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11.1 Introduction
Scientific evidence is fundamental to solving a suite of real-world issues and

research is crucial in informing solutions to pressing issues such as climate

change, food security, evolved resistance and land management (Thomas

et al., 2004; Godfray et al., 2010; Hicks et al., 2018; Watson et al., 2018). This

evidence takes a range of forms, including the results of small- and large-scale

experiments (Firbank et al., 2003), meta-analyses (Johnson & Curtis, 2001;

Batáry et al., 2011), systematic reviews (Pullin & Stewart, 2006) and predictive

models (Taylor & Hastings, 2004; Stratonovitch et al., 2012). Decision-makers

need to be able to choose between options using the best evidence available

(Sutherland & Freckleton, 2012).

Unfortunately, ecological systems are enormously variable at just about

every scale that we study them (Holling, 1973). This variability has numerous

sources and, collectively, they contribute to what may be known as ‘uncer-

tainty’. In recognising the role of uncertainty, it is important to recognise that

this may arise both as an intrinsic property of the system as well as a nuisance

through inadequate data or observation. In terms of intrinsic sources, for

example, spatial variability results from variations in conditions from place

to place (Tilman & Karieva, 1997), while temporal variability similarly results

from variations in systems through time (Huston, 1994). On the other hand,

the measurements of the system may contain inaccuracies. For instance,

observational variance is a consequence of our inability to perfectly measure

systems, instead relying on sampling in order to build up a picture of the

dynamical properties of the system (Dennis et al., 2006; Freckleton et al.,

2006).

Addressing all types of variability and stochasticity is important in making

decisions, and we need to recognise the different sources and how they con-

tribute to uncertainty. Consider a simple example: imagine that we are

attempting to implement a conservation measure to protect an organism
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and that a management intervention, I, may be an effective conservation

action if implemented, and this yields a benefit, b. However, there is a cost,

c, to implementing the action. If we know that the action is certain to work,

there is a simple calculation: all other things being equal then, assuming they

are measured in the same units, if b > c then it would be worth performing I. If

this is not true, then I is not a favourable approach.

However, because variability is pervasive, the situation in conservation

management is rarely so simple. We might not be certain that I is always

effective and instead suppose that we know that I is effective with prob-

ability p; p could have multiple interpretations depending on context. For

example, in a spatially variable system, I might be effective in a fraction

p of sites, but not in others: p thus measures the spatial variance in

outcomes. Alternatively, the evidence for I being an effective strategy

might be mixed, and therefore p could measure some aspect of our belief

that I works.

When such uncertainty exists, the condition for a manager choosing to

apply I becomes pb > c. Note that typically c should be known reasonably

accurately as this will be costed in terms of the resources required to enact I.

The benefit is now weighted by the uncertainty in efficacy of I. In terms of

making correct management decisions, this simple condition suggests

a number of interesting observations. First, as uncertainty increases (i.e.

p gets smaller) the likelihood of employing I decreases. If p measures spatial

or temporal variability in outcomes, then this is sensible because if I is less

likely to work, so a manager should be less inclined to choose it. On the other

hand, if p measures a lack of knowledge of the effectiveness of I, then the

inequality suggests conservatism: do not take action unless it is known that I is

effective with a high probability (p > c/b). If p is measuring such uncertainty

then the recommended action has nothing to do with the actual effectiveness

of I. Being conservative thus results from ignorance.

A second significant behaviour occurs when both p and c are low: the

likelihood of I working is believed to be small but the cost is also small. In

this case, employing Imay still be favoured by amanager if the benefit is very

large and one might describe this as superstitious behaviour (i.e. doing some-

thing in the face of little evidence that it will work because the benefit is high

and the cost is low). A large number of interventions possibly fall into this

category.

Overall, this illustrative example demonstrates that the amount of

uncertainty can contribute a great deal to the overall management out-

come. In both of the hypothetical situations outlined above, the manage-

ment applied, and consequent outcome, is suboptimal because it leads to

biased impressions of the costs and benefits. Characterising uncertainty is

thus vital.
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11.2 Recognising types of uncertainty
The source of uncertainty is important and authors have proposed various

approaches to classifying uncertainty in management. Regan et al. (2002)

point out that many of the sources of variability leading to uncertainty

described above may be termed epistemic (i.e. uncertainty in the system itself

and its measurement). They also highlight a second source of uncertainty,

namely linguistic uncertainty. This results from uncertainty in the language

used to describe actions or systems, as well as resulting from the conveyance

of information. As an example, in the UK there was a programme for govern-

ment-hired shooters to exterminate ruddy ducks (Oxyura jamaicensis). During the

cull, coot (Fulica atra), black-necked grebe (Podiceps nigricollis), common pochard

(Aythya ferina) and common scoter (Melanitta nigra) individuals were also shot

(Henderson, 2009). This resulted in part from inadequate communication with

shooters (Henderson, 2009), who were not ornithologists and failed to distin-

guish between species. Consequently, there is a possibility of confusion, with

procedures subsequently being developed to ensure that confusion is mini-

mised. Although such uncertainty is undoubtedly important, I will concentrate

on epistemic uncertainty sensu Regan et al. (2002), although some of the points

made below could equally apply to a more inclusive definition.

Broadly speaking, it is useful to distinguish intrinsic uncertainty (analogous to

the variance in model parameters in an ecological or statistical model) from

knowledge uncertainty (by analogy with themeasurement error or lack of data in

a model). The reason for making the distinction between these two types of

uncertainty is important: one is a property of the system itself, while the other

is caused by a lack of understanding or data. The two are interactive, and this is

perhaps the greatest challenge to making robust predictions in management.

If the management outcomes are uncertain both in terms of intrinsic varia-

bility and knowledge then they will be largely unpredictable. In this circum-

stance, it is necessary to question the recommendations given, as well as to

consider whether the approach to prediction is the correct one. Another

option is to consider models that use an alternative more stable formulation

(Taylor & Hastings, 2004; Freckleton et al., 2011).

11.3 Science versus practice: different perspectives
on uncertainty
Scientists and practitioners have different perspectives, even if they are work-

ing on the same problem. The question of how to resolve this difference is

a thorny one (Bradshaw & Borchers, 2000; Sutherland & Freckleton, 2012) and

there is a pervasive perception of a science–policy gap (Bertuol-Garcia et al.,

2018). Bradshaw and Borchers (2000) highlighted a series of ways in which the

perspectives of science and practicemay bemisaligned. Of these there are two

in which uncertainty plays a particularly important role.
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11.3.1 Probabilistic, qualified evidence
In the introductory example above, the evidence for the effectiveness of

amanagement interventionwasmeasured as a probability. In terms of provid-

ing evidence, this is a routine way in which a scientist would express their

recommendation. However, for implementing management, this can be pro-

blematic. For instance, telling a manager that there is a 70% chance that the

intervention will work is only partly addressing the question of the manager,

namely should they undertake the action or not? How is a manager to know

whether their particular circumstances are likely to lead to them being in the

70% of cases in which the intervention works or in the 30% in which it fails?

In this context, the meaning of probabilities conveyed by scientists may not

always be fully clear. Consider an everyday example. We might be told by

a weather forecaster that there is a 50% chance of rain today. However, the

meaning of that probability is not typically explained. Here are four

interpretations.

(i) It will either rain everywhere or nowhere: it could be one or other of

these outcomes, for example, because it is not possible to predict the

precise location of a weather system.

(ii) It will rain for 50% of the time during the forecast period: for example,

there are patchy rain clouds that are continually moving.

(iii) It will rain in 50% of places: for example, there are rain clouds cover 50%

of the area that do not move.

(iv) The forecaster is unable to tell us whether it will rain or not and is telling

you to flip a coin.

The technical interpretation of a probability in a weather forecast is that this

probability represents the fraction of times a given outcome (e.g. raining

within a defined set of areas) occurs in a set of stochastic realisations. This

definition, interestingly, can incorporate all four of the above interpretations.

Nevertheless, the probability quoted is a form of knowledge uncertainty that has

a very specific meaning: it is a measure of model uncertainty/variance.

This highlights a second aspect of scientific evidence that is problematic

from the perspective of management, namely that scientific evidence is

usually qualified. The statement ‘there is a 50% chance of rain’ from

a scientific perspective should also be qualified by the statement ‘across a set

of simulations, given the assumption that themodel is correct’. If themodel is

wrong then the prediction could be greatly different.

The task of a manager is to convert such evidence into action (i.e. the binary

outcome of whether to act or not). As noted in the introduction, the decision

then involves costs and benefits, defined in the widest sense and including

values. To continue the hypothetical example, carrying an umbrella is low cost

and high benefit, so a 50% chance of rain would render this a good strategy. On
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the other hand, a manager who is spraying a pesticide requires good condi-

tions, and a 50% chance of rain would potentially carry an unacceptable risk

that this costly action (in terms of fuel, time and chemicals) would fail.

11.3.2 General versus situational outcomes
The aim of science is typically to find answers that are as general and robust as

possible. A scientist faced with evaluating the effectiveness of a management

interventionwill attempt to findwhether there is evidence of its effectiveness,

on average, and then probably focus on understanding the mechanisms that

drive it. In contrast, a manager is faced with the task of managing a given site

over a defined time period. There is a potential conflict between these per-

spectives, as the scientific perspective typically averages over variation arising

from site-specific variations, whereas this is precisely the variation that

a manager is focused on. For a scientist, the local variation at a specific site is

essentially nuisance variance.

Although perhaps something of a caricature, there is undoubtedly a real

problem in addressing these differences in perspectives. The situation is

complicated by the difference in success measures for scientists and man-

agers: scientists prove success by presenting results that are of interest to

a wide range of others and that do not focus on specific instances (e.g. in

scientific papers); managers measure success based on the state of their site.

This difference in perspectives is reflected in the contrasting ways that scien-

tists and managers treat uncertainty. From the science perspective the varia-

tion around the mean is a quantity that is to be minimised where possible; in

contrast, a manager needs to know where their site sits with respect to this

variation, and whether local circumstances render the overall average out-

come pattern inapplicable.

11.4 Addressing uncertainty
In general, it is important that uncertainty is recognised and tackled to avoid

common ‘traps’ (Millner-Gulland & Shea, 2017). These traps are varied, but

include ignoring or not accounting for uncertainty, as well as focusing on

irrelevant uncertainties and not clearly stating the objectives in framing

problems (Millner-Gulland & Shea, 2017). Here I review three case studies,

showing that there is a line of argument that ignores uncertainty and another

that embraces it. In each case the value of conclusions, both for the scientist

and the practitioner, require that uncertainty is fully evaluated.

11.4.1 Ignoring uncertainty should not be an option
One of themost important causes of uncertainty is lack of information. This is

particularly an issue when information is lacking on rare and difficult-to-

observe species, meaning that clade-wide conservation assessments are
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potentially compromised. The International Union for Conservation of Nature

(IUCN) is an important organisation that collates data on the conservation

status of species from a wide range of taxa into a set of threat states (Mace &

Lande, 1991). This extensive and important exercise informs conservation

strategies in a range of contexts (Rodrigues et al., 2006). The basis for the

assessment is a five-point scale of threat status for wild extant species.

Species are classified as Least Concern (LC), Near Threatened (NT),

Vulnerable (VU), Endangered (EN) or Critically Endangered (CE). Extinct in

the Wild and Extinct are categories of extinction beyond these five points,

representing species loss.

The amount of data required to apply these criteria varies between taxa. In

some cases the amount of information required is quite low. For example, the

Nechisar nightjar (Camprimulgus solala) is classified as VU despite being known

from only a single wing and a single sighting. On the other hand, for some

groups (e.g. mammals and amphibians) the data requirements for the assign-

ment of conservation status are more exacting. Those species for which

sufficient information is not available are assigned a status termed Data

Deficient (DD). The number of DD mammal species is a considerable fraction

of the group (483 of 4186 species; i.e. >10%) of mammals studied by Jetz and

Freckleton (2015).

Denoting species as DD is, effectively, a way of dealingwith uncertainty. It is

essentially the same as ignoring missing data in an analysis. This way of deal-

ing with data uncertainty is, however, fraught with pitfalls, and a large litera-

ture exists on dealingwithmissing data and associated uncertainty (Nakagawa

& Freckleton, 2008). It is well understood that non-randomness in the pattern

of ‘missingness’ can yield highly misleading analyses.

In the case of conservation assessments, the concern with DD mammal

species is that the factors that drive data deficiency are closely related to

those that determine extinction threat. For instance, if species are difficult

to observe it is likely to be because they only occur at low density in remote

locations, or population trends are unknown because they are so rare. It is easy

to see that this set of criteria could lead to species being ignored from con-

servation assessments even though they are threatened.

Jetz and Freckleton (2015) tested this hypothesis by applying a framework

for phylo-spatial modelling of IUCN threats, then using this to predict the

probability that DD species are threatened. Species that are DD are predicted

to have much higher threat probabilities than those that have been assessed

already (Figure 11.1). The fraction of threatened mammal species is therefore

underestimated by the current system of assessment.

Interestingly, the same is not true of birds (Lee & Jetz, 2011), as amuch smaller

fraction of them are considered DD because a lower threshold of information is

required to assess threat status. Thus, the recent taxonomic explosion that has
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led to the creation of 1000 new species of birds (del Hoyo et al., 2014, 2016) has

not resulted in 1000 species being assigned to the DD category.

This example illustrates an important point about uncertainty that is

relevant to conservation and management. Ignoring uncertainty by simply

excluding cases where data are missing runs the risk of introducing bias and

so, in general, should be addressed if at all possible (Millner-Gulland & Shea,

2017). In the introduction I noted that the likelihood of implementing an

action is low, irrespective of its actual effectiveness, when there is great

uncertainty associated with its effectiveness (i.e. the parameter p is low). In

this example, data-deficiency data result in no action being taken (p is low

because of uncertainty), although the evidence (Figure 11.1) is that the

intervention (assigning status of ‘threatened’) is justified with high

probability.

11.4.2 Providing more data/evidence
The preceding example highlights that, where possible, additional data should

be used to plug gaps in knowledge. One of the ways that scientists tend to

qualify conclusions (see Section 11.3.1) is to say that we cannot be confident
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Figure 11.1 The importance of dealing with uncertainty in conservation assessments.

We used models to generate threat probabilities for mammals. (a) These probabilities

do an effective job of distinguishing species that are Least Concern (green bars) from

those that are Critically Endangered (orange bars); (b) our models were used to predict

threat probabilities for species that were Data Deficient (DD) (pink bars) compared to

species that were assessed (grey bars) (i.e. to reduce uncertainty in assessment). (A black

and white version of this figure will appear in some formats. For the colour version,

please refer to the plate section.)
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becausemore data are required. As argued byMillner-Gulland and Shea (2017),

this can prevent effective management-relevant advice being given.

The example from Jetz and Freckleton (2015) (see also Safi & Pettorelli, 2010;

Bland et al., 2015) addressed this qualification by extracting asmuch information

as possible out of the existing data using advanced statistical methods. There are

a large range of techniques that have been used to infermissing data and it is not

possible to review them here, except to point out that suitable methods have

been developed (Nakagawa & Freckleton, 2008), or that the problem can be dealt

with using flexible statistical frameworks, such as Bayesian modelling (Gelman

et al., 1995). Another recent application used models to infer the maximal

population growth rate of several shark species for which this demographic

rate has not been otherwise estimated (e.g. Pardo et al., 2018).

In many cases, however, the bottom line is that sufficient data do not exist

and there is no option but to collect more. Data are time-consuming and

expensive to collect. Engaging in a programme of data collection will delay

implementation and use up resources that could be targeted at on-the-ground

management. Frequently there will not be resources available for data collec-

tion and hence the knowledge gap is never plugged.

On the assumption that more information could be obtained, a key question

arises: will collecting more information improve management decisions

(Maxwell et al., 2015)? Canessa et al. (2015) highlight a measure called the

‘Value of Information’ (VoI). This measure is the difference in outcome between

the expectedmanagement action based only onwhatever prior informationwas

available, and action takenwithnew informationprovided (Yokota&Thompson,

2004; Canessa et al., 2015). They provide an example that is typical of many in

conservation or land management. Imagine that a species of conservation con-

cern occurs in one locationwithin a protected area. The aim of conservation is to

maximise the size of the population in the area over a specified time period. In

order to meet this aim, one strategy could be to create a new population.

However, imagine further that there is a chance that a disease could be present

that would limit the effectiveness of the reintroduction. The VoI in this case

reflects the change in estimated effectiveness that would be achieved by testing

for the presence of disease before starting the reintroduction programme. Thus,

a test might be performed and return a positive or negative result. Given a prior

estimate of the prevalence of the disease, the difference between initial and

updated estimates can be calculated using Bayesian updating. These differences

then measure the VoI provided by conducting testing. This represents the possi-

ble improvement in decision-making through the removal of uncertainty.

11.4.3 Addressing uncertainty through benchmarking
A manager might apply a conservation intervention which, if the outcome is

positive, leads to a question of whether the intervention should be used again,
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or even recommended to another manager. Informal communication of out-

comes of this sort are not unusual in land management (Henrich, 2001).

From a scientific perspective, this is not an acceptable way of proceeding

unless appropriate controls and experimental design are used in the evaluation

of the method. Furthermore, the intervention would ideally be evaluated at

more than a single site. This reflects, of course, the tension between the situa-

tional and general perspectives of practitioners and scientists. There are pitfalls

in both views. There is of course, no guarantee that if management appears to

work at one site that it is not simply due to natural variation. Figure 11.2a gives

an example of this from an agricultural case study. At one site a specific inter-

vention was used and appeared to be successful. However, compared with the

outcome on a set of farms that did not use the technique, there is no obviously

large effect. On the other hand, if we are too picky about standards of evidence

or data then there is a real danger that useful information will be discarded.

Developments such as evidence-based conservation promote the collation of

evidenceon theeffectiveness ofmanagement (Sutherland, 2003; Sutherlandet al.,

2004; see also Chapter 4). The idea here is twofold. First, if the samemanagement

has been used in different places then, even if individual interventions do not

meet the criteria of a randomised trial (as in Figure 11.2a), the collective body of

evidence might be useful. Resources such as www.conservationevidence.com

allow this work to be synthesised. Second, using systematic review approaches,

it is possible to synthesise this information to provide answers to management

problems (Pullin & Stewart, 2006; see also Chapter 7).

In the example shown in Figure 11.2a, a single manager implemented one

management intervention. On its own this is not enough to determine effec-

tiveness. However, if many people implement the same management then it

may be possible to use non-intervention cases as a benchmark and compare the

difference with those places where interventions were made. For example,

Figures 11.2a and 11.2b show the distribution of weed population sizes in fields

subject to intervention (Figure 11.2a) compared with those in which no inter-

vention was made (Figure 11.2b). There is an apparent difference in outcome,

but clearly with a high degree of variance. Modelling the data (Figure 11.2c–

11.2e) reveals that, although there is an effect of the intervention (Figure 11.2e),

there is also a high degree of variance resulting from the initial state (Figure

11.2c) or from the variation in population dynamics from field to field (Figure

11.2d). Consequently, the effect of management, although measurable

(Figure 11.2e), is relatively small compared with the intrinsic variability of this

system. In this example, the results in Figure 11.2c–e confirm the expectation

that the specific management intervention should work, but they also confirm

anecdotal local reports that the effectiveness of this approach is patchy, and

suggest that frequently the positive effects observed may be attributable to

other factors (the large negative effect sizes in Figure 11.2c and d).
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Benchmarking of this sort could be extremely valuable in aidingmanagement

decisions (Freckleton et al., 2018). Technological advances, such as widespread

instrumentation of agricultural machinery, UAS technology (Paneque-Gálvez
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Figure 11.2 Uncertainty and benchmarking in weed control. (a,b) Predicted responses

of populations of the weed Alopecurus myosuroides to rotational management.

The initial frequency of weeds at each sowing density was the same in each case

(dashed blue line). Each grey line represents a matrix generated from a different field

following two forms of management. (a) What would have been the density (0 = zero,

L = low, M = medium, H = high and VH = very high) of an average field had it been

planted with spring barley. This is compared with (b) the predicted response from

maintaining winter wheat. The red line in (a) represents a single field that was

managed with variable sowing densities. Figures (c–e) compare the observed effect

of management with difference sources of background variation to disentangle

the uncertainty in management. We generated models for each field: 22 in winter

wheat and 12 rotated from winter wheat to spring barley, and their results

are presented in rank order. The effect range is the estimate of the random effect for

each field, location or rotation. (A black and white version of this figure will appear

in some formats. For the colour version, please refer to the plate section.)
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et al., 2014; Lambert et al., 2018) and remote sensing (Kerr & Ostrovsky, 2003;

Turner et al., 2003) offer the possibility of widescale automated data collection

at massive scales. When combined with ecological models, such data could

provide a hitherto impossible resource for reducing uncertainty in predicting

future management outcomes.
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