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Advances in imaging and experimental techniques have made materials science abundant, increasing the 

potential for new discoveries but requiring new techniques to trans- form the vast amount of data into 

information that can be readily interpreted by researchers. Data-driven models, specifically deep and 

machine learning, are one set of tools that have been applied with noticeable success to some burdensome 

materials and microscopy problems. However, the ultimate goal with these models has yet to be realized: 

to automatically process, characterized, and compressed the increasingly common high- resolution, multi-

modal imaging data on a single system. One crucial component of many workflows is classifying the 

crystal structure of a material, yet is mostly performed by trained expert who divine structural information 

from minute diffraction pattern variations. [1, 2, 3] The process of determining a crystal’s space group 

often involves a lengthy process requiring fitting to a series of non-linear equations and intimate 

knowledge of a sample to be performed properly, including standardized approaches such as Rietveld 

refinement. [4, 5] The heavy dependence in complex matching, time intensive processes, potential for 

dimensionality reduction, and the vast amount of data generated makes crystal classification an ideal case 

for automation. 

We have recently developed a convolutional neural network (CNN) to classify the crystal structure from 

material diffraction data. [6] More recent developments of our model focused on improving accuracy with 

additional material information, such as the chemical composition, and improving the robustness of the 

model by training the model to perturbations in the location and number of peaks in the diffraction pattern 

[7]. These development efforts are crucial to the ultimate goal of distributing our model as a community 

resource to facilitate the processing of large volume diffraction data. To that end, we present the 

application of our crystal structure classification tool in two types of high-throughput applications: 

identifying potential structures within a sample of mixed composition and data recorded at many time 

steps (Figure 1). 

To showcase how our data-driven model can help identify structures within a mixed composition, we 

applied our classification tool to a series of selected area electron diffraction patterns (SAED) obtained 

during 
177

Lu → 
177

Hf, a β-decay process. Our model can predict multiple structures within material from 

a signal diffraction pattern by generating an exhaustive list of possible combinations of its peaks, 

predicting the structure based on each subset of peaks, and accumulating the predictions to identify likely 

structures. Space-groups that receive any prediction may exist in the sample, yet multiple predictions, 

especially of rare space-groups, may provide evidence of unexpected crystal structures that exist in the 

material. Some of the structures predicted by this approach include those which correspond to known 

phases of the known starting, transition, and end phased of the reaction (Figure 2). One space-group that 

the model predicted is 216 (f43m), which is notable because it points to the presence of a theoretical 

transition compound: 
177

LuxHf1−xO3 (Figure 2). This example also highlights the use of our model in a 

time-dependent data set, as the combinatorial prediction was applied throughout the experiment [8]. 
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Figure 1. Robust data workflow for high throughput analysis. Illustrated above is a workflow for merging 

diffraction and chemistry data gathered from various modalities. Leveraging neural networks and machine 

learning, we have developed toolsets, and workflow models to benefit the community aiding their ability 

to perform high throughput analysis for several imaging modalities. 

 

Figure 2. Application of the crystal structure classification tool to 177Lu as it beta decays into 177Hf. A) 

shows the TEM imaging of the sample at various stages of decay, B) shows probable crystal structures 
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during the reaction, and C) shows the diffraction patterns and the classifications of possible structures 

within the sample. 
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