity profiles based on the TL transformation as a
function of y∗(= yRe∗

τ ) for subsonic and supersonic cases. Apparently, this overcomes the
limitation of the VD transformation. As in PP flows (Modesti & Pirozzoli 2016; Patel
et al. 2016), a nearly perfect collapse occurs across the whole wall-normal range between
the incompressible case and the transformed mean velocity U∗ for all Mw cases. Different
from the PP flow (Yao & Hussain 2020), where the U∗ profiles at low Reτ typically lie
above those at high Reτ due to the wake effect, U∗ for PC flows agree well with each other
for all Reτ – even near the channel centre.

To further examine the logarithmic region, figure 5 shows the corresponding diagnostic
function β = y∗(dU∗/dy∗) for the mean velocity profile under TL transformation. As the
Reynolds number increases, the β profiles collapse for y∗ up to 50, and slowly develop
a plateau with β = 1/κ = 1/0.41 – larger than those reported for other types of wall
turbulence (Lee & Moser 2015; Pirozzoli et al. 2021; Yao, Chen & Hussain 2022). In
addition, at a common Re∗

τ,c (e.g. figure 5b), the compressible and incompressible cases
agree very well. Notable differences appear between PC and PP flows (figure 5a) – akin
to that found in incompressible flow by Avsarkisov et al. (2014). In particular, for the Reτ
considered, β in PC flow is much flatter than that in PP flow, which indicates that the log
layer in the former is less sensitive to the Reynolds number effect. For the ILM500 case
(figure 5a), β starts to drop sharply at y∗ = 200. Such a drop, also observed for even higher
Reτ DNS (Pirozzoli et al. 2014) and LES (Chen et al. 2022) studies, is not apparent for the
compressible cases considered here – presumably due to relatively low Re∗

τ,c.
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Figure 6. Mean velocity gradient at the channel centreline ψ and its uncertainty as functions of (a) Reτ and
(b) Re∗

τ,c.

Another important question in PC flows is the Reynolds number dependence of the
velocity gradient at the channel centreline, which is defined as

ψ = h
Uw

dU
dy

∣∣∣∣
y/h=0

. (3.7)

In PP flows, ψ is always zero by symmetry, but in PC flow, ψ is not necessarily zero
as the mean velocity becomes anti-symmetric. As ψ is directly related to turbulence
production in the outer region, understanding its behaviour with increasing Reynolds
number is essential and has been debated in many incompressible works. For example,
based on the experimental results by Reichardt (1959), Busse (1970) suggested that ψ
approaches 0.25 at infinite Reynolds number. However, Lund & Bush (1980) performed
an asymptotic analysis and suggested that ψ should approach zero as Re → ∞. Recently,
Chen et al. (2022) proposed that ψ should decrease exponentially for sufficiently high
Reynolds numbers.

Figure 6(a) shows the Reτ dependence of ψ for different Mw cases, along with
the incompressible results of Lee & Moser (2018) and Avsarkisov et al. (2014). The
uncertainty of ψ due to averaging over limited time samples is estimated via an
autoregressive method as described in Oliver et al. (2014) and Rezaeiravesh et al. (2022).
Consistent with previous findings, at a given Mw, ψ decreases with Reτ , but the Reynolds
number range considered is too narrow to predict the asymptotic behaviour of ψ . There is
a notable scatter among different Mw cases, particularly at large Reτ , and the discrepancy
is beyond the uncertainty limit. However, such scatter can be significantly reduced by
plotting ψ as a function of Re∗

τ,c (figure 6b), in which reasonably good collapses can
be observed between different Mw cases. It suggests that the scaling of ψ should follow
the incompressible situation when local flow properties are taken into consideration.
The larger discrepancy for the incompressible cases among different datasets might be
attributed to the domain size effect. For example, Lee & Moser (2018) found approximately
14 % variation in ψ between their small and large domain cases. This is further supported
by the results in Appendix B, where ψ between different domain sizes varies about 16 %
for Rew = 4000 and Mw = 1.5 case.

964 A29-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

35
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.359


J. Yao and F. Hussain

3.3. Reynolds stresses

The non-zero Reynolds stresses τij = ρ̄Rij with Rij = ũ′′
i u′′

j = ũiuj − ũiũj are examined
here. Figure 7 shows the normalized Reynolds normal stresses (τ11/τw, τ22/τw and τ33/τw)
for subsonic (left) and supersonic (right) cases. The streamwise Reynolds stress τ11/τw
increases with Reτ , presumably resulting from the enhanced outer large-scale structures
(Marusic et al. 2010). Different from PP flows, τ11/τw near the centreline strongly depends
on Reτ – partially due to non-zero turbulence production there. For the ILM500 case, a
secondary peak of τ11/τw develops at y∗ ≈ 200; but such a peak has not been observed for
compressible cases, perhaps due to relatively low Re∗

τ,c.
For the subsonic cases, the locations of the inner peaks are similar in the semilocal unit,

namely, y∗ ≈ 15 – consistent with other types of wall turbulence, such as PP (Lee & Moser
2015), pipe (Wu, Baltzer & Adrian 2012; Yao et al. 2023) and boundary layer (Schlatter
& Örlü 2010). However, as Mw increases, the inner peak locations seem to move closer to
the wall – becoming approximately 13.6 for Mw = 5.0. At comparable Re∗

τ,c (figure 7b),
τ11/τw for the compressible cases agrees with the incompressible cases in the outer region
but is larger near the wall – a feature also found for compressible PP flows (Modesti &
Pirozzoli 2016; Yao & Hussain 2020; Baranwal, Donzis & Bowersox 2022) and cooled
supersonic/hypersonic turbulent boundary layer (Zhang et al. 2018).

Figure 8(a) further shows the inner peak value of streamwise Reynolds stress (τ p
11/τw) as

a function of Re∗
τ,c. As expected, the τ p

11/τw grows with Re∗
τ,c (Lozano-Durán & Jiménez

2014; Lee & Moser 2015; Marusic, Baars & Hutchins 2017). Note that the Reynolds
number scaling of τ p

11 is still a highly debated issue in incompressible wall turbulent
flows. Previously, τ p

11/τw was assumed to increase logarithmically with Reτ (Marusic &
Monty 2019). Recently, Chen & Sreenivasan (2021), based on the bounded wall dissipation
assumption, argued that the growth of τ p

11/τw would eventually saturate at infinite Reynolds
number. The limited number and relatively narrow range of Reynolds numbers considered
here prohibit us from opining as to which scaling law better fits the data. In addition,
different from ψ , τ p

11/τw does not collapse among different Mw cases even if the semilocal
unit is employed. Similar behaviour has been recently reported in the compressible PP
flows (Yao & Hussain 2020) and hypersonic turbulent boundary layers (Zhang et al.
2018). As explained by Foysi, Sarkar & Friedrich (2004), the main reason is that due
to the non-local effect between the pressure and fluid inertia, the mean density ρ̄ does not
preserve inner scaling and, hence, cannot yield complete collapse between compressible
and incompressible cases.

Different from τ11/τw, good agreements are observed for the wall-normal (τ22/τw)
and spanwise (τ33/τw) components between incompressible and compressible cases at
matching Re∗

τ,c, with the exception of the region immediately adjacent to the wall. This
agrees with the previous observations for compressible turbulent PP flows (Modesti &
Pirozzoli 2016; Yao & Hussain 2020) and boundary layers (Duan, Beekman & Martin
2011; Huang, Duan & Choudhari 2022). With increasing Re∗

τ.c, τ33/τw increases, but
τ22/τw remains nearly unchanged – distinctly different from the PP flows. From figure 8(b),
it is clear that the inner peak value of spanwise Reynolds stress (τ p

33/τw) grows with Re∗
τ,c.

In addition, in contrast to τ p
11/τw, τ p

33/τw is independent of Mw.
Figure 9 further shows the Reynolds shear stress (τ12/τw). It starts from zero and

increases asymptotically to unity at the channel centre. Similar to τ22/τw, there is
substantial concordance between incompressible and supersonic situations at matching
Re∗
τ,c, except for the near-wall region. Different from the PP flow, where τ12/τw exhibits

slow but consistent growth with Reynolds number, τ12/τw for PC flows collapses very well
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Figure 7. Reynolds normal stress (non-dimensionalized by τw) for (a,c,e) subsonic and (b,d, f ) supersonic
cases: (a,b) τ11; (c,d) τ22; (e, f ) τ33. The dashed line in the inset of (c) denotes τ22/τw = by∗4 with b =
1.0 × 10−4, and the dashed line (- - - - -, red) and circles (◦, red) in (b,d, f ) denote the contribution of
large-scale structures (with spanwise wavelength λz ≥ 2h) to the Reynolds stresses for C10KM15 and I8KM00,
respectively.

between different Re∗
τ,c cases – indicating that τ12/τw is nearly universal in inner scaling

in PC flows.
Recently, Baranwal et al. (2022) found that, even if the semilocal scaling is used, the

near-wall asymptotic behaviour of Reynolds stresses for compressible PP flow differs
from the corresponding incompressible flow. In particular, due to the constraint of
the solenoidality of the velocity field, the near-wall asymptotic behaviour exhibits the
theoretical behaviour for low Mach numbers flows, e.g. τ22/τw ∼ y∗4 (figure 7c) and
τ12/τw ∼ y∗3 (figure 9a). However, wall-normal Reynolds stresses and Reynolds shear
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Figure 9. Reynolds shear stress (non-dimensionalized by τw) for (a) subsonic and (b) supersonic cases. The
dashed line in the inset of (a) denotes τ12/τw = cy∗3 with b = 1.0 × 10−3, and the dashed lines and circles
in (b) denote the contribution of large-scale structures (with spanwise wavelength λz ≥ 2h) for C10KM15 and
I8KM00, respectively.

stress components exhibit a decrease in slope as Mach number increases due to increased
dilatation effects. This is confirmed in figures 7(d) and 9(b). Therefore, in the near-wall
region, flow in compressible PC becomes more anisotropic than incompressible cases.

The turbulent kinetic energy production Pk = −τ12 dŨ/dy normalized by wall variables
μw/τ

2
w is displayed in figure 10. As expected, production is mainly concentrated in the

near-wall region and well collapses between different Rew at the same Mw. Different from
PP, PC flow has non-zero production at the channel centreline, whose value decreases with
increasing Rew. Assuming dŨ+/dy+ ∼= dU+/dy+ (as the correlation ρ′u′ is small), (2.1)
gives

Pk = −μw

μ
τ+

12(1 + τ+
12). (3.8)

Based on (3.8), the maximum of P+
k is approximately equal to 1/4 for the incompressible

cases, where μw/μ = 1 – consistent with the results shown in figure 10. In addition, the
peak occurs where the Reynolds shear stress −τ+

12 equals the viscous stress dŨ+/dy+.
From figure 10, the peak production decreases with increasing Mw. However, the peak

location y∗
P is roughly the same for all cases in the semilocal coordinates (i.e. y∗ ≈ 11).

In addition, τ+
12 collapses well between different Mw cases and is roughly equal to 1/2
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Figure 10. Turbulent kinetic energy production Pk = −τ+
12 dŨ+/dy+ as a function of y∗ for (a) subsonic and

(b) supersonic cases. The inset in (b) displays the peak production P+
k ( y∗

P) as a function of μw/μ( y∗
P) with the

dashed line denoting P+
k ( y∗

P) = (μw/μ( y∗
P))/4.

at y∗
P ≈ 11(figure 9). Therefore, following (3.8), the peak production for the compressible

cases can be estimated as P+
k ( y∗

P) = (μw/μ( y∗
P))/4 – suggesting that the decreases of P+

k
at high Mw are mainly due to the increase of viscosity. Table 3 lists μ( y∗

P)/μw for different
cases. It is clear that μ( y∗

P)/μw is less sensitive to Rew than Mw. In addition, as shown in
the inset of figure 10(b), the peak production as a function of μ( y∗

P)/μw closely follows
the prediction.

3.4. Thermodynamic variables
The mean fluid thermodynamic properties are of great importance in fully developed
compressible wall turbulence. Specifically, a key to understanding them lies in the rapid
wall-normal changes in ρ̄ and T̄ due to viscous heating (Ghosh, Foysi & Friedrich
2010). Figure 11(a) shows the mean temperature T̄/Tw as a function of y∗. Note that
for the current configuration, as the heat transfer at the wall should balance the viscous
heating, the temperature at the wall should be lower than that in the flow. As a result,
T̄/Tw continuously increases with y∗ and becomes roughly constant in the channel
centre – consistent with the observation in isothermal compressible PP flows (Huang
et al. 1995; Yao & Hussain 2020). And the temperature at the centre of the channel
T̄c only weakly depends on Re∗

τ . In particular, T̄c/Tw is approximately 1.1 for all the
subsonic Mw = 0.8 cases (table 3). Due to enhanced viscous heating, T̄/Tw increases
with Mw notably. For example, T̄c/Tw increases to 2.39 and 4.84 for Mw = 3 and 5,
respectively. Correspondingly, the mean density ρ̄/ρw has its maximum at the wall and
rapidly decreases with increasing y, particularly for the C4KM50 case (figure 11c). In
addition, ρ̄/ρw reaches a plateau near the channel centre – indicating the flow is mostly
incompressible in the core. Its value, which only mildly varies with Rew, progressively
decreases with increasing Mw.

Figure 11(b) shows (T̄ − Tw)/Tτ as a function of y∗. Here, Tτ = qw/(ρwcpuτ ) = −BqTw
is the friction temperature. While the agreement between different Mw is improved in the
near-wall region, notable differences can be observed, particularly for the Mw = 5 case –
confirming the previous claim that the mean thermodynamic properties, such as ρ̄, T̄ and
μ̄, do not preserve inner scaling.
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Figure 11. Mean temperature T̄ normalized by (a) wall temperature Tw and (b) friction temperature Tτ as a
function of y∗; mean density ρ̄ normalized by wall density ρw as a function of y/h, and temperature fluctuations
T ′2/T2

τ as a function of y∗. The inset in (d) is the root-mean-square (r.m.s.) of the temperature fluctuations

normalized by the wall temperature
√

T ′2/Tw.

Figure 11(d) shows the temperature fluctuations T ′2 (normalized by T2
τ ) as a function of

y∗. For a given Rew, T ′2/T2
τ collapses between different Mw in the outer region. Consistent

with τ11/τw, T ′2/T2
τ increases with both Re∗

τ and Mw in the near-wall region. In addition,
the location of the peak, which remain almost unchanged with Mw, shifts towards large y∗
at high Re∗

τ . While the peak value of root-mean-square (r.m.s.) temperature fluctuations√
T ′2 is negligible (within 1 % of Tw) for Mw = 0.8 cases, it strongly increases with

Mw – becoming approximately 21 % and 57 % for Mw = 3 and 5 cases, respectively.
This suggests that the fluctuations of thermodynamic properties become progressively
important at high Mw.

The mean temperature can be used to determine the mean velocity profiles and
the relation between heat transfer and skin friction coefficients. Here, we provide an
assessment of various velocity–temperature relationships in compressible PC flows (Walz
1969; Duan et al. 2011; Zhang et al. 2014), which can be written as

T
Tw

= 1 + α1
U

Uw
+ α2

(
U

Uw

)2

, (3.9)

with parameters α1 and α2 vary for different scaling relations. Note that different
from PP flow, where the centreline velocity is used, Uw is employed here for the
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Figure 12. (a) Mean temperature (T/Tw) as a function of mean velocity U/Uw for C10KM08, C10KM15 and
C4KM50, compared with (3.10a,b) (dashed-dotted line), (3.11a,b) (dashed line) and (3.11a,b) with Tc estimated
based on (3.12)(dotted); and (b) the temperature at the centreline (Tc/Tw) as a function of Mw and (b). Note
that the solid line in (b) denotes the relation (3.12) with rc = 0.783.

velocity normalization. For the Walz relation,

α1 = Tr − Tw

Tw
, α2 = −r

γ − 1
2

M2
c

Tc

TwU2
w
. (3.10a,b)

Here, r = Pr1/3 = 0.89 is the recovery factor and Tr = Tc[1 + (γ − 1)rM2
c/2] is the

recovery temperature. Similar to the VD transformation for the mean velocity, the Walz
relation and DNS are in good agreement for the boundary layer over an adiabatic wall
(Pirozzoli, Grasso & Gatski 2004), but have clear differences for diabatic cases (Duan
et al. 2010).

Zhang et al. (2014) later derived a generalized Reynolds analogy

α1 = Trg − Tw

Tw
, α2 = Tc − Trg

Tw
, (3.11a,b)

with rg = 2Cp(Tw − Tc)/U2
w − 2Prqw/(Uwτw) the so-called general recovery factor and

Trg = Tc + rgU2
w/(2Cp).

Figure 12(a) compares the DNS data with these velocity–temperature relations.
Equation (3.11a,b) provides a better fit than (3.10a,b) – similar to the findings in the
compressible PP flow (Yao & Hussain 2020) and the cooled turbulent boundary layer
(Zhang et al. 2018; Chen et al. 2022). Note that in PP flows, these relations cannot be
explicitly employed to derive the mean velocity as the centreline values of mean velocity
and temperature are not known a priori. However, such issues can be overcome for PC
flows if Tc can somehow be estimated (as Uw is fixed for all cases).

Recently, an empirical scaling for Tc in compressible PP flows with symmetric
isothermal boundary conditions was proposed by Song et al. (2022), and it can be extended
to PC flows as

Tc

Tw
= 1 + rc

γ − 1
2

M2
w, (3.12)

with rc the recovery factor for the mean temperature at the channel centreline.
Figure 12(b) shows the Tc/Tw as a function of Mw. It is clear that the scaling (3.12)

with rc = 0.783 obtained from fitting the DNS data proves to be a very good estimation
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Figure 13. Streamwise ρ̄˜u′′T ′′/(ρwuτTτ ) and wall-normal ρ̄˜v′′T ′′/(ρwuτTτ ) components of turbulent heat
flux as a function of y∗.

of Tc/Tw. Figure 12(a) further confirms that (3.11a,b) in combination with (3.12) also
produces an excellent correlation between mean velocity and temperature.

The turbulent heat flux is essential for modelling compressible flows. Figure 13 shows
streamwise ρ̄˜u′′T ′′ and wall-normal ρ̄˜v′′T ′′ components of turbulent heat flux (normalized
by ρwuτTτ ) as a function of y∗. Note that the ρ̄˜v′′T ′′/(ρwuτTτ ) has a much smaller
magnitude than ρ̄˜u′′T ′′/(ρwuτTτ ), and, in contrast with the Reynolds shear stress, it does
not have a universal profile. For both quantities, there is a notable increase in the peak
magnitude with increasing Re∗

τ,c, and the corresponding peak location also shifts away

from the wall. With increasing Mw, ρ̄˜u′′T ′′ at a given Rew increases/decreases in the
near-wall/outer regions, respectively. But, ρ̄˜v′′T ′′ decreases with increasing Mw in the
whole range of y. Such discrepancy between different Mw cases is partially attributed to
the slight difference in Re∗

τ,c.

3.5. Energy spectra
Energy spectra, which illustrate how the kinetic energy of turbulence is dispersed across
different scales, have been extensively utilized to get a deeper comprehension of the
turbulence cascade (Jiménez 2012). Figures 14 and 15, respectively, show the premultiplied
streamwise spectra kxEρuu/τw and kxEρuv/τw as a function of λx/h and y∗. Note that
following Patel et al. (2015), the spectrum is computed for the velocity fluctuation
weighted by the local density so that the premultiplied spectra represent its contribution
to the intensity of the Reynolds stresses. It has been established previously that semilocal
scaling can result in a superior collapse compared with wall unit scaling (Yao & Hussain
2019). The kxEρuu/τw spectra clearly show the presence of an energetic inner peak at
y∗ ≈ 13 – corresponding to the near-wall self-sustaining regenerative cycle (Waleffe 1997;
Schoppa & Hussain 2002). For a given Mw, the streamwise wavelength in physical
unit λx/h decreases with increasing Reτ , but remains roughly the same in semilocal
units λ∗x ≈ 1000, which represents the average length of near-wall streaks. Figure 16(a)
compares kxEρuu/τw as a function of λ∗x between C10KM15 and I8KM00 cases. Although
the length scales do not vary with Mw, the magnitudes of the inner peak increase with Mw
– consistent with the larger τ11/τw in figure 7(a,b).

Another notable difference between different Mw cases is the energy content near
the channel centre. The energy at large wavelengths is enhanced with increasing Mw,
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Figure 14. Premultiplied streamwise spectra of streamwise velocity kxEρuu/τw.

particularly for higher Re∗
τ,c. Note that such an increase in the energy content at large

λx/h does not imply that the large-scale structures at high Mw are stronger than those in
incompressible case but rather that they are less uniform in the streamwise direction, as
depicted in the flow visualization in § 3.6. The kxEρuv/τw spectra (figure 15) have similar
features to kxEρuu/τw, except that the inner peak is located at smaller λx/h and higher y∗.
In addition, the magnitude of the inner peak is less sensitive to Mw and Re∗

τ,c – consistent
with that observed for the Reynolds shear stress τ12/τw profiles in figure 9.

Figures 17 and 18 display the premultiplied spanwise spectra kzEρuu/τw and kzEρuv/τw,
respectively. First, a distinct low wavelength peak in kzEρuu/τw occurs near the wall.
For both the incompressible and compressible cases, the typical length scale of the
peak remains nearly universal in semilocal units, namely, λ∗z � 110. A salient feature of
the PC flow is the pronounced peak at large spanwise wavelengths. This peak has its
maximum magnitude at the centreline and spans almost the whole channel (i.e. until
y∗ ≈ 5). It results from the large-scale streamwise rollers inherent to PC flow, whose
strength increases with the Reynolds number (Komminaho et al. 1996; Tsukahara et al.
2006). Different from the kxEρuu/τw, good agreements of kzEρuu/τw can be observed
between the compressible and incompressible cases at comparable Re∗

τ,c (see figure 16b) –
suggesting that these large-scale structures have similar features in the spanwise direction.
The spanwise scale of the outer peak is approximately λz/h ∼ 1.5π, which is one quarter
of our spanwise domain – similar to the previous observations by Avsarkisov et al. (2014)
and Lee & Moser (2018). In addition, for a given Rew, the magnitude of the peak decreases
with increasing Mw – consistent with a decrease in Re∗

τ,c. Note that in the PP flow, a distinct
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Figure 15. Premultiplied streamwise spectra of Reynolds shear stress kxEρuv/τw.
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Figure 16. One-dimensional premultiplied spectra of streamwise velocity kEρuu/τw at different wall-normal
locations as functions of (a) λ∗x and (b) λ∗z for C10KM15 and I8KM00 cases.

outer peak is not observed until Reτ > 5000 (Lee & Moser 2015), and it is with a much
smaller spanwise length scale (i.e. λz ∼ h) and does not extend that close to the wall.

The kzEρuv/τw spectra are quite similar to kzEρuu/τw, but the sharp peak at large
spanwise wavelengths does not extend that near to the wall. The contributions of
large-scale structures (defined with scales that with spanwise wavelength λz ≥ 0.5πh) to
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Figure 17. Premultiplied spanwise spectra of streamwise velocity kzEρuu/τw.

the Reynolds stresses are further shown in figures 7 and 9 for C10KM15 and I8KM00
cases. They progressively increase with y and achieve their maximum near channel
centreline (e.g. approximately 40 % of the total Reynolds shear stress at y/h = 0).

3.6. Instantaneous turbulence structures
Figure 19 visualizes the instantaneous streamwise velocity field in the x–z plane at
the channel centreline (i.e. y/h = 0). For all cases, there are well-defined streaks that
alternate in sign along the spanwise direction. For a given Mw, the streaks undergo
strong meandering along the streamwise directions at low Re∗

τ,c and become stronger and
more streamwise uniform as Re∗

τ,c increases (e.g. see the middle column for C2KM15,
C4KM15 and C10KM15 cases). This is consistent with the finding by Lee & Moser
(2018) that the coherence of the streaks significantly increases with Reynolds number,
and, eventually, the large-scale meandering becomes too small to be identified even with
a relatively large simulation domain (e.g. Lx = 100πh). And for a given Re∗

τ,c case, the
streaks for the compressible cases are less organized/coherent in streamwise direction than
in incompressible cases – akin to the observation by Buell (1991). For example, the streaks
for the incompressible I8KM00 case become almost streamwise uniform but remain wavy
for the supersonic C10KM15 case, which are responsible for the strong energy content at
large wavelengths in the streamwise spectrum (figure 14). This finding is also consistent
with the instability analysis by Malik, Alam & Dey (2006), who found that the most
unstable streamwise wavenumber increases with Mw.
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Figure 18. Premultiplied spanwise spectra of Reynolds shear stress kzEρuv/τw.

Figure 20 shows a snapshot of the instantaneous streamwise velocity in a cross-stream
(y–z) plane for the I8KM00 and C10KM15 cases. First, numerous small-scale streaks
appear near both walls, and their sizes in the physical unit are comparable between these
two cases. Furthermore, there also exist large-scale streaks, with the spanwise length
scale comparable to the channel height. For the I8KM00 case, the large-scale streaks
extend beyond the centreline, reaching very close to the opposite wall. This effect is less
apparent for the C10KM15 case – mainly due to the density stratification caused by the
wall cooling. Since the spanwise wavelength remains the same, the flank angles of the
large-scale streaks become smaller for the compressible case – affecting the generation of
large-scale streamwise vortices via instability/transient growth (Waleffe 1997; Schoppa &
Hussain 2002).

Figure 21 further shows the vortical structures in the bottom half-channel (i.e. −1 ≤
y ≤ 0) together with the streamwise velocity fluctuations (u′/Uw) at y∗ = 15. Note that
the vortices are visualized using the isosurfaces of λρ criterion (Yao & Hussain 2018).
The distributions of λρ structures are quite similar between the I8KM00 and C10KM15
cases. While the buffer layer is dominated by quasi-streamwise vortices, the log and outer
regions exhibit a few hairpin-like vortices. Furthermore, the footprint of large-scale streaks
influences the strengths of these vortical structures. Specifically, they are stronger/weaker
in the vicinity of large-scale high-speed/low-speed regions, respectively – consistent with
the observation of previous studies (Ganapathisubramani et al. 2012; Hwang & Sung
2017).
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Figure 19. Instantaneous streamwise velocity in x − z plane at the channel centreline (i.e. y/h = 0).
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Figure 20. Comparison of instantaneous streamwise velocity in a cross-stream (y–z) plane for (a) I8KM00
and (b) C10KM15 cases.
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Figure 21. Instantaneous λρ vortical structures shaded with the streamwise velocity u for (a) I8KM00 and (b)
C10KM15 cases. Note that the grey colour denotes the streamwise velocity fluctuations u′/Uw at y∗ = 15.

3.7. Large-scale streamwise rollers
Considering that streamwise coherence exists throughout the entire streamwise
computational domain, we further compare the time evolution of streamwise-averaged
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Figure 22. (a) Time evolution of streamwise velocity u averaged in streamwise direction at the channel
centreline as a function of z; (b) streamwise- and temporal-averaged streamwise velocity and the streamfunction
with solid and dashed lines denoting the positive and negative values, respectively.

velocity 〈u〉x at the channel centreline for I8KM00 and C10KM15 cases (figure 22a).
Similar to the findings in Lee & Moser (2018), 〈u〉x for the I8KM00 case also appears
to be coherent in time with no significant spanwise drift over time. This suggests
that a more comprehensive representation of the large-scale structures can be obtained
through further temporal averaging. Figure 22(b) shows the corresponding streamwise-
and time-averaged streamwise velocity 〈u〉x,t and streamfunction in the cross-stream (y–z)
plane. The structures are composed of pairs of counter-rotating streamwise rollers that
occupy the entire region between the two walls. Note that due to the periodic boundary
condition employed, the separation distance between these counter-rotating rollers �zr
slightly depends on the spanwise domain size. For example, �zr is Lz/4(= 1.5πh) in
our case but is �zr = 5π/3 in Lee & Moser (2018). As the streamwise velocity for
compressible cases is meandering in the streamwise direction, 〈u〉x has a relatively smaller
amplitude than in incompressible cases. Furthermore, it is also less coherent in time,
particularly for the C10KM15 case. Consequently, compared with the I8KM00 case, the
streamwise and temporal averaged large-scale structures are less organized.

The two-point auto-correlation of the streamwise velocity is employed to probe the
nature of the large-scale structures quantitatively

Ruu(rx, rz, y, yr) = 〈u′(xr, yr, zr)u′(x + rx, y, z + rz)〉
〈u′2〉1/2( y)〈u′2〉1/2( yr)

, (3.13)

where (xr, yr, zr) is the reference point, and rx and rz are the separation distances in the x-
and z-directions, respectively.

Figure 23 displays the two-point auto-correlation of the streamwise velocity at the
centreline Ruu(rx, rz, 0, 0) for I8KM00 and C10KM15 cases. First, there is a regular
alternation in the sign of Ruu(rx, rz, 0, 0) in the spanwise direction, with a wavelength
λz/h = 1.5π, which does not vary with Mw – consistent with the presence of the prominent
peaks in the spanwise energy spectra in figure 17. As observed by Lee & Moser (2018),
the correlation coefficients for the I8KM00 case do not alter the sign over the entire
streamwise direction – indicating that the computational domain size employed is not
sufficient for capturing one streamwise wavelength of the large-scale structures. With
increasing Mw, Ruu(rx, 0, 0, 0) drops much faster and changes the sign for the C10KM15
case. The location for Ruu(rx, 0, 0, 0) to be zero becomes shorter with higher Mw.
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Figure 23. Two-point correlations of streamwise velocity Ruu(rx, rz, 0, 0) in the x–z plane at the channel
centreline.

It implies that the streamwise wavelength of the dominant large-scale structures decreases
with increasing Mw. A much longer streamwise domain size would obviously be required
to measure the exact length scale.

Figures 24(a) and 24(b), respectively, show the contour plots of the two-point
auto-correlation of the streamwise velocity in the (x–y) and (x–z) planes for the C10KM15
case. Note that the reference point is chosen to be in the channel centre (i.e. yr = 0), and the
dashed lines denote the results for the I8KM00 case. Consistent with the energy spectra,
the structures fill in the whole domain between the two moving walls. The distribution
of Ruu(rx, 0, y, 0) are leading (top wall) and trailing (bottom wall) with respect to the
centreline. In addition, the negative correlation appears in a wide region of rx > 6πh.
Note that the negative region is not observed for the I8KM00 case – consistent with the
results shown in figure 19 that the streaks are almost streamwise uniform. The distribution
of Ruu(0, rz, y, 0) reveals the existence of organized pairs of counter-rotating streamwise
rollers, which share similar characteristics between the C10KM15 and C8KM00
cases.

3.8. Amplitude modulation
The modulating effect of outer large-scale streamwise rollers on the near-wall small-scale
structures is further investigated here. This was first studied by Bandyopadhyay & Hussain
(1984) and later extended by Mathis, Hutchins & Marusic (2009) by introducing a
single-point correlation coefficient

RAM( y+) = u+
L EL(u+

S )√
u+2

L

√
EL(u+

S )
2
, (3.14)

where
√

u+2
L and

√
EL(u+

S )
2 denote the r.m.s. of the large-scale signal u+

L and the filtered
envelope of small-scale signal EL(u+

S ). Note that EL(u+
S ) is obtained by applying Hilbert

transform to the small-scale component u+
S and then low-passed filtered at the same

cutoff wavelength as the large-scale component. When considering amplitude modulation,
it typically requires at least information at two different wall-normal locations, hence
the two-point correlations. However, Mathis et al. (2009) showed that the one-point
correlation RAM provided a fair estimation of the degree of modulation when compared
with the ideal two-point coefficient. The reason is that the large scales in the outer region
affect the near-wall small scales through direct penetration; hence, they have their footprint

964 A29-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

35
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.359


J. Yao and F. Hussain

–12π –8π –4π 0

rz /h

rx/h

y/h

y/h

4π 8π
–1

0

1

–1.0

–0.5

0

0.5

1.0

12π

–3π –2π π 0 π 2π 3π
–1.0

–0.5

0

0.5

1.0(b)

(a)

Figure 24. Two-point correlations of streamwise velocity (a) Ruu(rx, 0, y, 0) and (b) Ruu(0, rz, y, 0) for the
C10KM15 case. The black dashed line is for the I8KM00 case.

in the near wall, which is evident from the premultiplied energy spectra (figure 17) and
instantaneous flow visualization (figure 21).

Following Dogan et al. (2019), we employ the two-dimensional spectral filter to separate
the velocity filed into large and small scales. In particular, the small scales are defined
as those with wavelengths smaller than the cutoffs both in the streamwise and spanwise
directions. Regarding the cutoffs, λx/h ≈ 2π and λz/δ ≈ 0.5π are used, which, based on
inspection of the spectra (figures 16 and 17), represent the boundary between the large
and small scales. (Note that altering the filter size revealed no qualitative difference is
noticed.)

Figure 25 shows the one-point amplitude modulation coefficient RAM as a function
of y∗. For comparison, results from PP flows at Reτ = 380 (Yao & Hussain 2020) and
from turbulent boundary layer at Reτ ≈ 3000 (Mathis et al. 2009) are also included. A
large RAM (i.e. 0.6) in the viscous sublayer suggests a high level of modulation of the
near-wall small scales by the large scales, presumably the streamwise rollers. This effect is
of major significance regarding the roles and large-scale and very-large-scale motions as
their footprints interact (via both sweep and shear) with near-wall, small-scale structures.
The value of RAM decreases to approximately zero in the log region and becomes negative
in the outer region. Furthermore, RAM between the I8KM00 and C10KM15 cases collapse
very well across the whole wall-normal range. This shows that the modulation effect
between incompressible and compressible cases is quite similar when the semilocal
Reynolds numbers at the channel centreline Re∗

τ,c are equal. In addition, RAM in PC flows
is much stronger than in PP flows at comparable Reτ and is nearly comparable to turbulent
boundary layer at much higher Reτ (i.e. ≈ 3000). Therefore, PC flow can be employed to
better explore the physics and control of the large- and small-scale interactions – without
the need for extremely high Reynolds numbers (Pirozzoli, Bernardini & Orlandi 2011).
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Figure 25. Distribution of the one-point amplitude modulation coefficient RAM for C10KM15 and
I8KM00 cases.

4. Concluding remarks

Direct numerical simulations of compressible turbulent PC flows are conducted for Rew =
1500, 4000 and 10 000 with the highest Mw up to 5. While Cf decreases with Rew, it only
weakly depends on Mw. In addition, the thermodynamic properties (e.g. mean temperature,
density, etc.) strongly vary with Mw. Consistent with prior research on other types of wall
turbulence, the compressibility effects on most turbulent statistics can be well incorporated
by using the semilocal scaling based on the local mean viscosity and density. In particular,
the mean velocity profiles under TL transformation (Trettel & Larsson 2016) collapse very
well with the incompressible ones at comparable Re∗

τ,c and develop a logarithmic layer
that extends closer to the channel centreline with a Kárman constant κ = 0.41. Reynolds
stresses exhibit the same behaviours as incompressible flows, including peak locations and
magnitudes. The inner peak of the streamwise Reynolds stress for PC increases with Mw,
which is consistent with the findings for compressible PP flows. In addition, due to rapid
wall-normal changes of viscosity caused by viscous heating, the turbulent production in
the near-wall region decreases as Mw increases, and its peak, when scaled in wall units,
follows P+

k ( y∗
P) = (μw/μ( y∗

P))/4, where y∗
P(≈ 11) is the peak location in semilocal units.

The one-dimensional streamwise and spanwise premultiplied velocity spectra are also
examined. The streamwise velocity spectra show a distinct inner peak located at λ∗x ≈ 1000
and λ∗z ≈ 110 – indicating that the near-wall structures are universal for all types of wall
turbulence. In addition, the spanwise spectra display an outer peak located at λz/h ≈ 1.5h.
This peak has its maximum magnitude at the centreline and spans over the whole
channel depth (i.e. until approximately y∗ = 5) – resulting from the large-scale streamwise
structures specific to PC flows. The characteristics of these structures are examined by
flow visualization. For strictly incompressible cases, the structures are comprised pairs of
streamwise-uniform, counter-rotating rollers that occupy the entire region between the two
parallel walls. As Mw increases, the large-scale structures become less organized/coherent
in the streamwise direction. The two-point auto-correlation further confirms that the
streamwise length scale of these structures decreases with increasing Mw. The reason for
this still needs further investigation. The amplitude modulation of near-wall small-scale
structures by the large-scale streamwise rollers is also studied. A high level of modulation
of large scales on small scales is observed close to the wall. In addition, the modulation
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Figure 26. (a) Mean velocity (U+) and (b) velocity variances and covariance for the case with Rew = 1500
and Mw = 0.2. Solid lines and circles, respectively, represent results from our DNS and from Lee & Moser
(2018) at Reτ = 93.

effect is quite similar between incompressible and compressible cases at similar Re∗
τ,c –

but much stronger than in PP flows.
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Appendix A. Validation of numerical solver for PC flow at low Mach number

The solver has been extensively validated in our previous works (Yao & Hussain
2019, 2020) for the PP configuration by comparing flow statistics with both the
incompressible dataset of Lee & Moser (2015) and the compressible dataset of Modesti
& Pirozzoli (2016). The solver is validated here for the compressible PC flow at Rew =
1500 in the nearly incompressible region (i.e. Mw = 0.2) and compared with the strictly
incompressible data of Lee & Moser (2018). The domain size and the corresponding
number of grid points are the same as in the C2KM08 and C2KM15 cases, which results
in mesh resolutions of �x+ = 9.2, �y+

w = 0.22, �y+
c = 2.99 and �z+ = 4.6. Figure 26

shows the profiles of mean velocity (U+) and Reynolds stresses (τ+
ij ). Excellent agreement

is observed, except for minor differences near the peak and centre of τ+
11.

Appendix B. Domain size effect for compressible PC flow

Numerical simulations of PC flow with periodic boundary conditions are known to
be highly sensitive to the computational domain size – potentially leading to artificial
confinement effects (Komminaho et al. 1996; Pirozzoli et al. 2014). The effect of the
domain size on flow physics is further examined by performing additional DNSs with
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Figure 27. (a) The TL transformed mean velocity profiles transformed and (b) Reynolds stresses for different
domain sizes with Rew = 4000 and Mw = 1.5. The dashed and dash-dotted lines in (a) denote U∗ = y∗ and
log law U∗ = (1/κ) ln y∗ + B, where κ = 0.41 and B = 5.2.

Case Reτ Re∗
τ,c Lx × Ly × Lz Nx × Ny × Nz Tuτ /h ψ

C4KM15S 249.4 170.6 12πh × 2h × 3πh 768 × 193 × 384 48.3 0.190
C4KM15M 251.5 172.2 24πh × 2h × 3πh 1536 × 193 × 384 32.7 0.167

Table 4. Summary of the simulation parameters for different domain size cases with Rew = 4000 and
Mw = 1.5. Here, ψ is the velocity gradient at the channel centreline.

various streamwise and spanwise lengths at Rew = 4000 and Mw = 1.5. The details of
domain sizes, grid sizes and resolutions are listed in table 4.

Figure 27(a) shows the mean velocity profiles based on the TL transformation as a
function of y∗. While the agreement between different cases is good in the near-wall
region, notable discrepancies are observed near the channel centreline. Compared with the
C4KM15 case, the velocity gradient at the channel centreline ψ for the C4KM15S case is
increased by approximately 16 % (table 4). This suggests that the larger discrepancy in ψ
results from the domain size effect, particularly in the streamwise direction. Figure 27(b)
shows the Reynolds normal and shear stresses as a function of y∗. Interestingly, τ11/τw
is the only component that exhibits certain disagreement. Specifically, τ11/τw for the
C4KM15S case is slightly smaller than in other cases, particularly in the outer regions.
It confirms that the domain size employed in the main text is sufficient to yield good
statistics. Figure 28 shows the two-point auto-correlation of the streamwise velocity at
the centreline Ruu(rx, rz, 0, 0) for different domain size cases. Consistent with figure 23, a
regular alternation in the sign of Ruu(rx, rz, 0, 0) in the spanwise direction exists, and the
wavelength is the same between different cases; namely, λz/h = 1.5π. This confirms that
the characteristics of the large-scale spanwise roller is not very sensitive to the spanwise
domain size. The correlation coefficients for the C4KM15S case do not alter sign across
the entire streamwise direction. In particular, the correlation falls to 0.15 at rx/h = Lx/2
and rz = 0 – indicating that the streamwise computational domain size (i.e. Lx = 12π)
is not sufficient for capturing one streamwise wavelength of the large-scale structures.
With increasing Lx, Ruu(rx, 0, 0, 0) does change sign. It is approximately rx/h ≈ 6π for
the C4KM15M case – consistent with the observation in figure 23 for the C10KM15 case.
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Figure 28. Two-point correlations of streamwise velocity Ruu(rx, rz, 0, 0) in a wall-parallel (x–z) plane at the
channel centreline for different domain sizes with Rew = 4000 and Mw = 1.5.
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