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Instability and transition in the boundary layer on a slender cone (60° apex angle) rotating
in still fluid are investigated using hot-wire anemometry as well as through linear stability
analysis. In contrast to broad cones (including the disk), where a cross-flow instability
dominates the transition and different studies report similar transition Reynolds numbers,
the reported transition Reynolds numbers on slender cones are scattered. The present
experiments provide quantitative experimental datasets and the stability and transition
are evaluated based on both the Reynolds number and a Gortler number. The results
consistently show that the instability development depends on the Gortler number rather
than the Reynolds number and that transition starts at a well-defined Gortler number,
whereas the transition Reynolds number depends on the rotational rate. The measured
disturbance that first grows in the laminar region has a frequency approximately the
same as or twice the rotational rate of the cone, which according to the stability analysis
corresponds to the critical frequency of a slightly inclined vortex structure with respect
to the cone axis or an axisymmetric vortex structure. These structures are similar to those
observed in the flow visualisations of Kobayashi & Izumi (J. Fluid Mech., vol. 127, 1983,
pp- 353-364) and considered as being due to a centrifugal instability.

Key words: transition to turbulence

1. Introduction

The three-dimensional boundary layer induced by a cone rotating in otherwise still fluid
has been studied where the flow geometry is defined by the half-apex angle i (figure 1).
We consider an orthogonal coordinate system with the origin located at the apex of the
cone shown in figure 1, where x, € and z are the coordinates along the generatrix of
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Figure 1. The coordinate system (x, 0, z) on the cone and its dimension.

the cone, azimuthal and wall-normal directions, respectively. Lengths are normalised by
85 = /v¥/(§£2* sinyr), where v* and £2* are the kinematic viscosity of the surrounding
fluid and angular velocity, respectively (superscript * denotes a dimensional quantity).
Note that the commonly used Reynolds number based on x* and the local wall velocity V;
is the square of x = x*/47. Scaling the lengths with &, one obtains the same von Kdrman
similarity solution as for the rotating disk for the mean flow on the cone (Segalini &
Camarri 2019). The flow visualisations conducted by Kobayashi & Izumi (1983) show that
depending on i the flow is dominated by different instabilities; on a broad cone (including
the disk, i.e. ¥ = 90°) cross-flow instability develops and is observed as stationary
co-rotating vortices similar to the ones on a swept wing. On sharper cones (¥ < 40°),
in contrast, centrifugal instability becomes dominant (including the cylinder, i.e. Y = 0°),
giving rise to counter-rotating vortices. Recent works provide further quantitative data for
broad cones (Imayama, Alfredsson & Lingwood 2012, 2013, 2014; Kato, Alfredsson &
Lingwood 2019a; Kato et al. 2019b). However, such detailed experimental data on slender
cones have up to now not been available.

A crucial question for the slender rotating-cone flow is the effect of the rotational rate
£2* on transition. The reported transition locations and the influence of £2* are highly
variable on the slender cones while independent works on the disk show more consistent
results (see Imayama et al. (2013), and the references therein); Kreith, Ellis & Giesing
(1963, figure 5), Kobayashi & Izumi (1983, § 3.3) and Tieng & Wang (1993, figure 9)
reported that £2* does not affect the transition Reynolds number significantly. In contrast,
Hussain, Garrett & Stephen (2014, figure 2 made by Nickels and Betényi originally) show
that the transition Reynolds number decreases as £2* increases with a trend that becomes
more significant as i decreases.

In this paper, we evaluate the flow on a slender cone (¢ = 30°) at different rotational
rates based on a Gortler number G (in addition to x), which has been used for flows
dominated by centrifugal instability, e.g. the boundary layer on a concave wall (Floryan
1986; Schrader, Brandt & Zaki 2011; Méndez et al. 2018). For such boundary-layer flows,
the free-stream velocity is used as the reference velocity; however, here we define the
Gortler number for the rotating-cone boundary layer as

VEsE |8k x83
G=-2[% _ [X% (L1)
v¥ ¥ R* sin

where the reference velocity is the local wall velocity Vi, = R*§2*, the radius is R* =
x*sin ¥, which is considered as the curvature of the streamline on the surface, and §; is
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the momentum thickness normalised by §;. The momentum thickness is evaluated as

8
S(x; 27) = / 90[1 —V(x,z; 291V(x, z; 2%) dz, (1.2)
0

where V is the measured mean azimuthal velocity component normalised by V5 and 89 is
the z-position (normalised by §7) where V is 0.1. Also, we compare the results with local
linear stability analysis (LLSA) as a complement to the present experiments.

2. LLSA

The LLSA is performed similarly to the analysis of Segalini & Camarri (2019). The
linear perturbation equations in the laboratory frame of reference are solved in a parallel
framework at several x-locations, where at each station the local mean velocity profile from
the von Kdrman profile is imposed (here denoted as Uy(z), Vo(z) and Wy(z) for x-, 6- and
z-components, respectively, with Vp(z = 0) = 1 according to the adopted normalisation).
Time is normalised by £2*, and the base and perturbation velocity fields are normalised by
(v*2* siny) /2,

Modal analysis of the velocity components and pressure in the form (u, v, w, p) x
(it, v, w, p)(z) expli(ax + n — wt)] is performed to transform the perturbation equations
to a set of ordinary differential equations with the eigenfunctions and eigenvalue o =
o +io; as unknowns. This eigenvalue problem was solved at several x-locations to
account for the change of the base velocity profile. Here n and w are the azimuthal
wavenumber (taking only integer values due to the continuity in -direction) and frequency
(the latter normalised by §2*), respectively. Due to the small boundary-layer thickness, the
radial variation in the z-direction is assumed constant (r & x sin i within the boundary
layer). Differently from Segalini & Camarri (2019), terms of order O(x)~2 have been
discarded in the analysis without significant deviations from the full parallel and weakly
divergent solution. The perturbation equations in modal form are

. N, . . ow 1 .
o+ - )u+ipv+ —+ —cotyw =0, (2.1)
X 9z x
dU,
£+ Vol it = 2Vod +x— 2 + iarp = 0, 2.2)
z
. . dVo AR
2Vou + [L + Upl v + xd—w + coty Vow +ifp = 0, (2.3)
z
dW, ap
cotyVob + | L+ 2w 2L —o, 2.4)
dz az

with the linear operator

L=_—_"

sin

_ , 3, o, 1. 3
+iaxUg +ixVo+ Wo— 4+ + " — — — — i +coty — |,
0z 072 x 0z
(2.5)
with 8 = n/(xsiny). A Chebyshev collocation method with 100 points was used to solve

(2.1)—-(2.4). The points followed an exponentially mapped Gauss—Lobatto distribution
within a domain between the wall and the upper boundary located at z,,,, = 40.
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3. Experiment

A solid aluminium-alloy cone was mounted on an air bearing and rotated by a DC motor
as shown in figure 1. It has a smooth surface (surface roughness of approximately 1 pm)
and the rotational imbalance was approximately 10 pm at the cone edge. The azimuthal
velocity component in the laboratory frame of reference (V + v, where v is the variation in
time) was measured by a single hot-wire probe (its diameter was 2.5 pwm and the sensing
length approximately 0.7 mm) at fixed points in the laboratory frame of reference and
normalised by V;;. In contrast to the periodic signal due to cross-flow vortices on broad
cones (Imayama et al. 2014; Kato et al. 2019b), preliminary tests showed that the signal
contains multiple wave packets, which appear spontaneously rather than periodically and
seem to be similar to noise-sustained structures on a rotating cylinder exposed to an
axial flow due to a convective instability (Babcock, Ahlers & Cannell 1991; Tsameret
& Steinberg 1994). To obtain accurate statistics of the irregular waves, the signal was
recorded for 3600 cone revolutions. The stationary component with respect to the cone
surface was evaluated by phase averaging (according to the cone revolution) the whole
length of the sample record. The non-stationary component was obtained by subtracting
the spectrum of the stationary modes from the total one in the same way as was done by
Kato et al. (2019c¢).

4. Results and discussions

Figure 2 shows the measured 90 % boundary-layer thickness d9o as function of x and G
for the different rotation rates. In the laminar region, q¢ is nearly constant following the
similarity solution, which is shown by the solid line 699 = 2.81 (except a slight overshoot
at x = 150). For each case, the boundary layer thickens as x and G increase, indicating
the onset of transition. The transition begins at smaller x as §£2* increases as shown in
figure 2(a) whereas figure 2(b) shows that all data collapse nicely on a single curve.
Furthermore, the thickening starts in the range 8 < G < 10. The value of G = 10 is also
marked by the arrows in figure 2(a). Beyond G =~ 10, the thickness increases with a slope
of 2/3, indicating that §, is proportional to 9o (see (1.1)). (The data can be found in
tables as supplementary material available at https://doi.org/10.1017/jfm.2021.216.) It is
also interesting that this threshold of G is close to the one where the boundary layer on a
concave wall starts to transition under low turbulence condition (Liepmann 1945).

Figure 3 shows a typical development of the mean velocity and r.m.s. profiles (ai—x)
and probability density function (p.d.f.) normalised by the local maximum (bi—x). In
the laminar region, the mean profiles agree with the similarity solution (solid line).
Beyond G ~ 10 (aiii,biii), the 90 % boundary-layer thickness (dotted line) starts to
increase and the profile begins to deviate from the similarity solution. The p.d.f. initially
develops symmetrically (bi), and then begins to skew. Following the discussions by
Kato et al. (2019b), the skewed profiles in (bii—iv) probably indicate the downwelling
of low-momentum fluid at low z and upwelling of high-momentum fluid at high z
although here the vortices are counter-rotating and not stationary with respect to the cone
surface as the co-rotating stationary cross-flow vortices are. In (bv—vii), the branched
maximum is also observed for z > 2, which may indicate the overturning of the upwelling
high-momentum fluid extending to the outer region of the boundary layer. Finally, the
similarity of p.d.f. profiles in (bviii—x) indicates that the boundary layer has reached a
turbulent state.

Figure 4 shows the p.d.f. of v at z = 1.5 as a function of downstream position and
illustrates the instability and transition process as was first introduced by Imayama et al.
(2012). It shows similar stages of transition as compared to broad cones (see figure 5 in
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Figure 2. Normalised 90 % boundary-layer thickness 899 as a function of (a) x and (b) Gortler number G.
The thick line §9p = 2.81 shows the similarity solution. The arrows at the abscissa in panel (a) indicate the
transition Gortler number G =10. The insert in panel (b) expands the region where the transition starts.

Kato et al. 2019b) despite the fact that the dominant primary instability is expected to be
different.

The same experimental data as in figure 4 are used for figure 5 but here the
power-spectrum density of the non-stationary component is shown. In contrast to p.d.f.s,
the spectra are very different from the ones on the broad cone (see figure 2(e) in Kato
et al. 2019¢); the initial peak is smoother and the change in transition is more gradual,
whereas spiky initial peaks and an abrupt transition are observed for the broad cone (Kato
et al. 2019a, b). Figure 5 shows that the disturbance begins to grow around G < 7 with
w ~ 1. The most energetic frequency shifts to higher w as G (or x) increases. In the range
14 < G < 20, the most energetic mode (w = 4) saturates. Again, the transition location
at G = 10 is marked by the arrow at the top in each figure, indicating a similar stage of
transition regardless of §£2*.

Figure 6 shows the growth rate as a function of (n, w) based on LLSA at different
x-locations. The thick solid white line indicates the neutral curve. The dotted line n = w
indicates the stationary mode. The flow first becomes unstable at x &~ 35, with (n, w) ~
(=3, 0.4). Here, n < 0 means the wave propagates azimuthally downstream (opposite to
the rotational direction) with an inclination toward the apex (the angle of the vortex axis
with respect to the downstream direction € = tan~!'(8/a,) < 0, where all detected «,
were positive; as a comparison the stationary vortices on the broad cones have € > 0).
Such a vortex can be found in figure 6 in Kobayashi & Izumi (1983) and regarded as
the structure dominated by centrifugal instability (from the visualisations, n appears to
be either O or —1) although they reported € = 0° in their table 1. At x ~ 48, the ring-like
structure (n = 0) first becomes unstable for w = 2. As x increases, the most growing mode
with n = 0 or —1 shifts to a higher frequency, similar to the observation in figure 5. The
LLSA also shows that the stationary mode (n = w = 10) becomes unstable at x &~ 230. For
larger x, the growth rate of the modes with n < 0 gradually decreases while the growth
rate of the stationary mode increases further. In the present measurements, however, no
significantly growing stationary mode was observed; the measured fluctuations mainly
consist of non-stationary modes.

Figure 7(a—d) illuminate the difference of the scalings based on x and G in the
development of the mode, which first becomes unstable for n = 0, namely w = 2; the r.m.s.
(a,b) and its growth rates —«; (c,d) are shown as function of x (a,c) and G (b,d). Figure 7(a)
indicates that the initial amplitude increases as the rotational speed £2* increases.
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Figure 3. Profiles of azimuthal mean velocity V (in the laboratory frame) and r.m.s. of the azimuthal velocity fluctuation v (O and x, (ai—x)) and p.d.f. of v (bi—x) at
different x-locations (£2* = 900 rpm): (ai,bi) x = 200 (G = 7.9), (aii,bii) x = 260 (G = 9.9), (aiii,biii) x = 280 (G = 10.1), (aiv,biv) x = 300 (G = 12.1), (av,bv) x = 320
(G = 14.9), (avi,bvi) x = 340 (G = 21.8), (avii,bvii) x = 360 (G = 34.3), (aviii,bviii) x = 380 (G = 46.9), (aix,bix) x = 400 (G = 57.6), (ax,bx) x = 440 (G = 71.1). The
solid lines in panels (ai-x) show the similarity solution. The thick horizontal dashed lines indicate the measured 90 % boundary-layer thickness 8gp.
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Figure 4. The p.d.f. of the azimuthal velocity fluctuation v at z = 1.5 on the cone rotating at different speeds
£2%*: (a) 600 rpm, (b) 900 rpm, (c¢) 1800 rpm. On the upper axis, Gortler number G is shown; the arrow at the
top shows the point at G = 10.
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Figure 5. Power-spectrum density distributions log(E) of the non-stationary velocity fluctuation v’ at z = 1.5
on the cones rotating at different speeds £2*: (@) 600 rpm, (b) 900 rpm, (c¢) 1800 rpm. Here w is the frequency
normalised by the rotational rate £2*. On the upper axis, Gortler number G is shown; the arrow at the top shows
the point at G = 10.

However, the measured growth rate (symbols) in (c¢) is not affected significantly; most
measured data are located between the solid (n = 0) and dotted lines (n = —1), showing
the growth rates based on LLSA. Note that the mode with n = 1 (the dashed line) never
becomes unstable. Plotting the same data with G, the amplitudes (b) and growth rates (d)
collapse on single curves up to G ~ 10. Again, the good agreement with LLSA can be seen
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Figure 6. Spatial growth rate —«; based on LLSA at different x-locations: (a) x = 50 (G = 3.44), (b) x = 100
(G =4.87), (c) x =200 (G =5.97), (d) x =300 (G = 8.44). The thick solid white line indicates the neutral
curve (—a; = 0). The dotted line at @ = n indicates the stationary mode. The Gortler number G is estimated
based on the momentum thickness of the similarity solution §, = 0.49.

in (d), where the growth rates are converted based on different momentum thicknesses;
the thick and thin lines are based on the measured thickness 6> = 0.55 £ 0.04 and on the
similarity solution §; = 0.49. Although the choice of §, slightly shifts these curves, all
measured data are nicely located between these two predictions for n = 0 and —1.

Similarly, analysis for @ = 1, around which the measured disturbance first becomes
unstable (see figure 5), is shown in figure 8. Although the measured r.m.s. and —q; are
smaller than the ones in figure 7 (therefore, the effect of £2* on r.m.s. is not so clear), the
trends are similar and the measured —c; agrees with the prediction of n = —2 (dash-dotted
line) or —1 (dotted line) based on LLSA. Again, the modes (n, w) = (0, 1) or (1,1) never
become unstable (solid and dashed lines). These results suggest the vortex structures are
inclined toward the apex (¢ < 0). To resolve such structures (outside the current scope),
two-point measurements or DNS could be conducted.

Finally, the wall-normal profiles of the mode (n, w) = (—1, 2) are shown in figure 9;
r.m.s. profiles at different x-locations (symbols) in the laminar region are compared with
the eigenfunction v of LLSA (solid line). As can be seen, the measured profiles agree
reasonably well with 0. Thus, the measurements agree well with LLSA for both the
wall-normal shape and growth rate.

An open question from this work is why the modes with —2 < n < 0 become dominant
rather than ones having larger growth rates (i.e. —5 < n < —3) as shown in figure 6.
Vortex structures with similar wavenumbers n were also observed by Kohama (2000,
figure 1c). A possible explanation for the preferential wavenumber closer to zero might be
that the axisymmetric shape of the cone makes the boundary layer more receptive to the
axisymmetric or near-axisymmetric waves (with different frequencies). Therefore, other
modes away from n = 0 might occasionally be triggered by surrounding disturbances, but
contribute much less to the time-averaged statistics. The behaviour of the most growing
modes according to LLSA as well as effects of these modes on transition remain as a
question for further studies.
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Figure 7. The r.m.s. (a,b) and the growth rate (c,d) of the non-stationary mode for @ = 2 as a function of x
(a,c) and G (b,d). The symbols show the measured data for different rotational rates £2*. The dotted, solid
and dashed lines in panels (c,d) indicate the growth rates based on LLSA for n = —1, 0 and 1, respectively. In
panel (d), the thick and thin lines show the results of LLSA converted with the measured momentum thickness
82 = 0.55 £ 0.04 and one based on the similarity solution § = 0.49. The r.m.s. is obtained by integrating
the premultiplied spectrum in the range of 1.5 < w < 2.5. The growth rate is calculated from r.m.s. using a
seven-point running average (applied twice) and central difference. Only every fifth measured point is shown for
ease of visibility. The two circular markers at x = 287 and 302 in panel (c) are outliers due to the spontaneously
detected wave packets, which cause the step in v, in panel (a). The effect of the step is amplified by taking
the derivative in x to obtain the growth rate.
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Figure 8. Same analysis as figure 7 but for @ = 1. The dash-dotted lines in panels (c,d) indicate —«; based
on LLSA for n = —2. The symbols and other lines indicate the same as figure 7. The r.m.s. is obtained by
integrating the premultiplied spectrum in the range of 0.5 < w < 1.5.
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Figure 9. Normalised r.m.s. profiles at different x-locations and eigenfunctions v of LLSA for non-stationary
modes (solid line: w = 2, n = —1 atx = 200). R.m.s. is normalised by the local maximum v,,;s max. Which was
determined by a least square fit around the peak.

5. Conclusions and discussions

Instability and transition in the boundary layer driven by a rotating slender cone (1 = 30°)
are investigated through hot-wire measurements and LLSA. The measurements show that
the instability development is governed by the Gortler number G rather than the Reynolds
number (or the radial location x), which is a new finding, and the boundary layer begins
to thicken, indicating the start of transition, at a well-defined value of G & 10 independent
of the rotational rate £2* (figure 2).

The measured spectra (figure 5) indicate that the non-stationary disturbance with a
frequency w =~ 1 first becomes unstable. As the Gortler number increases, the measured
most energetic frequency becomes higher and saturation occurs for w & 4 in the range
14 < G < 20. The measured critical frequencies @ = 1 and 2 correspond to the critical
frequencies of slightly inclined vortex structure toward the apex and ring-like vortex
structure. The developments of these disturbances agree with the ones based on the
stability analysis (figures 7 and 8). The early visualisation study by Kohama (2000, figure
1c) reported a dominant ring-like structure, for which we here first report quantitative
experimental data supported by linear stability analysis.

The measurements also clarify the influence of the rotational rate §2*; higher £2*
increases the initial amplitude of the disturbance at a given x-location and shifts transition
upstream in Reynolds number (figure 7). Scaling with Gortler number, in contrast,
uniquely determines the amplitude of disturbances in the laminar regime, and the transition
location becomes independent of §£2*. Thus, we consider that the previous variable results
from different studies are not only due to the different transition criteria, insufficiently
sampling time for the irregularly developing disturbances, different investigated range of
£2*, but essentially due to the evaluation of the experiments conducted under different
conditions based on x or Reynolds number.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2021.216.
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