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Abstract

Deep learning (DL) constitutes a modern technique for image processing, with large potential.
Having been successfully applied in various areas, it has recently also entered the domain of agri-
culture. In the current paper, a survey was conducted of research efforts that employ convolu-
tional neural networks (CNN), which constitute a specific class of DL, applied to various
agricultural and food production challenges. The paper examines agricultural problems under
study, models employed, sources of data used and the overall precision achieved according to
the performance metrics used by the authors. Convolutional neural networks are compared
with other existing techniques, and the advantages and disadvantages of using CNN in agricul-
ture are listed. Moreover, the future potential of this technique is discussed, together with the
authors’ personal experiences after employing CNN to approximate a problem of identifying
missing vegetation from a sugar cane plantation in Costa Rica. The overall findings indicate
that CNN constitutes a promising technique with high performance in terms of precision and
classification accuracy, outperforming existing commonly used image-processing techniques.
However, the success of each CNNmodel is highly dependent on the quality of the data set used.

Introduction

Smart farming (Tyagi, 2016) is important for tackling various challenges of agricultural pro-
duction such as productivity, environmental impact, food security and sustainability (Gebbers
and Adamchuk, 2010). As the global population is growing continuously (Kitzes et al., 2008), a
large increase of food production must be achieved (FAO, 2009). This must be accompanied
with the protection of natural ecosystems by means of using sustainable farming procedures.
Food needs to maintain a high nutritional value while its security must be ensured around the
world (Carvalho, 2006).

To address these challenges, complex, multivariate and unpredictable agricultural ecosys-
tems need to be better understood. This would be achieved by monitoring, measuring and
analysing various physical aspects and phenomena continuously. The deployment of new
information and communication technologies (ICT) for small-scale crop/farm management
and larger scale ecosystem observation will facilitate this task, enhancing management and
decision-/policy-making by context, situation and location awareness.

Emerging ICT technologies relevant for understanding agricultural ecosystems include
remote sensing (Bastiaanssen et al., 2000), the Internet of Things (IoT) (Weber and Weber,
2010), cloud computing (Hashem et al., 2015) and big data analysis (Chi et al., 2016;
Kamilaris et al., 2017). Remote sensing, by means of satellites, planes and unmanned aerial
vehicles (UAV, i.e. drones) provides large-scale snapshots of the agricultural environment. It
has several advantages when applied to agriculture, being a well-known, non-destructive
method to collect information about earth features. Remote-sensing data may be obtained sys-
tematically over very large geographical areas, including zones inaccessible to human explor-
ation. The IoT uses advanced sensor technology to measure various parameters in the field,
while cloud computing is used for collection, storage, pre-processing and modelling of huge
amounts of data coming from various, heterogeneous sources. Finally, big data analysis is
used in combination with cloud computing for real-time, large-scale analysis of data stored
in the cloud (Waga and Rabah, 2014; Kamilaris et al., 2016).

These four technologies (remote sensing, IoT, cloud computing and big data analysis) could
create novel applications and services that could improve agricultural productivity and increase
food security, for instance by better understanding climatic conditions and changes.

A large sub-set of the volume of data collected through remote sensing and the IoT involves
images. Images can provide a complete picture of the agricultural fields, and image analysis
could address a variety of challenges (Liaghat and Balasundram, 2010; Ozdogan et al.,
2010). Hence, image analysis is an important research area in the agricultural domain, and
intelligent analysis techniques are used for image identification/classification, anomaly detec-
tion, etc., in various agricultural applications (Teke et al., 2013; Saxena and Armstrong, 2014).
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Of these, the most common sensing method is satellite-based,
using multi-spectral and hyperspectral imaging. Synthetic aper-
ture radar, thermal and near infrared cameras have been used
to a lesser extent (Ishimwe et al., 2014), while optical and X-ray
imaging have been applied in fruit and packaged food grading
(Saxena and Armstrong, 2014). The most common techniques
used for image analysis include machine learning (K-means, sup-
port vector machines (SVM) and artificial neural networks
(ANN), amongst others), wavelet-based filtering, vegetation indi-
ces such as the normalized difference vegetation index (NDVI)
and regression analysis (Saxena and Armstrong, 2014).

Besides the aforementioned techniques, deep learning (DL;
LeCun et al., 2015) is a modern approach with much potential
and success in various domains where it has been employed
(Wan et al., 2014; Najafabadi et al., 2015). It belongs to the
research area of machine learning and it is similar to ANN
(Schmidhuber, 2015). However, DL constitutes a ‘deeper’ neural
network that provides a hierarchical representation of the data
by means of various convolutions. This allows better learning cap-
abilities in terms of capturing the full complexity of the real-life
task under study, and thus the trained model can achieve higher
classification accuracy.

The current survey examines the problems that employ a par-
ticular class of DL named convolutional neural networks (CNN),
defined as deep, feed-forward ANN. Convolutional neural
networks extend classical ANN by adding more ‘depth’ into
the network, as well as various convolutions that allow data
representation in a hierarchical way (LeCun and Bengio, 1995;
Schmidhuber, 2015) and they have been applied successfully in
various visual imagery-related problems (Szegedy et al., 2015).

The motivation for preparing this survey stems from the fact
that CNN have been employed recently in agriculture, with grow-
ing popularity and success, and the fact that today more than 20
research efforts employing CNN exist for addressing various agri-
cultural problems. As CNN constitute probably the most popular
and widely used technique in agricultural research today, in pro-
blems related to image analysis, the current survey focuses on this
specific sub-set of DL models and techniques. To the authors’
knowledge, this is the first survey in the agricultural domain
that focuses on this practice, although a small number of more
general surveys do exist (Deng and Yu, 2014; Wan et al., 2014;
Najafabadi et al., 2015), presenting and analysing related work
in other research domains and application areas. For a more com-
plete review on DL approaches in agriculture, please refer to
Kamilaris and Prenafeta-Boldú (2018).

The aim of the current research was to introduce the technique
of CNN, as a promising and high-potential approach for addres-
sing various challenges in agriculture related to computer vision.
Besides analysing the state of the art work at the field, a practical
example of CNN applied in identifying missing vegetation based
on aerial images is presented in order to further illustrate the ben-
efits and shortcomings of this technique.

Methodology

The bibliographic analysis involved two steps: (a) collection of
related work; and (b) detailed review and analysis of these col-
lected works.

In the first step, a keyword-based search for conference papers
and articles was performed between August and September 2017.
Sources were the scientific databases IEEE Xplore and
ScienceDirect, as well as the web scientific indexing services

Web of Science and Google Scholar. The following keywords
were used in the search query:

[‘deep learning’ | ‘convolutional neural networks’] AND [‘agri-
culture’ OR ‘farming’].

In this way, papers referring to CNN but not applied to the
agricultural domain were filtered out. From this effort, 27 papers
were identified initially. Restricting the search for papers to appro-
priate application of the CNN technique and meaningful findings,
the initial number of papers was reduced to 23. The following cri-
teria were used to define appropriate application of CNN:

1. Use of CNN or CNN-based approach as the technique for
addressing the problem under study.

2. Target some problem or challenge related to agriculture.
3. Show practical results by means of some well-defined perform-

ance metrics that indicate the success of the technique used.

Some performance metrics, as identified in related work under
study, are the following:

• Root mean square error (RMSE): Standard deviation of the dif-
ferences between predicted values and observed values.

• F1 Score: The harmonic mean of precision and recall. For
multi-class classification problems, F1 is averaged among all
the classes.

• Quality measure (QM): Obtained by multiplying sensitivity
(proportion of pixels that were detected correctly) and specifi-
city (which proportion of detected pixels are truly correct;
Douarre et al., 2016).

• Ratio of total fruits counted (RFC): Ratio of a predicted count of
fruits by a CNN model, v. the actual count performed offline by
the authors or by experts (Chen et al., 2017; Rahnemoonfar and
Sheppard, 2017).

• LifeCLEF metric (LC): A score related to the rank of the correct
species in the list of retrieved species during the LifeCLEF 2015
Challenge (Reyes et al., 2015).

In the second step, the 23 papers selected from the first step
were analysed one by one, considering the following research
questions: (a) the problem they addressed, (b) approach
employed, (c) sources of data used and (d) the overall precision.
Also recorded were: (e) whether the authors had compared
their CNN-based approach with other techniques, and (f) what
was the difference in performance. Examining how CNN per-
forms in relation to other existing techniques was a critical aspect
of the current study, as it would be the main indication of CNN
effectiveness and performance. It should be noted that it is diffi-
cult if not impossible to compare between different metrics for
different tasks. Thus, the current paper focuses only on compari-
sons between techniques used for the same data in the same
research paper, using the same metric.

Convolutional neural networks

In machine learning, CNN constitutes a class of deep, feed-
forward ANN that has been applied successfully to computer
vision applications (LeCun and Bengio, 1995; Schmidhuber,
2015).

In contrast to ANN, whose training requirements in terms of
time are impractical in some large-scale problems, CNN can learn
complex problems particularly fast because of weight sharing and
more complex models used, which allow massive parallelization
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(Pan and Yang, 2010). Convolutional neural networks can
increase their probability of correct classifications, provided
there are adequately large data sets (i.e. hundreds up to thousands
of measurements, depending on the complexity of the problem
under study) available for describing the problem. They consist
of various convolutional, pooling and/or fully connected layers
(Canziani et al., 2016). The convolutional layers act as feature
extractors from the input images whose dimensionality is then
reduced by the pooling layers, while the fully connected layers
act as classifiers. Usually, at the last layer, the fully connected
layers exploit the high-level features learned, in order to classify
input images into predefined classes (Schmidhuber, 2015).

The highly hierarchical structure and large learning capacity of
CNN models allow them to perform classification and predictions
particularly well, being flexible and adaptable in a wide variety of
complex challenges (Oquab et al., 2014).

Convolutional neural networks can receive any form of data as
input, such as audio, video, images, speech and natural language
(Abdel-Hamid et al., 2014; Karpathy et al., 2014; Kim, 2014;
Kamilaris and Prenafeta-Boldú, 2017), and have been applied suc-
cessfully by numerous organizations in various domains, such as
the web (i.e. personalization systems, online chat robots), health
(i.e. identification of diseases from MRI scans), disaster manage-
ment (i.e. identifications of disasters by remote-sensing images),
post services (i.e. automatic reading of addresses), car industry
(i.e. autonomous self-driving cars), etc.

An example of CNN architecture (Simonyan and Zisserman,
2014) is displayed in Fig. 1. As the figure shows, various convolu-
tions are applied at some layers of the network, creating different
representations of the learning data set, starting from more gen-
eral ones at the first, larger layers and becoming more specific
at the deeper layers. A combination of convolutional layers and
dense layers tends to present good precision results.

There exist various ‘successful’ popular architectures which
researchers may use to start building their models instead of start-
ing from scratch. These include AlexNet (Krizhevsky et al., 2012),
the Visual Geometry Group (VGG; Simonyan and Zisserman,
2014) (displayed in Fig. 1), GoogleNet (Szegedy et al., 2015)
and Inception-ResNet (Szegedy et al., 2017). Each architecture
has different advantages and scenarios where it is used more
appropriately (Canziani et al., 2016). It is also worth noting that
almost all the aforementioned architectures come with their
weights pre-trained, i.e. their network has already been trained
by some data set and has thus learned to provide accurate

recognition for some particular problem domain (Pan and
Yang, 2010). Common data sets used for pre-training DL archi-
tectures include ImageNet (Deng et al., 2009) and PASCAL
VOC (http://host.robots.ox.ac.uk/pascal/VOC/).

Moreover, there are various tools and platforms that allow
researchers to experiment with DL (Bahrampour et al., 2015).
The most popular ones are Theano, TensorFlow, Keras (which
is an Application Programming Interface (API) on top of
Theano and TensorFlow), Caffe, PyTorch, TFLearn, Pylearn2
and the Deep Learning Matlab Toolbox. Some of these tools
(i.e. Theano, Caffe) incorporate popular architectures such as
the ones mentioned above (i.e. AlexNet, VGG, GoogleNet), either
as libraries or classes.

Convolutional neural network applications in agriculture

Appendix I lists the relevant works identified, indicating the par-
ticular problem they addressed, the agricultural area involved,
sources of data used, overall precision achieved and details of
the CNN-based implementation as well as comparisons with
other techniques, wherever available.

Areas of use

Twelve areas have been identified in total, with the most popular
being plant- and leaf-based disease detection (three papers), land
cover classification (three papers), plant recognition (three
papers), fruit counting (four papers) and weed identification
(three papers).

It is remarkable that all papers have been published after 2014,
indicating how recent and modern this technique is in the domain
of agriculture. More precisely, six of the papers were published in
2017, ten in 2016, six in 2015 and one in 2014.

The majority of these papers dealt with image classification
and identification of areas of interest, including detection of
obstacles (Christiansen et al., 2016; Steen et al., 2016) and fruit
counting (Sa et al., 2016; Rahnemoonfar and Sheppard, 2017),
while some other papers focused on predicting future values
such as maize yield (Kuwata and Shibasaki, 2015) and soil mois-
ture content in the field (Song et al., 2016).

From another perspective, most papers (19) targeted crops,
while few considered the issues of land cover (three papers) and
livestock agriculture (one paper).

Data sources

Observing the sources of data used to train the CNN model for
each paper, they mainly used large data sets of images, containing
in some cases thousands of images (Reyes et al., 2015; Mohanty
et al., 2016). Some of these images and data sets originated
from well-known and publicly available resources such as
PlantVillage, LifeCLEF, MalayaKew and UC Merced, while others
were produced by the authors for their research needs (Xinshao
and Cheng, 2015; Sladojevic et al., 2016; Bargoti and Underwood,
2017; Rahnemoonfar and Sheppard, 2017; Sørensen et al., 2017).
Papers dealing with land cover and crop type classification
employed a smaller number of images (e.g. 10–100 images), pro-
duced by UAV (Lu et al., 2017) or satellite-based remote sensing
(Kussul et al., 2017). One particular paper investigating segmen-
tation of root and soil used images from X-ray tomography
(Douarre et al., 2016). Moreover, some projects used historical
text data, collected either from repositories (Kuwata and

Fig. 1. An example of CNN architecture (VGG; Simonyan and Zisserman, 2014). Colour
online.
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Shibasaki, 2015) or field sensors (Song et al., 2016). In general, the
more complicated the problem to be solved (e.g. large number of
classes to identify), the more data are required.

Performance metrics and overall precision

Various performance metrics have been employed by the authors,
with percentage of correct predictions (CA) on the validation or
testing data set being the most popular (16 papers, 69%).
Others included RMSE (three papers), F1 Score (three papers),
QM (Douarre et al., 2016), RFC (Chen et al., 2017) and LC
(Reyes et al., 2015). The aforementioned metrics have been
defined earlier.

The majority of related work employed CA, which is generally
high (i.e. above 90%), indicating the successful application of
CNN in various agricultural problems. The highest CA statistics
were observed in the works of Chen et al. (2014), Lee et al.
(2015) and Steen et al. (2016), with accuracies of 98% or more.

Technical details

From a technical point of view, almost half of the research works
(12 papers) employed popular CNN architectures such as
AlexNet, VGG and Inception-ResNet. The other half (11 papers)
experimented with their own architectures, some combining CNN
with other techniques, such as principal component analysis
(PCA) and logistic regression (Chen et al., 2014), SVM
(Douarre et al., 2016), linear regression (Chen et al., 2017),
large margin classifiers (LMC, Xinshao and Cheng, 2015) and
macroscopic cellular automata (Song et al., 2016).

Regarding the frameworks used, all the studies that employed
some well-known architecture had also used a DL framework,
with Caffe being the most popular (ten papers, 43%), followed
by deeplearning4j (one paper) and Tensor Flow (one paper).
Five research works developed their own software, while some
authors built their own models on top of Theano (three papers),
Pylearn2 (one paper), MatConvNet (one paper) and Deep
Learning Matlab Toolbox (one paper). A possible reason for the
wide use of Caffe is that it incorporates various CNN frameworks
and data sets which can then be used easily.

It is worth mentioning that some of the related works that pos-
sessed only small data sets to train their CNN models (Sladojevic
et al., 2016; Bargoti and Underwood, 2017; Sørensen et al., 2017)
exploited data augmentation techniques (Krizhevsky et al., 2012)
to enlarge the number of training images artificially using label-
preserving transformations, such as translations, transposing,
reflections and altering the intensities of the RGB channels.

Furthermore, the majority of related work included some
image pre-processing steps, where each image in the data set
was reduced to a smaller size, before being used as input to the
model, such as 256 × 256, 128 × 128, 96 × 96, 60 × 60 pixels, or
converted to greyscale (Santoni et al., 2015). Most of the studies
divided their data randomly between training and testing/verifica-
tion sets, using a ratio of 80 : 20 or 90 : 10, respectively. Also, vari-
ous learning rates have been recorded, from 0.001 (Amara et al.,
2017) and 0.005 (Mohanty et al., 2016) up to 0.01 (Grinblat et al.,
2016). Learning rate is about how quickly a network learns.
Higher values help to avoid being stuck in local minima. A gen-
eral approach used by many of the evaluated papers was to start
out with a high learning rate and lower it as the training goes
on. The learning rate is very dependent on the network
architecture.

Finally, most of the research works that incorporated popular
CNN architectures took advantage of transfer learning (Pan and
Yang, 2010), which leverages the already existing knowledge of
some related task in order to increase the learning efficiency of
the problem under study, by fine-tuning pre-trained models.
When it is not possible to train a network from scratch due to
having a small training data set or addressing a complex problem,
it is useful for the network to be initialized with weights from
another pre-trained model. Pre-trained CNN are models that
have already been trained on some relevant data set with possibly
different numbers of classes. These models are then adapted to
the particular challenge and data set being studied. This method
was followed in Lee et al. (2015), Reyes et al. (2015), Bargoti
and Underwood (2017), Christiansen et al. (2016), Douarre
et al. (2016), Mohanty et al. (2016), Sa et al. (2016), Steen et al.
(2016), Lu et al. (2017) and Sørensen et al. (2017) for the
VGG16, DenseNet, AlexNet and GoogleNet architectures.

Performance comparison with other approaches

The eighth column of Table 1 shows whether the authors of
related work compared their CNN-based approach with other
techniques used for solving their problem under study. The per-
centage of CA for CNN was 1–4% better than SVM (Chen et al.,
2014; Lee et al., 2015; Grinblat et al., 2016), 3–11% better than
unsupervised feature learning (Luus et al., 2015) and 2–44% bet-
ter than local shape and colour features (Dyrmann et al., 2016;
Sørensen et al., 2017). Compared with multilayer perceptrons,
CNN showed 2% better CA (Kussul et al., 2017) and 18% lower
RMSE (Song et al., 2016).

Moreover, CNN achieved 6% higher CA than random forests
(Kussul et al., 2017), 2% better CA than Penalized Discriminant
Analysis (Grinblat et al., 2016), 41% improved CA when com-
pared with ANN (Lee et al., 2015) and 24% lower RMSE com-
pared with Support Vector Regression (Kuwata and Shibasaki,
2015).

Furthermore, CNN reached 25% better RFC than an area-
based technique (Rahnemoonfar and Sheppard, 2017), 30%
higher RFC than the best texture-based regression model (Chen
et al., 2017), 84.3% better F1 Score in relation to an algorithm
based on local decorrelated channel features and 3% higher CA
compared with a Gaussian Mixture Model (GMM; Santoni
et al., 2015).

Convolutional neural networks showed worse performance
than other techniques in only one case (Reyes et al., 2015). This
was against a technique involving local descriptors to represent
images together with k-nearest neighbours (KNN) as classifica-
tion strategy (20% lower LC).

Discussion

The current analysis has shown that CNN offer superior perform-
ance in terms of precision in the vast majority of related work,
based on the performance metrics employed by the authors,
with GMM being a technique with comparable performance in
some cases (Reyes et al., 2015; Santoni et al., 2015). Although
the current study is relatively small, in most of the agricultural
challenges used satisfactory precision has been observed, espe-
cially in comparison with other techniques employed to solve
the same problem. This indicates a successful application of
CNN in various agricultural domains. In particular, the areas of
plant and leaf disease detection, plant recognition, land cover
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Table 1. Applications of deep learning in agriculture

No. Agricultural area Problem description Data used Precision DL model used
Framework
used

Comparison with
other techniques Ref.

1. Leaf disease
detection

Thirteen different
types of plant
diseases, plus healthy
leaves

Authors-created database
containing 4483 images

96.30% (CA) CaffeNet Caffe Better results than SVM
(no more details)

Sladojevic et al.
(2016)

2. Plant disease
detection

Identify 14 crop
species and 26
diseases

PlantVillage public data set of
54 306 images of diseased and
healthy plant leaves

0.9935 (F1) AlexNet, GoogleNet Caffe Substantial margin in
standard benchmarks
with approaches using
hand-engineered features

Mohanty et al.
(2016)

3. Classify banana leaf
diseases

Data set of 3700 images of
banana diseases obtained from
the PlantVillage data set

96% + (CA), 0.968
(F1)

LeNet deeplearning4j Methods using
hand-crafted features not
generalize well

Amara et al.
(2017)

4. Land cover
classification

Identify 13 different
land-cover classes in
KSC and nine
different classes in
Pavia

A mixed vegetation site over
Kennedy Space Center (KSC),
FL, USA, and an urban site over
the city of Pavia, Italy

98.00% (CA) Hybrid of PCA,
Autoencoder and
logistic regression

Developed by
the authors

1% more precise than
RBF-SVM

Chen et al. (2014)

5. Identify 21 land-use
classes containing a
variety of spatial
patterns

UC Merced land-use data set 93.48% (CA) Author-defined Theano Unsupervised feature
learning (UFL) (82–90%)
and SIFT (85%)

Luus et al. (2015)

6. Extract information
about cultivated land

Images from UAV at the areas
Pengzhou County and
Guanghan County, Sichuan
Province, China

88–91% (CA) Author-defined N/A N/A Lu et al. (2017)

7. Crop type
classification

Classification of crops
wheat, maize,
soybean sunflower
and sugar beet

Nineteen multi-temporal
scenes acquired by Landsat-8
and Sentinel-1A RS satellites
from a test site in Ukraine

94.60% (CA) Author-defined Developed by
the authors

Multilayer perceptron
(92.7%), Random Forests
(88%)

Kussul et al.
(2017)

8. Plant
recognition

Recognize seven
views of different
plants: entire plant,
branch, flower, fruit,
leaf, stem and scans

LifeCLEF 2015 plant data set,
which has 91 759 images
distributed in 13 887 plant
observations

48.60% (LC) AlexNet Caffe 20% worse than local
descriptors to represent
images and KNN, dense
SIFT and a Gaussian
Mixture Model (GMM)

Reyes et al.
(2015)

9. Recognize 44 different
plant species

MalayaKew (MK) Leaf Data set
which consists of 44 classes,
collected at the Royal Botanic
Gardens, Kew, England

99.60% (CA) AlexNet Caffe SVM (95.1%), ANN (58%) Lee et al. (2015)

10. Identify plants from
leaf vein patterns of
white, soya and red
beans

A total of 866 leaf images
provided by INTA Argentina.
Data set divided into three
classes: 422 images correspond
to soybean leaves, 272 to red
bean leaves and 172 to white
bean leaves

96.90% (CA) Author-defined Pylearn2 Penalized
Discriminant Analysis
(PDA) (95.1%), SVM and
RF slightly worse

Grinblat et al.
(2016)
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11. Segmentation of
root and soil

Identify roots from
soils

Soil images coming from X-ray
tomography

Quality measure
QM = 0.23
(simulation) QM =
0.57 (real roots)

Author-defined CNN
with SVM for
classification

MatConvNet N/A Douarre et al.
(2016)

12. Crop yield
estimation

Estimate maize yield
at county level in the
USA

Maize yields from 2001 to 2010
in Illinois, USA, downloaded
from Climate Research Unit
(CRU), plus MODIS Enhanced
Vegetation Index

RMSE = 6.298 Author-defined Caffe Support Vector
Regression (SVR) (RMSE =
8.204)

Kuwata and
Shibasaki, (2015)

13. Fruit counting Predict number of
tomatoes in images

24 000 synthetic images
produced by the authors

91% (RFC) 1.16
(RMSE) on real
images, 93% (RFC)
2.52 (RMSE) on
synthetic images

Inception-ResNet TensorFlow Area-based technique
(ABT) (66.16%), (RMSE =
13.56)

Rahnemoonfar
and Sheppard,
(2017)

14. Map from input
images of apples and
oranges to total fruit
counts

71 1280 × 960 orange images
(day time) and 21 1920 × 1200
apple images (night time)

0.968 (RFC), 13.8
(L2) for oranges
0.913 (RFC), 10.5
(L2) for apple

CNN (blob detection
and counting) + linear
regression

Caffe Best texture-based
regression model (ratio of
0.682)

Chen et al. (2017)

15. Fruit detection
in orchards, including
mangoes, almonds
and apples

Images of three fruit varieties:
apples (726), almonds (385) and
mangoes (1154), captured at
orchards in Victoria and
Queensland, Australia

F1 Scores of 0.904
(apples) 0.908
(mango) 0.775
(almonds)

Faster Region-based
CNN with VGG16
model

Caffe ZF network (F1 Scores of
0.892, 0.876 and 0.726 for
the apples, mangoes and
almonds, respectively)

Bargoti and
Underwood
(2017)

16. Detection of sweet
pepper and rock
melon fruits

A total of 122 images obtained
from two modalities: colour
(RGB) and near-infrared (NIR)

0.838 (F1) Faster Region-based
CNN with VGG16
model

Caffe Conditional Random Field
to model colour and
visual texture
features (F1 = 0.807)

Sa et al. (2016)

17. Obstacle
detection

Identify ISO
barrel-shaped
obstacles in row
crops and grass
mowing

A total of 437 images from
authors’ experiments and
recordings

99.9% in row crops
and 90.8% in grass
mowing (CA)

AlexNet Caffe N/A Steen et al.
(2016)

18. Detect obstacles that
are distant, heavily
occluded and
unknown

Background data of 48 images
and test data of 48 images from
annotations of humans,
houses, barrels, wells and
mannequins

0.72 (F1) AlexNet and VGG Caffe Local de-correlated
channel features (F1 =
0.113)

Christiansen
et al. (2016)

19. Identification of
weeds

Classify 91 weed seed
types

Data set of 3980 images
containing 91 types of weed
seeds

90.96% (CA) PCANet + LMC
classifiers

Developed by
the authors

Better results than feature
extraction techniques (no
details)

Xinshao and
Cheng (2015)

20. Classify weed from
crop species based
on 22 different
species in total

Data set of 10 413 images,
taken mainly from BBCH 12–16
containing 22 weed and crop
species at early growth stages

86.20% (CA) Variation of VGG16 Theano-based
Lasagne
library for
Python

Local shape and colour
features (42.5% and
12.2%, respectively)

Dyrmann et al.
(2016)

21. Identify thistle in
winter wheat and
spring barley images

A total of 4500 images from 10,
20, 30 and 50 m of altitude
captured by a Canon
PowerShot G15 camera

97.00% (CA) DenseNet Caffe (Colour feature-based)
Thistle-Tool (95%)

Sørensen et al.
(2017)

(Continued )
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classification, fruit counting and identification of weeds belong to
the categories where the highest precision has been observed.

Although CNN have been associated with computer vision
and image analysis (which is also the general case in this survey),
two related works were found where CNN-based models have
been trained based on field sensory data (Kuwata and Shibasaki,
2015) and a combination of static and dynamic environmental
variables (Song et al., 2016). In both cases, the performance (i.e.
RMSE) was better than other techniques under study.

When comparing performance in terms of precision/accuracy,
it is of paramount importance to adhere to the same experimental
conditions, i.e. data sets and performance metrics (when compar-
ing CNN with other techniques), as well as architectures and model
parameters (when comparing studies both employing CNN). From
the related work studied, 15 out of the 23 papers (65%) performed
direct, valid and correct comparisons among CNN and other com-
monly used techniques. Hence, it is suggested that some of the
findings detailed earlier must be considered with caution.

Advantages/disadvantages of convolutional neural networks

Except from the improvements in precision observed in the clas-
sification/prediction problems at the surveyed works, there are
some other important advantages of using CNN in image pro-
cessing. Previously, traditional approaches for image classification
tasks was based on hand-engineered features, whose performance
and accuracy greatly affected the overall results. Feature engineer-
ing (FE) is a complex, time-consuming process which needs to be
altered whenever the problem or the data set changes. Thus, FE
constitutes an expensive effort that depends on experts’ knowl-
edge and does not generalize well (Amara et al., 2017). On the
other hand, CNN do not require FE, as they locate the important
features automatically through the training process. Quite impres-
sively, in the case of fruit counting, the model learned explicitly to
count (Rahnemoonfar and Sheppard, 2017). Convolutional neural
networks seem to generalize well (Pan and Yang, 2010) and they
are quite robust even under challenging conditions such as illu-
mination, complex background, size and orientation of the
images, and different resolution (Amara et al., 2017).

Their main disadvantage is that CNN can sometimes take
much longer to train. However, after training, their testing time
efficiency is much faster than other methods such as SVM or
KNN (Chen et al., 2014; Christiansen et al., 2016). Another
important disadvantage (see earlier) is the need for large data
sets (i.e. hundreds or thousands of images), and their proper
annotation, which is sometimes a delicate procedure that must
be performed by domain experts. The current authors’ personal
experimentation with CNN (see earlier) reveals this problem of
poor data labelling, which could create significant reduction in
performance and precision achieved.

Other disadvantages include problems that might occur when
using pre-trained models on similar and smaller data sets (i.e. a
few hundreds of images or less), optimization issues because of
the models’ complexity, as well as hardware restrictions.

Data set requirements

A considerable barrier in the use of CNN is the need for large data
sets, which would serve as the input during the training proced-
ure. In spite of data augmentation techniques, which could aug-
ment some data sets with label-preserving transformations, in
reality at least some hundreds of images are required, dependingTa
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on the complexity of the problem under study. In the domain of
agriculture, there do not exist many publicly available data sets for
researchers to work with, and in many cases, researchers need to
develop their own sets of images manually. This could require
many hours or days of work.

Researchers working with remote-sensing data have more
options, because of the availability of images provided by satellites
such as MERIS, MODIS, AVHRR, RapidEye, Sentinel, Landsat,
etc. These data sets contain multi-temporal, multi-spectral and
multi-source images that could be used in problems related to
land and crop cover classification.

Future of deep learning in agriculture

The current study has shown that only 12 agriculture-related pro-
blems (see earlier) have been approximated by CNN. It would be
interesting to see how CNN would behave in other agriculture-
related problems, such as crop phenology, seed identification,
soil and leaf nitrogen content, irrigation, plant water stress detec-
tion, water erosion assessment, pest detection and herbicide use,
identification of contaminants, diseases or defects of food, crop
hail damage and greenhouse monitoring. Intuitively, since many
of the aforementioned research areas employ data analysis techni-
ques with similar concepts and comparable performance to CNN
(i.e. linear and logistic regression, SVM, KNN, K-means cluster-
ing, wavelet-based filtering, Fourier transform), then it would be
worth examining the applicability of CNN to these problems too.

Other possible application areas could be the use of aerial
imagery (i.e. by means of drones) to monitor the effectiveness
of the seeding process, increase the quality of wine production
by harvesting grapes at the right moment for best maturity levels,
monitor animals and their movements to consider their overall
welfare and identify possible diseases, and many other scenarios
where computer vision is involved.

As noted before, all the papers considered in the current sur-
vey made use of basic CNN architectures, which constitute only a
specific, simpler category of DL models. The study did not con-
sider/include more advanced and complex models such as
Recurrent Neural Networks (RNN; Mandic and Chambers,
2001) or Long Short-Term Memory (LSTM) architectures (Gers
et al., 2000). These architectures tend to exhibit dynamic temporal
behaviour, being able to remember (i.e. RNN) but also to forget
after some time or when needed (i.e. LSTM). An example appli-
cation could be to estimate the growth of plants, trees or even ani-
mals based on previous consecutive observations, to predict their
yield, assess their water needs or prevent diseases from occurring.
These models could find applicability in environmental informat-
ics too, for understanding climatic change, predicting weather
conditions and phenomena, estimating the environmental impact
of various physical or artificial processes, etc.

Personal experiences from a small study

To better understand the capabilities and effectiveness of CNN, a
small experiment was performed, addressing a problem not
touched upon by related work: that of identifying missing vegeta-
tion from a crop field, as shown in Fig. 2. As depicted in the fig-
ure, areas labelled as (1) are examples of sugar cane plants, while
areas labelled (2) are examples of soil. Areas labelled as (3) con-
stitute examples of missing vegetation, i.e. it is currently soil
where it should have been sugar cane. Finally, areas labelled (4)
are examples of irrelevant image segments.

A data set of aerial photos from a sugar cane plantation in
Costa Rica, prepared by the company INDIGO Inteligencia
Agrícola (https://www.indigoia.com), was used. Data were cap-
tured by a drone in May 2017 from a geographical area of 3 ha
based on a single crop field. These data were split into 1500
80 × 80 images, and then experts working at INDIGO annotated
(labelled) every image as ‘sugar cane’, ‘soil’ or ‘other’, where the
latter could be anything else in the image such as fences, irrigation
infrastructures, pipes, etc. The VGG architecture (Simonyan and
Zisserman, 2014) was used on the Keras/Theano platform. Data
were split randomly into training and testing data sets, using a
ratio of 85 : 15. To accelerate training, a pre-trained VGG
model was used, based on the ImageNet data set (Deng et al.,
2009). The results are presented in a confusion matrix (Fig. 3).
The VGG model achieved a CA of 79.2%, after being trained for
15 epochs at a time duration of 11 h using a desktop PC with
an Intel Core i7 quad-processor@2 GHz and 6GB of RAM.
Trying to investigate the sources of the relatively large error (in
comparison to related work under study as listed in Appendix I),
the following (main) labelling issues were observed (Fig. 4):

• Some images were mislabelled as ‘other’ while they actually
represented ‘sugar cane’ snapshots (4% of the 20.8% total error).

• Some images mislabelled as ‘other’ while they represented ‘soil’
(8% of the error).

• Some images mislabelled as ‘soil’ while being ‘sugar cane’ (2%
of the error).

Based on the above, the error would have been reduced from
20.8% to 6–8% by more careful labelling. This experiment empha-
sizes the importance of proper labelling of the training data set,
otherwise CA can deteriorate significantly. Sometimes, as this
experiment revealed, the annotation procedure is not trivial
because there are images which could belong to multiple labels
(Fig. 4). In particular, labelling of images as ‘soil’ or ‘sugar
cane’ is sometimes very difficult, because it depends on the pro-
portion of the image covered by plants, or more generally vegeta-
tion in the image. Increasing image size makes the problem even
worse, as labelling ambiguity increases. Thus, the variation among

Fig. 2. Identification of missing vegetation from a crop field. Areas labelled as (1)
represent examples of sugar cane plants, while areas labelled as (2) constitute exam-
ples of soil. Areas labelled as (3) depict missing vegetation examples, i.e. it should
have been sugarcane but it is soil. Finally, areas labelled as (4) are examples of
‘others’, being irrelevant image segments. Colour online.
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classes of the training data set is also an important parameter that
affects the model’s learning efficiency.

Perhaps a solution for future work would be to automate label-
ling by means of the use of a vegetation index, together with
orientation or organization of the plants in the image, which
could indicate a pattern of plantation or the soil in between.
Still, with these constraints, this experiment indicates that CNN
can constitute a reliable technique for addressing this particular
problem. The development of the model and its learning process
do not require much time, as long as the data set is properly pre-
pared and correctly labelled.

Conclusion

In the current paper, a survey of CNN-based research efforts
applied in the agricultural domain was performed: it examined

the particular area and problem they focus on, listed technical
details of the models employed, described sources of data
used and reported the overall precision/accuracy achieved.
Convolutional neural networks were compared with other existing
techniques, in terms of precision, according to various perform-
ance metrics employed by the authors. The findings indicate
that CNN reached high precision in the large majority of the pro-
blems where they have been used, scoring higher precision than
other popular image-processing techniques. Their main advan-
tages are the ability to approximate highly complex problems
effectively, and that they do not need FE beforehand. The current
authors’ personal experiences after employing CNN to approxi-
mate a problem of identifying missing vegetation from a sugar
cane plantation in Costa Rica revealed that the successful applica-
tion of CNN is highly dependent on the size and quality of the
data set used for training the model, in terms of variance
among the classes and labelling accuracy.

For future work, it is planned to apply the general concepts
and best practices of CNN, as described through this survey, to
other areas of agriculture where this modern technique has not
yet been adequately used. Some of these areas have been identified
in the ‘Discussion’ section.

The aim is for the current survey to motivate researchers to
experiment with CNN and DL in general, applying them to
solve various agricultural problems involving classification or pre-
diction, related not only to computer vision and image analysis,
but more generally to data analysis. The overall benefits of
CNN are encouraging for their further use towards smarter,
more sustainable farming and more secure food production.
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