
J. Fluid Mech. (2023), vol. 975, A2, doi:10.1017/jfm.2023.716

Predicting turbulent dynamics with the
convolutional autoencoder echo state network

Alberto Racca1,2,3,†, Nguyen Anh Khoa Doan4 and Luca Magri1,3,5,†
1Department of Engineering, University of Cambridge, CB2 1PZ Cambridge, UK
2Imperial College London, Imperial-X, W12 7SL London, UK
3Aeronautics Department, Imperial College London, London SW7 2AZ, UK
4Faculty of Aerospace Engineering, Delft University of Technology, 2629 HS Delft, The Netherlands
5The Alan Turing Institute, NW1 2DB London, UK

(Received 18 November 2022; revised 7 August 2023; accepted 14 August 2023)

The dynamics of turbulent flows is chaotic and difficult to predict. This makes the design
of accurate reduced-order models challenging. The overarching objective of this paper
is to propose a nonlinear decomposition of the turbulent state to predict the flow based
on a reduced-order representation of the dynamics. We divide the turbulent flow into a
spatial problem and a temporal problem. First, we compute the latent space, which is the
manifold onto which the turbulent dynamics live. The latent space is found by a series of
nonlinear filtering operations, which are performed by a convolutional autoencoder (CAE).
The CAE provides the decomposition in space. Second, we predict the time evolution of
the turbulent state in the latent space, which is performed by an echo state network (ESN).
The ESN provides the evolution in time. Third, by combining the CAE and the ESN, we
obtain an autonomous dynamical system: the CAE-ESN. This is the reduced-order model
of the turbulent flow. We test the CAE-ESN on the two-dimensional Kolmogorov flow
and the three-dimensional minimal flow unit. We show that the CAE-ESN: (i) finds a
latent-space representation of the turbulent flow that has �1 % of the degrees of freedom
than the physical space; (ii) time-accurately and statistically predicts the flow at different
Reynolds numbers; and (iii) takes �1 % computational time to predict the flow with
respect to solving the governing equations. This work opens possibilities for nonlinear
decomposition and reduced-order modelling of turbulent flows from data.

Key words: machine learning, chaos, turbulence modelling

† Email addresses for correspondence: a.racca@imperial.ac.uk, l.magri@imperial.ac.uk

© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 975 A2-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
6

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:a.racca@imperial.ac.uk
mailto:l.magri@imperial.ac.uk
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2023.716&domain=pdf
https://doi.org/10.1017/jfm.2023.716

A. Racca, N.A.K Doan and L. Magri

1. Introduction

In the past few decades, large amounts of data have been generated from experiments
and numerical simulations of turbulent flows (e.g. Duraisamy, Iaccarino & Xiao 2019).
To analyse high-dimensional data, low-order representations are typically sought (e.g.
Taira et al. 2017). Reduced-order modelling consists of predicting the time evolution of
high-dimensional systems with a low-order representation of the system. By predicting
the system based on a (relatively) small number of degrees of freedom, reduced-order
modelling significantly reduces the computational cost and provides insights into the
physics of the system. In this paper, we construct a reduced-order model by: (i) inferring
a lower-dimensional manifold, the latent space, where the turbulent dynamics live; and
(ii) predicting the turbulent dynamics in the latent space. To generate the latent space,
techniques such as proper orthogonal decomposition (POD) (Lumley 1970) and dynamic
mode decomposition (DMD) (Schmid 2010) are commonly used. They have been applied
successfully in multiple settings, such as extracting spatiotemporal features and controlling
flowfields (e.g. Rowley, Colonius & Murray 2004; Brunton & Noack 2015; Rowley &
Dawson 2017). The downside of these methodologies is that they are linear approximators,
which require a large number of modes to describe turbulent flowfields (e.g. Alfonsi &
Primavera 2007; Muralidhar et al. 2019). To reduce the number of modes to accurately
describe flowfields, nonlinear mappings have shown promising results in recent years (e.g.
Brunton, Noack & Koumoutsakos 2020; Fernex, Noack & Semaan 2021).

A robust data-driven method that computes a low-dimensional representation of the data
is the autoencoder (Kramer 1991; Goodfellow, Bengio & Courville 2016). Autoencoders
typically consist of a series of neural networks that map the original field to (and
back from) the latent space. In fluids, Milano & Koumoutsakos (2002) developed a
feed-forward neural network autoencoder to investigate a turbulent channel flow. Since
then, the advent of data-driven techniques tailored for the analysis of spatially varying data,
such as convolutional neural networks (CNNs) (Lecun et al. 1998), has greatly extended
the applicability of autoencoders (Hinton & Salakhutdinov 2006; Agostini 2020). For
example, Fukami, Fukagata & Taira (2019) employed CNNs to improve the resolution of
sparse measurements of a turbulent flowfield, Murata, Fukami & Fukagata (2020) analysed
the autoencoder modes in the laminar wake past a cylinder, and Kelshaw, Rigas & Magri
(2022) proposed a physics-informed autoencoder for super-resolution of turbulence, to
name only a few.

Once the latent space is generated, we wish to predict the temporal dynamics within
the latent space. To do so, one option is to project the governing equations onto the
low-order space (Antoulas 2005). This is a common method when the governing equations
are known, but it becomes difficult to implement when the equations are not exactly
known (Yu, Yan & Guo 2019). An alternative option is the inference of differential
equations within the latent space, with genetic programming (e.g. Schmidt & Lipson
2009) or symbolic regression (e.g. Loiseau, Noack & Brunton 2018). In this paper, we
focus on developing a reduced-order modelling approach that does not require differential
equations.

To forecast temporal dynamics based on a sequence of inputs, recurrent neural networks
(RNNs) (Rumelhart, Hinton & Williams 1986) are the state-of-the-art data-driven
architectures (e.g. Goodfellow et al. 2016; Chattopadhyay, Hassanzadeh & Subramanian
2020). RNNs are designed to infer the correlation within data sequentially ordered in
time via an internal state, which is updated at each time step. Through this mechanism,
RNNs retain the information of multiple previous time steps when predicting the future
evolution of the system. This is useful in reduced-order modelling, in which the access to

975 A2-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
6

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.716

Predicting turbulent dynamics from data

a limited number of variables (a subset of the full state of the system) causes the evolution
of the latent space dynamics (i.e. partially observed dynamics) to be non-Markovian, as
explained in Vlachas et al. (2020). In fluids, RNNs have been deployed for predicting flows
past bluff bodies of different shapes (Hasegawa et al. 2020), replicating the statistics of
turbulence (Srinivasan et al. 2019; Nakamura et al. 2021) and controlling gliding (Novati,
Mahadevan & Koumoutsakos 2019), to name a few. Among RNNs, reservoir computers
in the form of echo state networks (ESNs) (Jaeger & Haas 2004; Maass, Natschläger &
Markram 2002) are versatile architectures for the prediction of chaotic dynamics. ESNs
are universal approximators under non-stringent assumptions of ergodicity (Grigoryeva
& Ortega 2018; Hart, Hook & Dawes 2021), which perform (at least) as well as other
architectures such as long short-term memory (LSTM) networks (Vlachas et al. 2020),
but they are simpler to train. This is because training the ESNs is a quadratic optimisation
problem, whose global minimum is a solution of a linear system (Lukoševičius 2012). In
contrast, the training of LSTMs require an iterative gradient descent, which can converge
to a local minimum of a multimodal loss function (Goodfellow et al. 2016). ESNs are
designed to be straightforward and computationally cheaper to train than other networks,
but their performance is sensitive to the selection of hyperparameters, which need to be
computed through ad hoc algorithms (Racca & Magri 2021). In fluid dynamics, ESNs
have been employed to (i) optimise ergodic averages in thermoacoustic oscillations (Huhn
& Magri 2022), (ii) predict extreme events in chaotic flows (Doan, Polifke & Magri 2021;
Racca & Magri 2022a,b) and control their occurrence (Racca & Magri 2022a, 2023), (iii)
infer the model error (i.e. bias) in data assimilation of thermoacoustics systems (Nóvoa,
Racca & Magri 2023) and (iv) investigate the stability and covariant Lyapunov vectors
of chaotic attractors (Margazoglou & Magri 2023). Racca & Magri (2022a) showed that
ESNs perform similarly to the LSTMs of Srinivasan et al. (2019) in the forecasting of
chaotic flows, whilst requiring ≈0.1 % data.

The objective of this work is threefold. First, we develop the CAE-ESN by combining
convolutional autoencoders (CAEs) with ESNs to predict turbulent flowfields. Second, we
time-accurately and statistically predict a turbulent flow at different Reynolds numbers.
Third, we carry out a correlation analysis between the reconstruction error and the
temporal prediction of the CAE-ESN.

This paper is organised as follows. Section 2 presents the two-dimensional turbulent
flow and introduces the tools for nonlinear analysis. Section 3 describes the CAE-ESN.
Section 4 analyses the reconstruction of the flowfield. Section 5 analyses the time-accurate
prediction of the flow and discusses the correlation between reconstruction error and
temporal prediction of the system. Section 6 analyses the prediction of the statistics of
the flow and the correlation between time-accurate and statistical performance. Section
7 extends the CAE-ESN to the prediction of three-dimensional turbulence. Finally, § 8
summarises the results.

2. Kolmogorov flow

We consider the two-dimensional non-dimensionalised incompressible Navier–Stokes
equations

∂u
∂t

+ u · ∇u = −∇p + 1
Re

�u + f , (2.1)

∇ · u = 0, (2.2)

975 A2-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
6

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.716

A. Racca, N.A.K Doan and L. Magri

where p is the pressure, u = (u1, u2) is the velocity and x = (x1, x2) are the spatial
coordinates. The time-independent diverge-free forcing is f = sin(nf x2)e1, where e1 =
(1, 0)T and nf is the wavenumber of the forcing. The Reynolds number is Re = √

χ/ν,
where χ is the amplitude of the forcing and ν is the kinematic viscosity (Chandler &
Kerswell 2013). We solve the flow in the doubly periodical domain x ∈ T

2 = [0, 2π] ×
[0, 2π]. For this choice of forcing and boundary conditions, the flow is typically referred
to as the Kolmogorov flow (e.g. Platt, Sirovich & Fitzmaurice 1991). We integrate
the equations using KolSol (https://github.com/MagriLab/KolSol), which is a publicly
available pseudospectral solver based on the Fourier–Galerkin approach described by
Canuto et al. (1988). The equations are solved in the Fourier domain with a fourth-order
explicit Runge–Kutta integration scheme with a timestep dt = 0.01. The results are stored
every δt = 0.1. As suggested in Farazmand (2016), we select the number of Fourier modes
from convergence tests on the kinetic energy spectra (see supplementary material available
at https://doi.org/10.1017/jfm.2023.716). The solution in the Fourier domain is projected
onto a 48 × 48 grid in the spatial domain with the inverse Fourier transform. The resulting
4608-dimensional velocity flowfield, q(t) ∈ R

48×48×2, is the flow state vector.
The Kolmogorov flow shows a variety of regimes that depend on the forcing

wavenumber, nf , and Reynolds number, Re (Platt et al. 1991). In this work, we analyse
nf = 4 and Re = {30, 34}, for which we observe quasiperiodic and turbulent solutions,
respectively. To globally characterise the flow, we compute the average dissipation rate, D,
per unit volume

D(t) = 1
(2π)2

∫ 2π

0

∫ 2π

0
d(x1, x2, t) dx1 dx2, d(x1, x2, t) = 1

Re
||∇u(x1, x2, t)||2,

(2.3a,b)

where d(x1, x2, t) is the local dissipation rate and ||·|| is the L2 norm. The dissipation rate
has been employed in the literature to analyse the Kolmogorov flow (Chandler & Kerswell
2013; Farazmand 2016). We characterise the solutions in figure 1 and Appendix B through
the average dissipation rate, D, and the local dissipation rate at the centre of the domain,
dπ,π. The phase plots show the trajectories obtained with the optimal time delay given
by the first minimum of the average mutual information, τ (Kantz & Schreiber 2004). In
the first regime (Re = 30), the average dissipation rate is a limit cycle (figure 1a), whilst
the local dissipation rate has a toroidal structure (figure 1b), which indicates quasiperiodic
variations in the flow state. The average dissipation rate is periodic, despite the flow state
being quasiperiodic, because some temporal frequencies are filtered out when averaging
in space (more details are given in Appendix B). In the second regime (Re = 34), the
solution is turbulent for both global and local quantities (figure 1c,d).

2.1. Lyapunov exponents and attractor dimension
As explained in § 4, in order to create a reduced-order model, we need to select the number
of degrees of freedom of the latent space. We observe that at a statistically stationary
regime, the latent space should be at least as large as the turbulent attractor. Therefore,
we propose using the turbulent attractor’s dimension as a lower bound for the latent space
dimension. In chaotic (turbulent) systems, the dynamics are predictable only for finite
times because infinitesimal errors increase in time with an average exponential rate given
by the (positive) largest Lyapunov exponent, Λ1 (e.g. Boffetta et al. 2002). The inverse
of the largest Lyapunov exponent provides a timescale for assessing the predictability
of chaotic systems, which is referred to as the Lyapunov time (LT), 1LT = Λ−1

1 .

975 A2-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
6

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://github.com/MagriLab/KolSol
https://doi.org/10.1017/jfm.2023.716
https://doi.org/10.1017/jfm.2023.716

Predicting turbulent dynamics from data

D (t)

0.19
0.20

0.21

D (t
–

τ)

0.19

0.20
0.21

D
 (t

 –
 2

τ)

0.19

0.20

0.21

(a)

d
π,π (t)

0

0.5

d π
,π

(t –
 τ)

0

0.5

d π
,π

(t
–
 2

τ)

0

0.5

(b)

D (t)

0.15
0.20

0.25

D (t
–

τ)

0.15

0.20

0.25

D
 (t

 –
 2

τ)
0.15

0.20

0.25

(c)

d
π,π (t)

0
1

2 d π
,π

(t –
 τ)

0

1

2

d π
,π

(t
–
 2

τ)

0

1

2

(d)

Figure 1. Phase plots of the global, D, and local, dπ,π, dissipation rates for (a,b) quasiperiodic regime of the
flow state (Re = 30) and (c,d) turbulent regime (Re = 34). Here τ = [5.0, 13.0, 4.8, 12.0], respectively.

To quantitatively assess time accuracy (§ 5), we normalise the time by the LT. In addition
to being unpredictable, chaotic systems are dissipative, which means that the solution
converges to a limited region of the phase space, i.e. the attractor. The attractor typically
has a significantly smaller number of degrees of freedom than the original system
(Eckmann & Ruelle 1985). An upper bound on the number of degrees of freedom of the
attractor, i.e. its dimension, can be estimated via the Kaplan–Yorke dimension (Kaplan &
Yorke 1979)

NKY = j +

j∑
i=1

Λi

|Λj+1| , (2.4)

where Λi are the j largest Lyapunov exponents for which
∑ j

i=1 Λi ≥ 0. Physically, the
m largest Lyapunov exponents are the average exponential expansion/contraction rates
of an m-dimensional infinitesimal volume of the phase space moving along the attractor
(e.g. Boffetta et al. 2002). To obtain the m largest Lyapunov exponents, we compute the
evolution of m random perturbations around a trajectory that spans the attractor. The space
spanned by the m perturbations approximates an m-dimensional subspace of the tangent
space. Because errors grow exponentially in time, the evolution of the perturbations is
exponentially unstable and the direct computation of the Lyapunov exponents numerically
overflows. To overcome this issue, we periodically orthonormalise the perturbations,
following the algorithm of Benettin et al. (1980) (see the supplementary material). In so
doing, we find the quasiperiodic attractor to be 3-dimensional and the chaotic attractor to
be 9.5-dimensional. Thus, both attractors have approximately 3 order of magnitude fewer
degrees of freedom than the flow state (which has 4608 degrees of freedom, see § 2). We
take advantage of these estimates in §§ 4–5, in which we show that we need more than 100

975 A2-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
6

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.716

A. Racca, N.A.K Doan and L. Magri

POD modes to accurately describe the attractor that has less than 10 degrees of freedom.
The leading Lyapunov exponent in the chaotic case is Λ1 = 0.065, therefore, the LT is
1LT = 0.065−1 ≈ 15.4.

3. Convolutional autoencoder echo state network (CAE-ESN)

In order to decompose high-dimensional turbulent flows into a lower-order representation,
a latent space of the physical dynamics is computed. For time prediction, the dynamics
are mapped onto the latent space on which their evolution can be predicted at a
lower computational cost than the original problem. In this work, we generate the
low-dimensional space using a CAE (Hinton & Salakhutdinov 2006), which offers a
nonlinear reduced-order representation of the flow. By projecting the physical dynamics
onto the latent space, we obtain a low-dimensional time series, whose dynamics are
predicted by an ESN (Jaeger & Haas 2004).

3.1. Convolutional autoencoder
The autoencoder consists of an encoder and a decoder (figure 2a). The encoder, g(·), maps
the high-dimensional physical state, q(t) ∈ R

Nphys , into the low-dimensional latent state,
z ∈ R

Nlat with Nlat � Nphys; whereas the decoder, f (·), maps the latent state back into the
physical space with the following goal

q̂(t) � q(t), where q̂(t) = f (z(t)), z(t) = g(q(t)), (3.1)

where q̂(t) ∈ R
Nphys is the reconstructed state. We use CNNs (Lecun et al. 1998) as the

building blocks of the autoencoder. In CNNs, a filter of size kf × kf × df , slides through
the input, y1 ∈ R

N1x×N1y×N1z , with stride, s, so that the output, y2 ∈ R
N2x×N2y×N2z , of the

CNN layer is

y2ijm = func

⎛
⎝ kf∑

l1=1

kf∑
l2=1

N1z∑
k=1

y1s(i−1)+l1,s(j−1)+l2,k Wl1l2km + bm

⎞
⎠ , (3.2)

where func is the nonlinear activation function, and Wl1l2km and bm are the weights and bias
of the filter, which are computed by training the network. We choose func = tanh following
Murata et al. (2020). A visual representation of the convolution operation is shown in
figure 2(b). The size of the output is a function of the input size, the kernel size, the stride
and the artificially added entries around the input (i.e. the padding). By selecting periodic
padding, we enforce the boundary conditions of the flow (figure 2c). The convolution
operation filters the input by analyzing patches of size kf × kf . In doing so, CNNs take
into account the spatial structure of the input and learn localised structures in the flow.
Moreover, the filter has the same weights as it slides through the input (parameter sharing),
which allows us to create models with significantly less weights than fully connected
layers. Because the filter provides the mathematical relationship between nearby points
in the flowfield, parameter sharing is physically consistent with the governing equations of
the flow, which are invariant to translation.

The encoder consists of a series of padding and convolutional layers. At each stage,
we (i) apply periodic padding, (ii) perform a convolution with stride equal to two to half
the spatial dimensions (Springenberg et al. 2014) and increase the depth of the output
and (iii) perform a convolution with stride equal to one to keep the same dimensions and
increase the representation capability of the network. The final convolutional layer has

975 A2-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
6

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.716

Predicting turbulent dynamics from data

Encoder

q (48, 48, 2)

Input

z (3, 3, Nlat /9)

Latent space
q̂ (48, 48, 2)

Output

Convolution operation

Input

Output

kf

kf

Padding

9

3

6

9

3

7

1

4

7

1

8

2

5

8

2

9

3

6

9

3

7

1

4

7

1

Decoder(a)

(b) (c)

Figure 2. (a) Schematic representation of the multiscale autoencoder, (b) convolution operation for filter size
(2 × 2 × 1), stride = 1 and padding = 1 and (c) periodic padding. In (b,c), blue and white squares indicate the
input and the padding, respectively. The numbers in (c) indicate pictorially the values of the flowfield, which
can be interpreted as pixel values.

a varying depth, which depends on the size of the latent space. The decoder consists of
a series of padding, transpose convolutional and centre crop layers. An initial periodic
padding enlarges the latent space input through the periodic boundary conditions. The
size of the padding is chosen so that the spatial size of the output after the last transpose
convolutional layer is larger than the physical space. In the next layers, we (i) increase
the spatial dimensions of the input through the transpose convolution with stride equal to
two and (ii) perform a convolution with stride equal to one to keep the same dimensions
and increase the representation capability of the network. The transpose convolution is
the inverse operation of the convolution shown in figure 2(b), in which the roles of the
input and the output are inverted (Zeiler et al. 2010). The centre crop layer eliminates
the outer borders of the picture after the transpose convolution, in a process opposite to
padding, which is needed to match the spatial size of the output of the decoder with the
spatial size of the input of the encoder. A final convolutional layer with a linear activation
function sets the depth of the output of the decoder to be equal to the input of the encoder.
We use the linear activation to match the amplitude of the inputs to the encoder. The
encoder and decoder have similar number of trainable parameters (more details are given
in Appendix C).

In this study, we use a multiscale autoencoder (Du et al. 2018), which has been
successfully employed to generate latent spaces of turbulent flowfields (Nakamura et al.
2021). The multiscale autoencoder employs three parallel encoders and decoders, which

975 A2-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
6

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.716

A. Racca, N.A.K Doan and L. Magri

have different spatial sizes of the filter (figure 2a). The size of the three filters are 3 × 3,
5 × 5 and 7 × 7, respectively. By employing different filters, the multiscale architecture
learns spatial structures of different sizes, which are characteristic features of turbulent
flows. We train the autoencoder by minimising the mean squared error (MSE) between the
outputs and the inputs

L =
Nt∑

i=1

1
NtNphys

∣∣∣∣q̂(ti) − q(ti)
∣∣∣∣2 , (3.3)

where Nt is the number of training snapshots. To train the autoencoder, we use a dataset of
30 000 time units (generated by integrating (2.1)–(2.2)), which we sample with timestep
δtCNN = 1. Specifically, we use 25 000 time units for training and 5000 for validation.
We divide the training data in minibatches of 50 snapshots each, where every snapshot is
500δtCNN from the previous input of the minibatch. The weights are initialised following
Glorot & Bengio (2010), and the minimisation is performed by stochastic gradient descent
with the AMSgrad variant of the Adam algorithm (Kingma & Ba 2017; Reddi, Kale &
Kumar 2018) with adaptive learning rate. The autoencoder is implemented in Tensorflow
(Abadi et al. 2015).

3.2. Echo state networks
Once the mapping from the flowfield to the latent space has been found by the encoder
at the current time step, z(ti) = g(q(ti)), we wish to compute the latent state at the next
time step, z(ti+1). Because the latent space does not contain full information about the
system, the next latent state, z(ti+1) cannot be computed straightforwardly as a function
of the current latent state only, z(ti) (for more details refer to Kantz & Schreiber 2004;
Vlachas et al. 2020). To compute the latent vector at the next time step, we incorporate
information from multiple previous time steps to retain a recursive memory of the past.
(This can be alternatively motivated by dynamical systems’ reconstruction via delayed
embedding Takens (1981), i.e. z(ti+1) = F (z(ti), z(ti−1), . . . , z(ti−demb)), where demb is the
embedding dimension.) This can be achieved with RNNs, which compute the next time
step as a function of previous time steps by updating an internal state that keeps memory of
the system. Because of the long-lasting time dependencies of the internal state, however,
training RNNs with backpropagation through time is notoriously difficult (Werbos 1990).
ESNs overcome this issue by nonlinearly expanding the inputs into a higher-dimensional
system, the reservoir, which acts as the memory of the system (Lukoševičius 2012). The
output of the network is a linear combination of the reservoir’s dynamics, whose weights
are the only trainable parameters of the system. Thanks to this architecture, training ESNs
consists of a straightforward linear regression problem, which avoids backpropagation
through time.

As shown in figure 3, in an ESN, at any time ti: (i) the latent state input, z(ti), is mapped
into the reservoir state, by the input matrix, W in ∈ R

Nr×(Nlat+1), where Nr > Nlat; (ii) the
reservoir state, r ∈ R

Nr , is updated at each time iteration as a function of the current input
and its previous value; and (iii) the updated reservoir is used to compute the output, which
is the predicted latent state at the next timestep, ẑ(ti+1). This process yields the discrete
dynamical equations that govern the ESN’s evolution (Lukoševičius 2012)

r(ti+1) = tanh
(

W in

[
z̃(ti); bin

]
+ W r(ti)

)
,

ẑ(ti+1) =
[
r(ti+1); 1

]T
W out,

⎫⎪⎬
⎪⎭ (3.4)

975 A2-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
6

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.716

Predicting turbulent dynamics from data

Encoder

q (t0) z (t0)

r (t0)

r (t1)

r (t2)

ẑ (t1)

ẑ (t1)

ẑ (t2)

ẑ (t2)

ẑ (t3)

q̂ (t1)

q̂ (t2)

q̂ (t3)

Echo state

network

Decoder

Figure 3. Schematic representation of the closed-loop evolution of the ESN in the latent space, which is
decompressed by the decoder.

where ˜(·) indicates that each component is normalised by its range, W ∈ R
Nr×Nr is the

state matrix, bin is the input bias and W out ∈ R
(Nr+1)×Nlat is the output matrix. The

matrices W in and W are (pseudo)randomly generated and fixed, whilst the weights of the
output matrix, W out, are computed by training the network. The input matrix, W in, has only
one element different from zero per row, which is sampled from a uniform distribution in
[−σin, σin], where σin is the input scaling. The state matrix, W , is an Erdős–Renyi matrix
with average connectivity, d = 3, in which each neuron (each row of W) has on average
only d connections (non-zero elements), which are obtained by sampling from a uniform
distribution in [−1, 1]; the entire matrix is then scaled by a multiplication factor to set
the spectral radius, ρ. The role of the spectral radius is to weigh the contribution of past
inputs in the computation of the next time step, therefore, it determines the embedding
dimension, demb. The larger the spectral radius, the more memory of previous inputs the
machine has (Lukoševičius 2012). The value of the connectivity is kept small to speed
up the computation of W r(ti), which, thanks to the sparseness of W , consists of only
Nrd operations. The bias in the inputs and outputs layers are added to break the inherent
symmetry of the basic ESN architecture (Lu et al. 2017). The input bias, bin = 0.1 is
selected for it to have the same order of magnitude of the normalised inputs, ẑ, whilst the
output bias is determined by training W out.

The ESN can be run either in open-loop or closed-loop configuration. In the open-loop
configuration, we feed the data as the input at each time step to compute the reservoir
dynamics, r(ti). We use the open-loop configuration for washout and training. Washout is
the initial transient of the network, during which we do not compute the output, ẑ(ti+1).
The purpose of washout is for the reservoir state to become (i) up-to-date with respect
to the current state of the system and (ii) independent of the arbitrarily chosen initial
condition, r(t0) = 0 (echo state property). After washout, we train the output matrix,
W out, by minimising the MSE between the outputs and the data over the training set.

975 A2-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
6

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.716

A. Racca, N.A.K Doan and L. Magri

Training the network on Ntr + 1 snapshots consists of solving the linear system (ridge
regression) (

RRT + βI
)

W out = RZT
d , (3.5)

where R ∈ R
(Nr+1)×Ntr and Zd ∈ R

Nlat×Ntr are the horizontal concatenations of the
reservoir states with bias, [r; 1], and of the output data, respectively; I is the identity
matrix and β is the Tikhonov regularisation parameter (Tikhonov et al. 2013). In the
closed-loop configuration (figure 3), starting from an initial data point as an input and an
initial reservoir state obtained through washout, the output, ẑ, is fed back to the network as
an input for the next time step prediction. In doing so, the network is able to autonomously
evolve in the future. After training, the closed-loop configuration is deployed for validation
and test on unseen dynamics.

3.2.1. Validation
During validation, we use part of the data to select the hyperparameters of the network
by minimising the error of the prediction with respect to the data. In this work, we
optimise the input scaling, σin, spectral radius, ρ, and Tikhonov parameter, β, which
are the key hyperparameters for the performance of the network (Lukoševičius 2012).
We use a Bayesian optimisation to select σin and ρ, and perform a grid search within
[σin, ρ] to select β (Racca & Magri 2021). The range of the hyperparameters vary as
a function of the testcase (see the supplementary material). In addition, we add to the
training inputs, ztr, Gaussian noise, N , with a zero mean and standard deviation, such
that ztri = zi + N (0, kzσ(zi)), where σ(·) is the standard deviation and kz is a tunable
parameter (Appendix D). Adding noise to the data improves the ESN forecasting of
chaotic dynamics because the network explores more regions around the attractor, thereby
becoming more robust to errors (Lukoševičius 2012; Vlachas et al. 2020; Racca & Magri
2022a).

To select the hyperparameters, we employ the recycle validation (RV) (Racca & Magri
2021). The RV is a tailored validation strategy for the prediction of dynamical systems
with RNNs, which has been shown to outperform other validation strategies, such as the
single shot validation (SSV), in the prediction of chaotic flows (more details are given
in Appendix D). In the RV, the network is trained only once on the entire dataset, and
validation is performed on multiple intervals already used for training. This is possible
because RNNs operate in two configurations (open-loop and closed-loop), which means
that the networks can be validated in closed-loop on data used for training in open-loop.

4. Spatial reconstruction

We analyse the ability of the autoencoder to create a reduced-order representation of
the flowfield, i.e. the latent space. The focus is on the spatial reconstruction of the flow.
Prediction in time is discussed in §§ 5–6.

4.1. Reconstruction error
The autoencoder maps the flowfield onto the latent space and then reconstructs
the flowfield based on the information contained in the latent space variables. The
reconstructed flowfield (the output) is compared with the original flowfield (the input).
The difference between the two flowfields is the reconstruction error, which we quantify

975 A2-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
6

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.716

Predicting turbulent dynamics from data

0 20 40 60 80 100 0 20 40 60 80 100

Latent space size

10−5

10−4

10−3

10−2

10−1

100

1
 –

 E
n
er

g
y
 (

q)

Re = 30

Latent space size

Re = 34

POD CAE

(b)(a)

Figure 4. Reconstruction error in the test set as a function of the latent space size in (a) the quasiperiodic
case and (b) the chaotic case for POD and the CAE.

with the normalised root-mean-squared error (NRMSE)

NRMSE(q) =

√√√√√√√√√√√

Nphys∑
i

1
Nphys

(q̂i − qi)
2

Nphys∑
i

1
Nphys

σ(qi)
2

, (4.1)

where i indicates the ith component of the physical flowfield, q, and the reconstructed
flowfield, q̂, and σ(·) is the standard deviation. We compare the results for different sizes
of the latent space with the reconstruction obtained by POD (Lumley 1970), also known
as principal component analysis (Pearson 1901). In POD, the Nlat-dimensional orthogonal
basis that spans the reduced-order space is given by the eigenvectors Φ

(phys)
i associated

with the largest Nlat eigenvalues of the covariance matrix, C = (1/(Nt − 1))QT
d Qd , where

Qd is the vertical concatenation of the Nt flow snapshots available during training, from
which the mean has been subtracted. Both POD and the autoencoder minimise the same
loss function (3.3). However, POD provides the optimal subspace onto which linear
projections of the data preserve its energy. On the other hand, the autoencoder provides
a nonlinear mapping of the data, which is optimised to preserve its energy. (In the limit
of linear activation functions, autoencoders perform similarly to POD (Baldi & Hornik
1989; Milano & Koumoutsakos 2002; Murata et al. 2020).) The size of the latent space
of the autoencoder is selected to be larger than the Kaplan–Yorke dimension, which is
NKY = {3, 9.5} for the quasiperiodic and turbulent testcases, respectively (§ 2.1). We do so
to account for the (nonlinear) approximation introduced by the CAE-ESN, and numerical
errors in the optimisation of the architecture.

Figure 4 shows the reconstruction error over 600 000 snapshots (for a total of 2 × 106

snapshots between the two regimes) in the test set. We plot the results for POD and the
autoencoder through the energy (variance) captured by the modes

Energy = 1 − NRMSE
2
, (4.2)

where NRMSE is the time-averaged NRMSE. The rich spatial complexity of the turbulent
flow (figure 4b), with respect to the quasiperiodic solution (figure 4a), is apparent from the
magnitude and slope of the reconstruction error as a function of the latent space dimension.

975 A2-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
6

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.716

A. Racca, N.A.K Doan and L. Magri

In the quasiperiodic case, the error is at least one order of magnitude smaller than the
turbulent case for the same number of modes, showing that fewer modes are needed to
characterise the flowfield. In both cases, the autoencoder is able to accurately reconstruct
the flowfield. For example, in the quasiperiodic and turbulent cases the nine-dimensional
autoencoder latent space captures 99.997 % and 99.78 % of the energy, respectively. The
nine-dimensional autoencoder latent space provides a better reconstruction than 100 POD
modes for the same cases. Overall, the autoencoder provides an error at least two orders of
magnitude smaller than POD for the same size of the latent space. These results show that
the nonlinear compression of the autoencoder outperforms the optimal linear compression
of POD.

4.2. Autoencoder principal directions and POD modes

We compare the POD modes provided by the autoencoder reconstruction, Φ
(phys)
Dec , with

the POD modes of the data, Φ
(phys)
True . We do so to interpret the reconstruction of the

autoencoder as compared with POD. For brevity, we limit our analysis to the latent space
of 18 variables in the turbulent case. We decompose the autoencoder latent dynamics into
proper orthogonal modes, Φ

(lat)
i , which we name ‘autoencoder principal directions’ to

distinguish them from the POD modes of the data. Figure 5(a) shows that four principal
directions are dominant, as indicated by the change in slope of the energy, and that they
contain roughly 97 % of the energy of the latent space signal. We therefore focus our
analysis on the four principal directions, from which we obtain the decoded field

q̂Dec4(t) = f

(4∑
i=1

ai(t)Φ
(lat)
i

)
, (4.3)

where ai(t) = Φ
(lat)T
i z(t) and f (·) is the decoder (§ 3.1). The energy content in the

reconstructed flowfield is shown in figure 5(b). On the one hand, the full latent space,
which consists of 18 modes, reconstructs accurately the energy content of the first 50 POD
modes. On the other hand, q̂Dec4 closely matches the energy content of the first few POD
modes of the true flow field, but the error increases for larger numbers of POD modes.
This happens because q̂Dec4 contains less information than the true flow field, so that fewer
POD modes are necessary to describe it. The results are further corroborated by the scalar
product with the physical POD modes of the data (figure 6). The decoded field obtained
from all the principal components accurately describes the majority of the first 50 physical
POD modes, and q̂Dec4 accurately describes the first POD modes. These results indicate
that only few nonlinear modes contain information about several POD modes.

A visual comparison of the most energetic POD modes of the true flow field and of
q̂Dec4 is shown in figure 7. The first eight POD modes are recovered accurately. The
decoded latent space principal directions, f (Φ

(lat)
i), are plotted in figure 8. We observe

that the decoded principal directions are in pairs as the linear POD modes, but they differ
significantly from any of the POD modes of figure 7. This is because each mode contains
information about multiple POD modes, since the decoder infers nonlinear interactions
among the POD modes. Further analysis of the modes and the latent space requires
tools from Riemann geometry (Magri & Doan 2022). This is beyond the scope of this
study.

975 A2-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
6

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.716

Predicting turbulent dynamics from data

2 4 6 8 10

Latents space principal directions (Φ(lat)) POD modes (Φ(phys))

10−2

10−1

100

10−2

10−1

100

1
 −

 E
n
er

g
y

 (
z)

1
 −

 E
n
er

g
y

 (
q)

0 20 40

4 principal directions

All (18) principal directions

True

(b)(a)

Figure 5. (a) Energy as a function of the latent space principal directions and (b) energy as a function of the
POD modes in the physical space for the field reconstructed using 4 and 18 (all) latent space principal direction
and data (True).

−3

−2

−1

0

lo
g

1
0
(1

 −
 |Φ

(p
hy

s)
 ·

 Φ
(p

hy
s)

|)
Tr

ue
 i

D
ec

 j

(b)(a)

Figure 6. Scalar product of the POD modes of the data with (a) the POD modes of the decoded flowfield
obtained from all the principal directions and (b) the POD modes of the decoded flowfield obtained from four
principal directions.

5. Time-accurate prediction

Once the autoencoder is trained to provide the latent space, we train an ensemble of
10 ESNs to predict the latent space dynamics. We use an ensemble of networks to
take into account the random initialisation of the input and state matrices (Racca &
Magri 2022a). We predict the low-dimensional dynamics to reduce the computational cost,
which becomes prohibitive when time-accurately predicting high-dimensional systems
with RNNs (Pathak et al. 2018a; Vlachas et al. 2020). Figure 9 shows the computational
time required to forecast the evolution of the system by solving the governing equations
and using the CAE-ESN. The governing equations are solved using a single GPU Nvidia
Quadro RTX 4000, whereas the CAE-ESN uses a single CPU Intel i7-10700K (ESN)
and single GPU Nvidia Quadro RTX 4000 (decoder) in sequence. The CAE-ESN is two
orders of magnitude faster than solving the governing equations because the ESNs use
sparse matrix multiplications and can advance in time with a δt larger than the numerical
solver (see chapter 3.4 of Racca 2023).

5.1. Quasiperiodic case
We train the ensemble of ESNs using 15 000 snapshots equispaced by δt = 1. The
networks are validated and tested in closed-loop on intervals lasting 500 time units.

975 A2-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
6

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.716

A. Racca, N.A.K Doan and L. Magri

Φ
(p

hy
s)

D
ec

4
 1

Φ
(p

hy
s)

Φ
(p

hy
s)

D
ec

4
 3

Φ
(p

hy
s)

D
ec

4
 5

Φ
(p

hy
s)

D
ec

4
 7

Φ
(p

hy
s)

D
ec

4
 9

u1 u2 u1 u2

Tr
ue

 1
Φ

(p
hy

s)
Tr

ue
 3

Φ
(p

hy
s)

Tr
ue

 5
Φ

(p
hy

s)
Tr

ue
 7

Φ
(p

hy
s)

Tr
ue

 9

(b)(a)

Figure 7. POD modes, one per row, for (a) the reconstructed flow field based on four principal components
in latent space and (b) the data. Even modes are shown in the supplementary material. The reconstructed flow
contains the first eight modes.

u1 u2 u1 u2(b)(a)

f (
Φ

(la
t))

1
f (

Φ
(la

t))
3

f (
Φ

(la
t))

2
f (

Φ
(la

t))
4

Figure 8. Decoded four principal directions in latent space.

One closed-loop prediction of the average and local dissipation rates (2.3a,b) in the test
set are plotted in figure 10. The network accurately predicts the two quantities for several
oscillations (figure 10a,b). The CAE-ESN accurately predicts the entire 4608-dimensional
state (see figure 3) for the entire interval, as shown by the NRMSE for the state in
figure 10(c).

Figure 11 shows the quantitative results for different latent spaces and reservoir sizes.
We plot the percentiles of the network ensemble for the mean over 50 intervals in the
test set, 〈·〉, of the time-averaged NRMSE. The CAE-ESN time-accurately predicts the
system in all cases analysed, except for small reservoirs in large latent spaces (figure 11c,d).

975 A2-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
6

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.716

Predicting turbulent dynamics from data

20 40 60

Latent space size

100

101

102

T
im

e
(m

s)

Time integration

CAE-ESN, Re = 30

CAE-ESN, Re = 34

Figure 9. Computational time required to forecast the evolution of the system for one time unit. Times for the
CAE-ESN are for the largest size of the reservoir, which takes the longest time.

0 200 400

Time

0.19

0.20

0.21

D
is

si
p
at

io
n

ra
te

 (
D

)

0 100 200 300 400 500

Time

0

0.5

L
o
ca

l
d
is

si
p
at

io
n

ra
te

 (
d π

,π
) True

Predicted

0 200 400

Time

10−4

10−3

10−2

N
R

M
S

E

Dissipation rate (D)

State (q)

(b)

(a)

(c)

Figure 10. Prediction of (a) the local and (b) the average dissipation rate in the quasiperiodic case in the test
set, i.e. unseen dynamics, for a CAE-ESN with a 2000 neurons reservoir and 9-dimensional latent space.

This is because larger reservoirs are needed to accurately learn the dynamics of larger
latent spaces. For all the different latent spaces, the accuracy of the prediction increases
with the size of the reservoir. For 5000 neurons reservoirs, the NRMSE for the prediction
in time is the same order of magnitude as the NRMSE of the reconstruction (figure 4).
This means that the CAE-ESN learns the quasiperiodic dynamics and accurately predicts
the future evolution of the system for several characteristic timescales of the system.

5.2. Turbulent case
We validate and test the networks for the time-accurate prediction of the turbulent
dynamics against the prediction horizon (PH), which, in this paper, is defined as the time
interval during which the NRMSE (4.1) of the prediction of the network with respect to

975 A2-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
6

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.716

A. Racca, N.A.K Doan and L. Magri

1 2 3 5

Neurons (×103) Neurons (×103) Neurons (×103) Neurons (×103)

10−2

10−1

100
〈N

R
M

S
E

(q
)〉 N-lat = 9

1 2 3 5

N-lat = 18

1 2 3 5

N-lat = 27

1 2 3 5

N-lat = 36

(b)(a) (d)(c)

Figure 11. The 25th, 50th and 75th percentiles of the average NRMSE in the test set as a function of the
latent space size and reservoir size in the quasiperiodic case.

the true data is smaller than a user-defined threshold, k

PH = argmax
tp

(tp | NRMSE(q) < k), (5.1)

where tp is the time from the start of the closed-loop prediction and k = 0.3. The PH
is a commonly used metric, which is tailored for the data-driven prediction of diverging
trajectories in chaotic (turbulent) dynamics (Pathak et al. 2018b; Vlachas et al. 2020). The
PH is evaluated in LTs (§ 2). (The PH defined here is specific for data-driven prediction of
chaotic dynamics, and differs from the definition of Kaiser et al. (2014).)

Figure 12(a) shows the prediction of the dissipation rate in an interval of the test set,
i.e. on data not seen by the network during training. The predicted trajectory closely
matches the true data for about 3 LTs. Because the tangent space of chaotic attractors
is exponentially unstable, the prediction error ultimately increases with time (figure 12b).
To quantitatively assess the performance of the CAE-ESN, we create 20 latent spaces for
each of the latent space sizes [18, 36, 54]. Because we train 10 ESNs per each latent space,
we analyse results from 600 different CAE-ESNs. Each latent space is obtained by training
autoencoders with different random initialisations and optimisations of the weights of
the convolutional layers (§ 3.1). The size of the latent space is selected to be larger than
the Kaplan–Yorke dimension of the system, NKY = 9.5 (§ 2.1), in order to contain the
attractor’s dynamics. In each latent space, we train the ensemble of 10 ESNs using 60 000
snapshots equispaced by δt = 0.5. Figure 13 shows the average PH over 100 intervals in
the test set for the best performing latent space of each size. The CAE-ESN successfully
predicts the system for up to more 1.5 LTs for all sizes of the latent space. Increasing the
reservoir size slightly improves the performance with a fixed latent space size, whilst latent
spaces of different sizes perform similarly. This means that small reservoirs in small latent
spaces are sufficient to time-accurately predict the system.

A detailed analysis of the performance of the ensemble of the latent spaces of the
same size is shown in figure 14. Figure 14(a) shows the reconstruction error. The small
amplitude of the errorbars indicates that different autoencoders with same latent space size
reconstruct the flowfield with similar energy. Figure 14(b) shows the performance of the
CAE-ESN with 10 000 neurons reservoirs for the time-accurate prediction as a function of
the reconstruction error. In contrast to the error in figure 14(a), the PH varies significantly,
ranging from 0.75 to more than 1.5 LTs in all latent space sizes. There is no discernible
correlation between the PH and reconstruction error. This means that the time-accurate
performance depends more on the training of the autoencoder than the latent space size. To
quantitatively assess the correlation between two quantities, [a1, a2], we use the Pearson

975 A2-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
6

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.716

Predicting turbulent dynamics from data

0 1 2 3 4 5

Time (LT)

0.150

0.175

0.200

0.225

D
is

si
p
at

io
n
 r

at
e

(D
)

True

Predicted

0 1 2 3 4 5

Time (LT)

0

0.5

1.0

1.5

2.0

N
R

M
S

E

Dissipation rate (D)

State (q)

(b)(a)

Figure 12. Prediction of the dissipation rate in the turbulent case in the test set, i.e. unseen dynamics, for
a CAE-ESN with a 10 000 neurons reservoir and 36-dimensional latent space. The vertical line in panel (a)
indicates the PH.

5 10 15 20 5 10 15 20 5 10 15 20

Neurons (×103)

1.4

1.6

1.8

2.0

〈P
H

〉 (
L

T
)

N-lat = 18

Neurons (×103)

N-lat = 36

Neurons (×103)

N-lat = 54

(b)(a) (c)

Figure 13. The 25th, 50th and 75th percentiles of the average PH in the test set as a function of the latent
space and reservoir size in the turbulent case.

0 50 100

Latent space size Latent space size

10−4

10−3

10−2

10−1

100

1
 −

 E
n
er

g
y
 (

q)

1 − Energy (q)

POD CAE

0.0002 0.0005 0.001
0.5

1.0

1.5

2.0

〈P
H

〉 (
L

T
)

〈P
H

〉 (
L

T
)

18 36 54

18 36 54

0.9

1.0

1.1

1.2

(b)(a) (c)

Figure 14. The 25th, 50th and 75th percentiles of (a) the reconstruction error of figure 4 from twenty different
latent spaces of different size, (b) the PH as a function of the reconstruction error and (c) the medians of the
PH of (b) as a function of the latent space size. The line in (b) is obtained by linear regression.

correlation coefficient (Galton 1886; Pearson 1895)

r(a1, a2) =
∑

(a1i − 〈a1〉)(a2i − 〈a2〉)√∑
(a1i − 〈a1〉)2

√∑
(a2i − 〈a2〉)2

. (5.2)

975 A2-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
6

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.716

A. Racca, N.A.K Doan and L. Magri

The values r = {−1, 0, 1} indicate anticorrelation, no correlation and correlation,
respectively. The Pearson coefficient between the reconstruction error and the PH is
r = −0.10 for the medians of the 60 cases analysed in figure 14(b), which means that
the PH is weakly correlated with the reconstruction error. This indicates that latent spaces
that similarly capture the energy of the system, may differ in capturing the dynamical
content of the system; i.e. some modes that are critical for the dynamical evolution
of the system do not necessarily affect the reconstruction error, and therefore may not
necessarily be captured by the autoencoder. This is a phenomenon that also affects
different reduced-order modelling methods, specifically POD (Rowley & Dawson 2017;
Agostini 2020). In figure 14(c), we plot the PH of the medians of the errorbars of
figure 14(b) for different latent spaces. Although the performance varies within the same
size of the latent space, we observe that the PH improves and the range of the errorbars
decreases with increasing size of the latent space. This is because autoencoders that better
approximate the system in a L2 sense are also more likely to include relevant dynamical
information for the time evolution of the system. From a design perspective, this means
that latent spaces with smaller reconstruction error are needed to improve and reduce the
variability of the prediction of the system. A different approach, which is beyond the scope
of this paper, is to generate latent spaces tailored for time-accurate prediction (a more
detailed discussion can be found in the supplementary material).

6. Statistical prediction

We analyse the statistics predicted by the CAE-ESN with long-term predictions.
Long-term predictions are closed-loop predictions that last tens of LTs, whose
instantaneous state differs from the true data because of chaos (infinitesimal errors
exponentially grow in chaotic systems). However, in ergodic systems, the trajectories
evolve within a bounded region of the phase space, the attractor, which means that they
share the same long-term statistics. The long-term predictions are generated from 50
different starting snapshots in the training set. In the quasiperiodic case, each time series
is obtained by letting the CAE-ESN evolve in closed-loop for 2500 time units, whereas
in the chaotic case the CAE-ESN evolves for 30 LTs. (If the network predicts values
outside the range of the training set, we discard the remaining part of the closed-loop
prediction, similarly to Racca & Magri (2022a).) To quantify the error of the predicted
probability density function (p.d.f.) with respect to the true p.d.f., we use the first-order
Kantorovich metric (Kantorovich 1960), also known as the Wasserstein distance or Earth
mover’s distance. The Kantorovich metric evaluates the work to transform one p.d.f. to
another, which is computed as

K =
∫ ∞

−∞
|CDF1(k) − CDF2(k)| dk, (6.1)

where CDF is the cumulative distribution function and k is the random variable of interest.
Small values of K indicate that the two p.d.f.s are similar to each other, whereas large
values of K indicate that the two p.d.f.s significantly differ from each other.

6.1. Quasiperiodic case
To predict the statistics of the quasiperiodic case, we train the network on small datasets.
We do so because the statistics are converged for the large dataset (15 000 time units)
used for training in § 5 (figure 15a). We use datasets with non-converged statistics to
show that we can infer the converged statistics of the system from the imperfect data

975 A2-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
6

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.716

Predicting turbulent dynamics from data

0 0.2 0.4 0.6 0.8

Local dissipation rate (dπ,π)

10−1

100

101

P
ro

b
ab

il
it

y
 d

en
si

ty

fu
n
ct

io
n

True (100k)

Small (1.5k)

Large (15k)

103 104

Training snapshots

0.05

0.10

0.15

0.20

K
an

to
ro

v
ic

h
m

et
ri

cN-lat = 9, 2000 Neurons

Train

Predicted

(b)(a)

Figure 15. (a) P.d.f. of the local dissipation rate, dπ,π, in the training set for different numbers of training
snapshots. (b) The 25th, 50th and 75th percentiles of the Kantorovich metric for the training set (Train) and for
the CAE-ESN (Predicted) as a function of the training set size. Quasiperiodic regime.

1 2 3 5

0.05

0.10

0.15

K
an

to
ro

v
ic

h
m

et
ri

c N-lat = 9

1 2 3 5

N-lat = 18

Train

Predicted

1 2 3 5

N-lat = 27

1 2 3 5

Neurons (×103)Neurons (×103)Neurons (×103)Neurons (×103)

N-lat = 36

Figure 16. The 25th, 50th and 75th percentiles of the Kantorovich metric of the local dissipation rate, dπ,π,
for the training set (Train) and for the networks (Predicted) as a function of the latent space and reservoir size
in the quasiperiodic case.

available during training. We analyse the local dissipation rate at the central point of
the domain, dπ,π, which shows quasiperiodic oscillations (§ 2). Figure 15(b) shows the
Kantorovich metric for the CAE-ESN as a function of the number of training snapshots in
the dataset for fixed latent space and reservoir size. The networks improve the statistical
knowledge of the system with respect to the training set, i.e. the original data, in all cases
analysed, which generalises the findings of Racca & Magri (2022a) to spatiotemporal
systems. The improvement is larger in smaller datasets, and it saturates for larger datasets.
This means that (i) the networks accurately learn the statistics from small training sets
and (ii) the networks are able to extrapolate from imperfect statistical knowledge and
provide an accurate estimation of the true statistics. Figure 16 shows the performance
of the CAE-ESN as a function of the reservoir size for the small dataset of 1500
training snapshots. In all cases analysed, the CAE-ESN outperforms the training set, with
values of the Kantorovich metric up to three times smaller than those of the training set.
Consistently with previous studies on ESNs (Huhn & Magri 2022; Racca & Magri 2022a),
the performance is approximately constant for different reservoir sizes. The results indicate
that small reservoirs and small latent spaces are sufficient to accurately extrapolate the
statistics of the flow from imperfect datasets.

975 A2-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
6

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.716

A. Racca, N.A.K Doan and L. Magri

5 10 15 20

Neurons (×103)

10−1

100

K
an

to
ro

v
ic

h
 m

et
ri

c Train

CAE-ESN 18

CAE-ESN 36

CAE-ESN 54

0.150 0.175 0.200 0.225 0.250 0.275

Dissipation rate (D)

0

5

10

15

20

P
ro

b
ab

il
it

y
 d

en
si

ty

fu
n
ct

io
n

True

Train

CAE-ESN 18

CAE-ESN 36

CAE-ESN 54

(b)(a)

Figure 17. (a) The 25th, 50th and 75th percentiles of the Kantorovich metric of the dissipation rate, for the
training set (Train) and for different reservoir and latent space sizes. (b) P.d.f. for the true and training data, and
predicted by 10 000 neurons CAE-ESNs.

6.2. Turbulent case
In the turbulent case, we analyse the ability of the architecture to replicate the p.d.f. of
the average dissipation rate, D, to assess whether the networks have learned the dynamics
in a statistical sense. Figure 17 shows the results for the best performing CAE-ESN with
latent space of size 18, 36 and 54 discussed in § 5. Figure 17(a) shows the Kantorovich
metric as a function of the size of the reservoir. The networks predict the statistics of the
dissipation rate with Kantorovich metrics of the same order of magnitude of the training
set, which has nearly converged statistics. This means that the network accurately predict
the p.d.f. of the dissipation rate (figure 17b). In agreement with the quasiperiodic case, the
performance of the networks is approximately constant as a function of the reservoir size.
These results indicate that small latent spaces and small networks can learn the statistics
of the system.

A detailed analysis of the statistical performance of the 20 latent spaces of size
[18, 36, 54] is shown in figure 18. On the one hand, figure 18(a) shows the scatter plot
between the Kantorovich metric and the reconstruction error. In agreement with the results
for the PH (see figure 14), we observe that (i) the Kantorovich metric varies significantly
within latent spaces of the same size, (ii) the two quantities are weakly correlated (r =
−0.16) and (iii) the variability of the performance decreases with increasing latent space
size (figure 18c). On the other hand, figure 18(b) shows the scatter plot for the Kantorovich
metric as a function of the PH, which represents the correlation between the time-accurate
and statistical performances of the networks. The two quantities are (anti)correlated, with
a Pearson coefficient r = −0.76. Physically, the results indicate that (i) increasing the
size of the latent space is beneficial for predicting the statistics of the system and (ii) the
time-accurate and statistical performances of latent spaces are correlated. This means that
the design guidelines for the time-accurate prediction discussed in § 5 extend to the design
of latent spaces for the statistical prediction of turbulent flowfields.

7. Predicting higher-dimensional turbulence: the minimal flow unit

Because of its relatively small size, the two-dimensional Kolmogorov flow (§ 2) enables
us to thoroughly assess the accuracy and robustness of the proposed method with a
variety of parametric and ensemble computations. In this section, we explain how to
modify the CAE-ESN to tackle three-dimensional fields. We deploy the CAE-ESN for
the statistical prediction of the minimal flow unit (MFU) (Jimenez & Moin 1991).
This flow is governed by the incompressible Navier–Stokes equations, presented in § 2,

975 A2-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
6

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.716

Predicting turbulent dynamics from data

1.0 1.50.0002 0.0005 0.0010

1 − Energy (q)

10−1

100

101
K

an
to

ro
v
ic

h
 m

et
ri

c

18 36 54

18 36 54

Latent space size

1

2

3

4

5

〈PH〉 (LT)

(b)(a) (c)

Figure 18. (a) The 25th, 50th and 75th percentiles for the Kantorovich metric as a function of the
reconstruction error, (b) medians of the Kantorovich metric as a function of the median of the PH and
(c) the 25th, 50th and 75th percentiles of the medians of the Kantorovich metric of (b) as a function of the
latent space. The lines in (a,b) are obtained by linear regression.

x

yz

Walls

5000 10 000 15 000 20 000

Latent space size

10−2

10−1

100

1
–

E
n
er

g
y
 (

q)

MFU, Reτ ≈ 140

POD CAE

(b)(a)

Figure 19. (a) Typical snapshot of the isosurfaces of the Q-criterion in the MFU. (b) Reconstruction error in
the test set as a function of the latent space size for the MFU case.

with velocity u = (u, v, w). As shown in figure 19, the MFU consists of a channel
flow-like configuration with no-slip boundary conditions in the wall-normal direction,
y, at u(x, ±δ, z, t) = 0, where δ is the half-width of the channel, and periodic boundary
conditions in the streamwise, x, and transverse, z, directions. The flow is forced with a body
forcing f = (f0, 0, 0) in the streamwise direction. We consider a channel of dimension
πδ × 2δ × 0.34πδ with δ = 1.0 and a forcing term that provides a friction Reynolds
number, Reτ ≈ 140 as in Blonigan, Farazmand & Sapsis (2019). These conditions result
in a turbulent flow, as shown in figure 19. We use an in-house direct numerical simulation
(DNS) code based on work by Bernardini, Pirozzoli & Orlandi (2014) to simulate the MFU
on a grid 32 × 256 × 16, yielding a 32 × 256 × 16 × 3 ≈ 4 × 105-dimensional physical
state vector. We solve the equations using a hybrid third-order low-storage Runge–Kutta
algorithm coupled with a second-order Crank–Nicolson scheme (Bernardini et al. 2014).
The timestep is computed at the initial state to ensure the stability of the numerical scheme
(initial Courant–Friedrichs–Lewy (CFL) number of 2/3), and is subsequently kept constant
to a value approximately equal to 1/100 of the eddy turnover time. After removing the
transient dynamics, snapshots are saved every 10 timesteps for a total of 2000 snapshots
covering approximately 200 eddy turnover times. To train the three-dimensional version
of the CAE-ESN, we split the dataset for training/validation/test as 60/20/20.

We describe the adjustments made to the CAE-ESN presented in § 3 to enable it
to handle three-dimensional flows. In the encoder part of the CAE, instead of using
two-dimensional convolutional layers, three-dimensional convolutional layers are used.
Periodic padding is only used in the x- and z-directions, while zero padding is used in the

975 A2-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
6

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.716

A. Racca, N.A.K Doan and L. Magri

1.0

0

0.05

0.10

y/δ

ū

u′
′2 ,

v
′′2

0.5

True

CAE-ESN

–0.5–1.0

0

0.5

–1.00 1.0

y/δ
0.5–0.5 0

(b)(a)

Figure 20. Profile of (a) mean streamwise and (b) fluctuating streamwise and wall-normal velocity profiles.
Grey line: true statistics. Red/blue dashed lines: statistics from the CAE-ESN.

y-direction. This padding is physically consistent with the boundary conditions. Similarly,
in the decoder part of the CAE, three-dimensional transpose convolutional layers are
employed. To balance the size of the CAE and reconstruction accuracy, only two parallel
encoder/decoder streams are used in the multiscale autoencoder architecture, which have
spatial filter sizes 3 × 5 × 3 and 5 × 7 × 5, respectively. For the reducing/increasing size
layers, a striding of the form (2, 4, 2) is used. Details on the CAE architecture are provided
in Appendix C. The CAE is trained using the same method as described in § 3.1. The
architecture of the ESN is identical to the architecture presented in § 3.2, but with a
reservoir containing 150 000 neurons. The hyperparameters of the ESN are obtained using
the RV (Racca & Magri 2021), in which the training dataset is the encoded MFU evolution.

Figure 19(b) shows the performance of the CAE through the reconstruction error
discussed in § 4. The energy for POD and three different CAEs, with latent space
dimensions of 384, 768, 1536 and 3072, respectively, is computed over the 400 snapshots
in the test set, similarly to figure 4 in the Kolmogorov flow. The CAE outperforms
POD, with POD requiring, for example, approximately 10 times larger latent spaces to
obtain the same reconstruction error as the CAE with 1536-dimensional latent space.
The performance of the combined CAE-ESN, with a CAE of latent dimension 1536, is
finally assessed statistically in figure 20. This latent dimension was chosen as it provided
sufficient reconstruction accuracy in the CAE. We perform long-term predictions of
the CAE-ESN for a duration of 100 eddy turnover times, and compare the resulting
mean and fluctuating velocity profiles with the true DNS data. The CAE-ESN correctly
predicts the true mean (figure 20a) and fluctuating velocity profiles (figure 20b) of the
MFU. In conclusion, the CAE-ESN can statistically learn and predict the dynamics of
three-dimensional turbulent flows through relatively small latent spaces.

8. Conclusions

In this paper, we propose the CAE-ESN for the prediction of two- and three-dimensional
turbulent flowfields from data. The CAE nonlinearly maps the flowfields onto (and back
from) the latent space, whose dynamics are predicted by an ESN. We assess the capabilities
of the CAE-ESN methodology on a variety of studies on a two-dimensional flowfield, in
both quasiperiodic and turbulent regimes. The CAE-ESN is finally deployed to predict
the statistics of a three-dimensional turbulent flow. First, we show that the CAE-ESN
time-accurately and statistically predicts the flow. The latent space requires �1 % of
the degrees of freedom of the original flowfield. In the prediction of the spatiotemporal
dynamics, the CAE-ESN is at least 100 times faster than solving the governing equations.
This is possible thanks to the nonlinear compression provided by the autoencoder, which
has a reconstruction error that is �1 % of that from POD. Second, we analyse the
performance of the architecture at different Reynolds numbers. The architecture correctly

975 A2-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
6

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.716

Predicting turbulent dynamics from data

learns the dynamics of the system in both quasiperiodic and turbulent testcases. This
means that the architecture is robust with respect to changes in the physical parameters
of the system. Third, we analyse the performance of the CAE-ESN as a function of
the reconstruction error. We show that (i) the performance varies between latent spaces
with similar reconstruction error, (ii) larger latent spaces with smaller reconstruction
errors provide a more consistent and more accurate prediction on average and (iii) the
time-accurate and statistical performance of the CAE-ESN are correlated. This means that
relatively small reservoirs in relatively small latent spaces are sufficient to time-accurately
and statistically predict the turbulent dynamics, and increasing the latent space size is
beneficial for the performance of the CAE-ESN. Finally, we extend the CAE-ESN to
three-dimensional turbulent flows. By analysing the MFU as a testcase, we show that
POD requires a latent space that is approximately 10 times larger than the latent space
inferred by the CAE-ESN for the same reconstruction error. By letting the CAE-ESN
evolve as an autonomous dynamical system, the turbulent velocity statistics of the
MFU are accurately inferred. By proposing a data-driven framework for the nonlinear
decomposition and prediction of turbulent dynamics, this paper opens up possibilities for
nonlinear reduced-order modelling of turbulent flows.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2023.716 (and
also at https://link.springer.com/chapter/10.1007/978-3-030-77977-1_25).

Funding. A.R. is supported by the Engineering and Physical Sciences Research Council under the
Research Studentship no. 2275537, by the Cambridge Commonwealth, European & International Trust under a
Cambridge European Scholarship, and by the Eric and Wendy Schmidt AI in Science Postdoctoral Fellowship, a
Schmidt Futures program. L.M. gratefully acknowledges financial support from the ERC Starting Grant PhyCo
949388. The authors are grateful to D. Kelshaw for helpful discussions on the numerical solver. L.M. and
N.A.K.D. acknowledge computational resources received from the Stanford University CTR Summer Program
2022.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Alberto Racca https://orcid.org/0000-0003-2084-8474;
Nguyen Anh Khoa Doan https://orcid.org/0000-0002-9890-3173;
Luca Magri https://orcid.org/0000-0002-0657-2611.

Appendix A. Tutorial codes

Sample codes and datasets for this work are publicly available on GitHub, in which we
include a tutorial implementation of the CAE-ESN. This takes ≈15 min to be trained on a
single CPU Intel i7-10700K (ESN) and single GPU Quadro RTX 4000.

Appendix B. Characterisation of the Kolmogorov flow

In this appendix, we provide additional details on the solutions of the Kolmogorov flow.
Figure 21 shows the power spectral density of the local and global dissipation in the
quasiperiodic regime. As explained in figure 1, the global dissipation is periodic, while the
local dissipation is quasiperiodic. This happens because temporal frequencies are filtered
out when averaging in space. In more detail, the quasiperiodic solution discussed here
presents three incommensurate frequencies, given by the two left-most peaks and the peak
shared with the periodic signal (figure 21).

975 A2-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
6

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.716
https://link.springer.com/chapter/10.1007/978-3-030-77977-1_25
https://orcid.org/0000-0003-2084-8474
https://orcid.org/0000-0003-2084-8474
https://orcid.org/0000-0002-9890-3173
https://orcid.org/0000-0002-9890-3173
https://orcid.org/0000-0002-0657-2611
https://orcid.org/0000-0002-0657-2611
https://github.com/MagriLab/CAE-ESN-Kolmogorov
https://doi.org/10.1017/jfm.2023.716

A. Racca, N.A.K Doan and L. Magri

0 0.02 0.04 0.06 0.08 0.10

Frequency

10–5

10–2

101

P
o
w

er
 s

p
ec

tr
al

 d
en

si
ty

Local dissipation rate (dπ,π) Global dissipation rate (D)

Figure 21. Power spectral density for Re = 30.

Appendix C. Autoencoder layers

We provide additional details about the autoencoder described in § 3.1 in table 1. The total
number of trainable parameters of the autoencoder is around 200 000 (the exact number
varies depending on the size of the latent space). In the table, the explanation ‘Each scale
has different padding size’ indicates that different filter sizes, i.e. the different scales of the
autoencoder, require different padding sizes in order for their output to have the same size.
In reference to figure 2(b), a 2 × 2 filter with stride = 1 requires padding size = 1 for the
output of the convolution to be of size 3 × 3; a 3 × 3 filter with stride = 1 would require
padding size = 3 for the output of the convolution to be of size 3 × 3 (for padding sizes
larger than 1, the padding is applied symmetrically to both sides of the inputs).

Appendix D. ESN hyperparameters

We provide additional details regarding the selection of hyperparameters in ESNs. In the
quasiperiodic case, we explore the hyperparameter space [0.01, 5] × [0.8, 1.2] for [σin, ρ]
in logarithmic scale for the input scaling. We optimise the spectral radius in the range
around unity from previous studies with quasiperiodic data (Racca & Magri 2021; Nóvoa
& Magri 2022). We select the hyperparameters to minimise the average MSE of 30
intervals of length 500 time units taken from the training and validation dataset. To select
the noise to be added to the inputs, for each network we perform a search in kz in points
equispaced in logarithmic scale by log10(

√
10). The search starts by evaluating the average

MSE in the test set for [kz1, kz2] = [10−3,
√

10 × 10−3]. Based on the slope of the MSE as
a function of kz provided by [kz1, kz2], we select kz3 to either be kz1/

√
10 or kz2 × √

10 in
order to minimise the MSE. From [kz1, kz2, kz3] we select a new point, and so on and forth.
The search continues until a local minimum of the MSE is found or the maximum numbers
of four function evaluations is reached. In the chaotic case, we explore the hyperparameter
space [0.1, 5] × [0.1, 1.] for [σin, ρ] in logarithmic scale for the input scaling. We select
the hyperparameters to maximise the average PH of 50 starting points taken from the
training and validation dataset. To select the noise to be added to the inputs, we follow
a similar procedure to the quasiperiodic case. However, due to computational constraints
related to larger sizes of the reservoir, we perform the search only for the first network of
the ensemble and utilise the optimal kz for all the other networks in the ensemble. The
search starts from [kz1, kz2] = [

√
10 × 10−3, 10−2]. In both cases, (i) washout consists

of 50 steps, (ii) we optimise the grid [10−3, 10−6, 10−9] for β and (iii) the Bayesian
optimisation starts from a grid of 5 × 5 points in the [σin, ρ] domain and then selects five
additional points through the expected improvement acquisition function (Brochu, Cora &

975 A2-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
6

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.716

Predicting turbulent dynamics from data

Layer Type Notes Output size

Encoder
Periodic Padding Each scale has different padding size (49, 49, 2)

Convolution Stride = 2 (24, 24, 6)

Periodic Padding Each scale has different padding size (26, 26, 6)

Convolution Stride = 1 (24, 24, 6)

Periodic Padding Each scale has different padding size (25, 25, 6)

Convolution Stride = 2 (12, 12, 12)

Periodic Padding Each scale has different padding size (14, 14, 12)

Convolution Stride = 1 (12, 12, 12)

Periodic Padding Each scale has different padding size (13, 13, 12)

Convolution Stride = 2 (6, 6, 24)

Periodic Padding Each scale has different padding size (8, 8, 24)

Convolution Stride = 1 (6, 6, 24)

Periodic Padding Each scale has different padding size (7, 7, 24)

Convolution Stride = 2 and varying kernel depth
(

3, 3,
Nlat

9

)

Decoder

Periodic Padding All scales have equal padding size
(

5, 5,
Nlat

9

)
Transpose Convolution Stride = 2, output size varies with scale (11, 11, 24)

Convolution Stride = 1 (9, 9, 24)

Transpose Convolution Stride = 2, output size varies with scale (19, 19, 12)

Convolution Stride = 1 (17, 17, 12)

Transpose Convolution Stride = 2, output size varies with scale (35, 35, 6)

Convolution Stride = 1 (33, 33, 6)

Transpose Convolution Stride = 2, output size varies with scale (67, 67, 3)

Center Crop Cropped to have right padding (50, 50, 3)

Convolution Stride = 1, linear activation (48, 48, 2)

Table 1. Autoencoder layers. Output size differs from one scale to the other, here we show those relative to
the 3 × 3 filter.

De Freitas 2010). The Bayesian optimisation is implemented using Scikit-learn (Pedregosa
et al. 2011).

Finally, this optimisation procedure for both the CAE and the ESN is mainly for
fine-tuning. To show this, we provide a tutorial on GitHub, where we train the CAE for
only 100 epochs (instead of 2000) and optimise only the spectral radius, input scaling
and Tikhonov parameter in the ESN. This simplified architecture accurately predicts the
quasiperiodic testcase (results not shown here, available on GitHub). The procedure used
to select parameters in the simplified architecture is a robust optimisation method, which
has been tested across several chaotic testcases (for example, Racca & Magri 2022a; Nóvoa
et al. 2023; Margazoglou & Magri 2023). In the simplified version, the entire training of
the CAE-ESN requires only approximately 15 min on a single CPU Intel i7-10700K and
single GPU Nvidia Quadro RTX 4000.

We show a comparison of the RV with the SSV in figure 22 for the prediction of the
turbulent case. The RV outperforms the SSV, providing an increase of roughly 10 % on
average of the 50th percentile of the PH. Moreover, the RV reduces the variability of the
performance of different networks of the same size, making the training more robust to
the random initialisation of the networks. This results in the average uncertainty given
by the width of the error bars is roughly 70 % larger in the SSV with respect to the RV.

975 A2-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
6

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://github.com/MagriLab/CAE-ESN-Kolmogorov
https://github.com/MagriLab/CAE-ESN-Kolmogorov
https://doi.org/10.1017/jfm.2023.716

A. Racca, N.A.K Doan and L. Magri

Layer Type Notes Output size

Encoder

Padding Each scale has different padding size
(

36, 260, 20,
Nlat

8 × 32

)

Convolution Stride = (1, 1, 1)

(
32, 254, 16,

Nlat

8 × 32

)

Padding Each scale has different padding size
(

36, 258, 16,
Nlat

8 × 32

)

Convolution Stride = (2, 4, 2)

(
16, 63, 8,

Nlat

4 × 32

)

Padding Each scale has different padding size
(

20, 67, 12,
Nlat

4 × 32

)

Convolution Stride = (2, 4, 2)

(
8, 16, 4,

Nlat

2 × 32

)

Padding Each scale has different padding size
(

12, 20, 8,
Nlat

2 × 32

)

Convolution Stride = (2, 4, 2) and varying kernel depth
(

4, 4, 2,
Nlat

32

)

Decoder

Transpose convolution Stride = (2, 4, 2), output size varies with scale
(

11, 19, 7,
Nlat

32

)

Transpose convolution Stride = (2, 4, 2), output size varies with scale
(

25, 79, 17,
Nlat

2 × 32

)

Transpose convolution Stride = (2, 4, 2), output size varies with scale
(

53, 319, 37,
Nlat

4 × 32

)
Centre crop Cropped to have right padding (36, 262, 20, 3)

Convolution Stride = 1, (and same padding) (36, 262, 20, 3)

Convolution Stride = 1, linear activation (32, 256, 16, 3)

Table 2. Autoencoder layers for the MFU. Output size differs from one scale to the other, here we show those
relative to the 3 × 5 × 3 filter.

5 10 15 20

Neurons (×103)

1.0

1.2

1.4

1.6

1.8

2.0

〈P
H

〉 (
L

T
)

N-lat = 36
RV

SSV

Figure 22. The 25th, 50th and 75th percentiles of the average PH in the test set for the RV and the SSV.

975 A2-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
6

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.716

Predicting turbulent dynamics from data

These results indicate that the RV outperforms and is more reliable than the SSV in the
prediction of the turbulent flow.

REFERENCES

ABADI, M., et al. 2015 TensorFlow: large-scale machine learning on heterogeneous systems.
arXiv:1603.04467.

AGOSTINI, L. 2020 Exploration and prediction of fluid dynamical systems using auto-encoder technology.
Phys. Fluids 32 (6), 067103.

ALFONSI, G. & PRIMAVERA, L. 2007 The structure of turbulent boundary layers in the wall region of plane
channel flow. Proc. R. Soc. Lond. A 463 (2078), 593–612.

ANTOULAS, A.C. 2005 Approximation of Large-Scale Dynamical Systems. SIAM.
BALDI, P. & HORNIK, K. 1989 Neural networks and principal component analysis: learning from examples

without local minima. Neural Networks 2 (1), 53–58.
BENETTIN, G., GALGANI, L., GIORGILLI, A. & STRELCYN, J.-M. 1980 Lyapunov characteristic exponents

for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1:
theory. Meccanica 15 (1), 9–20.

BERNARDINI, M., PIROZZOLI, S. & ORLANDI, P. 2014 Velocity statistics in turbulent channel flow up to
Reτ = 4000. J. Fluid Mech. 742, 171–191.

BLONIGAN, P.J., FARAZMAND, M. & SAPSIS, T.P. 2019 Are extreme dissipation events predictable in
turbulent fluid flows? Phys. Rev. Fluids 4 (4), 044606.

BOFFETTA, G., CENCINI, M., FALCIONI, M. & VULPIANI, A. 2002 Predictability: a way to characterize
complexity. Phys. Rep. 356 (6), 367–474.

BROCHU, E., CORA, V.M. & DE FREITAS, N. 2010 A tutorial on Bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement learning.
arXiv:1012.2599.

BRUNTON, S.L. & NOACK, B.R. 2015 Closed-loop turbulence control: progress and challenges. Appl. Mech.
Rev. 67 (5), 050801.

BRUNTON, S.L., NOACK, B.R. & KOUMOUTSAKOS, P. 2020 Machine learning for fluid mechanics. Annu.
Rev. Fluid Mech. 52, 477–508.

CANUTO, C., HUSSAINI, M.Y., QUARTERONI, A. & ZANG, T.A. 1988 Spectral methods in fluid dynamics,
Scientific Computation series. Springer.

CHANDLER, G.J. & KERSWELL, R.R. 2013 Invariant recurrent solutions embedded in a turbulent
two-dimensional Kolmogorov flow. J. Fluid Mech. 722, 554–595.

CHATTOPADHYAY, A., HASSANZADEH, P. & SUBRAMANIAN, D. 2020 Data-driven predictions of a
multiscale Lorenz 96 chaotic system using machine-learning methods: reservoir computing, artificial neural
network, and long short-term memory network. Nonlinear Process. Geophys. 27 (3), 373–389.

DOAN, N.A.K., POLIFKE, W. & MAGRI, L. 2021 Short-and long-term predictions of chaotic flows and
extreme events: a physics-constrained reservoir computing approach. Proc. R. Soc. Lond. A 477 (2253),
20210135.

DU, X., QU, X., HE, Y. & GUO, D. 2018 Single image super-resolution based on multi-scale competitive
convolutional neural network. Sensors 18 (3), 789.

DURAISAMY, K., IACCARINO, G. & XIAO, H. 2019 Turbulence modeling in the age of data. Annu. Rev. Fluid
Mech. 51 (1), 357–377.

ECKMANN, J.-P. & RUELLE, D. 1985 Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57 (3),
617–656.

FARAZMAND, M. 2016 An adjoint-based approach for finding invariant solutions of Navier–Stokes equations.
J. Fluid Mech. 795, 278–312.

FERNEX, D., NOACK, B.R. & SEMAAN, R. 2021 Cluster-based network modeling—from snapshots to
complex dynamical systems. Sci. Adv. 7 (25), eabf5006.

FUKAMI, K., FUKAGATA, K. & TAIRA, K. 2019 Super-resolution reconstruction of turbulent flows with
machine learning. J. Fluid Mech. 870, 106–120.

GALTON, F. 1886 Regression towards mediocrity in hereditary stature. J. Anthropol. Inst. Great Britain and
Ireland 15, 246–263.

GLOROT, X. & BENGIO, Y. 2010 Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics
(ed. Y.W. Teh & M. Titterington), Proceedings of Machine Learning Research, vol. 9, pp. 249–256. PMLR.

GOODFELLOW, I., BENGIO, Y. & COURVILLE, A. 2016 Deep Learning. MIT.
GRIGORYEVA, L. & ORTEGA, J.-P. 2018 Echo state networks are universal. Neural Networks 108, 495–508.

975 A2-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
6

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://arxiv.org/abs/1603.04467
https://arxiv.org/abs/1012.2599
https://doi.org/10.1017/jfm.2023.716

A. Racca, N.A.K Doan and L. Magri

HART, A.G., HOOK, J.L. & DAWES, J.H.P. 2021 Echo state networks trained by Tikhonov least squares are
L2 (μ) approximators of ergodic dynamical systems. Physica D 421, 132882.

HASEGAWA, K., FUKAMI, K., MURATA, T. & FUKAGATA, K. 2020 Machine-learning-based reduced-order
modeling for unsteady flows around bluff bodies of various shapes. Theor. Comput. Fluid Dyn. 34 (4),
367–383.

HINTON, G.E. & SALAKHUTDINOV, R.R. 2006 Reducing the dimensionality of data with neural networks.
Science 313 (5786), 504–507.

HUHN, F. & MAGRI, L. 2022 Gradient-free optimization of chaotic acoustics with reservoir computing. Phys.
Rev. Fluids 7, 014402.

JAEGER, H. & HAAS, H. 2004 Harnessing nonlinearity: predicting chaotic systems and saving energy in
wireless communication. Science 304 (5667), 78–80.

JIMENEZ, J. & MOIN, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213–240.
KAISER, E., et al. 2014 Cluster-based reduced-order modelling of a mixing layer. J. Fluid Mech. 754, 365–414.
KANTOROVICH, L.V. 1960 Mathematical methods of organizing and planning production. Management

Science 6 (4), 366–422.
KANTZ, H. & SCHREIBER, T. 2004 Nonlinear Time Series Analysis, vol. 7. Cambridge University Press.
KAPLAN, J.L. & YORKE, J.A. 1979 Chaotic behavior of multidimensional difference equations. In Functional

Differential Equations and Approximation of Fixed Points (ed. H.O. Peitgen & H.O. Walther), Lecture
Notes in Mathematics, vol. 730, pp. 204–227. Springer.

KELSHAW, D., RIGAS, G. & MAGRI, L. 2022 Physics-informed CNNS for super-resolution of sparse
observations on dynamical systems. arXiv:2210.17319.

KINGMA, D.P. & BA, J.L. 2017 Adam: a method for stochastic gradient descent. arXiv:1412.6980.
KRAMER, M.A. 1991 Nonlinear principal component analysis using autoassociative neural networks. AIChE

J. 37 (2), 233–243.
LECUN, Y., BOTTOU, L., BENGIO, Y. & HAFFNER, P. 1998 Gradient-based learning applied to document

recognition. Proc. IEEE 86 (11), 2278–2324.
LOISEAU, J.-C., NOACK, B.R. & BRUNTON, S.L. 2018 Sparse reduced-order modelling: sensor-based

dynamics to full-state estimation. J. Fluid Mech. 844, 459–490.
LU, Z., PATHAK, J., HUNT, B., GIRVAN, M., BROCKETT, R. & OTT, E. 2017 Reservoir observers:

model-free inference of unmeasured variables in chaotic systems. Chaos 27 (4), 041102.
LUKOŠEVIČIUS, M. 2012 A practical guide to applying echo state networks. In Neural Networks: Tricks of

the Trade (ed. G. Montavon, G.B. Orr & K.R. Müller), Lecture Notes in Computer Science, vol. 7700,
pp. 659–686. Springer.

LUMLEY, J.L. 1970 Stochastic tools in turbulence. Academic.
MAASS, W., NATSCHLÄGER, T. & MARKRAM, H. 2002 Real-time computing without stable states: a new

framework for neural computation based on perturbations. Neural Comput. 14 (11), 2531–2560.
MAGRI, L. & DOAN, A.K. 2022 On interpretability and proper latent decomposition of autoencoders. In

Center for Turbulence Research Proceedings of the Summer Program 2022, pp. 107–115. Center for
Turbulence Research.

MARGAZOGLOU, G. & MAGRI, L. 2023 Stability analysis of chaotic systems from data. Nonlinear Dyn. 111,
8799–8819.

MILANO, M. & KOUMOUTSAKOS, P. 2002 Neural network modeling for near wall turbulent flow. J. Comput.
Phys. 182 (1), 1–26.

MURALIDHAR, S.D., PODVIN, B., MATHELIN, L. & FRAIGNEAU, Y. 2019 Spatio-temporal proper
orthogonal decomposition of turbulent channel flow. J. Fluid Mech. 864, 614–639.

MURATA, T., FUKAMI, K. & FUKAGATA, K. 2020 Nonlinear mode decomposition with convolutional neural
networks for fluid dynamics. J. Fluid. Mech. 882, A13.

NAKAMURA, T., FUKAMI, K., HASEGAWA, K., NABAE, Y. & FUKAGATA, K. 2021 Convolutional neural
network and long short-term memory based reduced order surrogate for minimal turbulent channel flow.
Phys. Fluids 33 (2), 025116.

NOVATI, G., MAHADEVAN, L. & KOUMOUTSAKOS, P. 2019 Controlled gliding and perching through
deep-reinforcement-learning. Phys. Rev. Fluids 4, 093902.

NÓVOA, A., RACCA, A. & MAGRI, L. 2023 Inferring unknown unknowns: regularized bias-aware ensemble
Kalman filter. arXiv:2306.04315.

NÓVOA, A. & MAGRI, L. 2022 Real-time thermoacoustic data assimilation. J. Fluid Mech. 948, A35.
PATHAK, J., HUNT, B., GIRVAN, M., LU, Z. & OTT, E. 2018a Model-free prediction of large

spatiotemporally chaotic systems from data: a reservoir computing approach. Phys. Rev. Lett. 120 (2),
024102.

975 A2-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
6

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://arxiv.org/abs/2210.17319
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2306.04315
https://doi.org/10.1017/jfm.2023.716

Predicting turbulent dynamics from data

PATHAK, J., WIKNER, A., FUSSELL, R., CHANDRA, S., HUNT, B.R., GIRVAN, M. & OTT, E. 2018b Hybrid
forecasting of chaotic processes: using machine learning in conjunction with a knowledge-based model.
Chaos 28 (4), 041101.

PEARSON, K. 1895 VII. Note on regression and inheritance in the case of two parents. Proc. R. Soc. Lond.
58 (347–352), 240–242.

PEARSON, K. 1901 LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin
Philos. Mag. J. Sci. 2 (11), 559–572.

PEDREGOSA, F., VAROQUAUX, G., GRAMFORT, A., MICHEL, V., THIRION, B., GRISEL, O.,
BLONDEL, M., PRETTENHOFER, P., WEISS, R., DUBOURG, V., et al. 2011 Scikit-learn: machine learning
in Python. J. Mach. Learn Res. 12, 2825–2830.

PLATT, N., SIROVICH, L. & FITZMAURICE, N. 1991 An investigation of chaotic Kolmogorov flows. Phys.
Fluids A 3 (4), 681–696.

RACCA, A. 2023 Neural networks for the prediction of chaos and turbulence. PhD thesis, Apollo - University
of Cambridge Repository.

RACCA, A. & MAGRI, L. 2021 Robust optimization and validation of echo state networks for learning chaotic
dynamics. Neural Networks 142, 252–268.

RACCA, A. & MAGRI, L. 2022a Data-driven prediction and control of extreme events in a chaotic flow. Phys.
Rev. Fluids 7, 104402.

RACCA, A. & MAGRI, L. 2022b Statistical prediction of extreme events from small datasets. In Computational
Science – ICCS 2022 (ed. D. Groen, C. de Mulatier, M. Paszynski, V.V. Krzhizhanovskaya, J.J. Dongarra
& P.M.A. Sloot), pp. 707–713. Springer.

RACCA, A. & MAGRI, L. 2023 Control-aware echo state networks (Ca-ESN) for the suppression of extreme
events. arXiv:2308.03095.

REDDI, S.J., KALE, S. & KUMAR, S. 2019 On the convergence of Adam and beyond. arXiv:1904.09237.
ROWLEY, C.W., COLONIUS, T. & MURRAY, R.M. 2004 Model reduction for compressible flows using POD

and Galerkin projection. Physica D 189 (1), 115–129.
ROWLEY, C.W. & DAWSON, S.T.M. 2017 Model reduction for flow analysis and control. Annu. Rev. Fluid

Mech. 49 (1), 387–417.
RUMELHART, D.E., HINTON, G.E. & WILLIAMS, R.J. 1986 Learning representations by back-propagating

errors. Nature 323 (6088), 533–536.
SCHMID, P.J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech.

656, 5–28.
SCHMIDT, M. & LIPSON, H. 2009 Distilling free-form natural laws from experimental data. Science

324 (5923), 81–85.
SPRINGENBERG, J.T., DOSOVITSKIY, A., BROX, T. & RIEDMILLER, M. 2014 Striving for simplicity: the all

convolutional net. arXiv:1412.6806.
SRINIVASAN, P.A., GUASTONI, L., AZIZPOUR, H., SCHLATTER, P. & VINUESA, R. 2019 Predictions of

turbulent shear flows using deep neural networks. Phys. Rev. Fluids 4, 054603.
TAIRA, K., BRUNTON, S.L., DAWSON, S.T.M., ROWLEY, C.W., COLONIUS, T., MCKEON, B.J.,

SCHMIDT, O.T., GORDEYEV, S., THEOFILIS, V. & UKEILEY, L.S. 2017 Modal analysis of fluid flows:
an overview. AIAA J. 55 (12), 4013–4041.

TAKENS, F. 1981 Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick
1980 (ed. D. Rand & L.S. Young), Lecture Notes in Mathematics, vol. 898, pp. 366–381. Springer.

TIKHONOV, A.N., GONCHARSKY, A.V., STEPANOV, V.V. & YAGOLA, A.G. 2013 Numerical Methods for
the Solution of Ill-Posed Problems, vol. 328. Springer.

VLACHAS, P.R., PATHAK, J., HUNT, B.R., SAPSIS, T.P., GIRVAN, M., OTT, E. & KOUMOUTSAKOS, P.
2020 Backpropagation algorithms and reservoir computing in recurrent neural networks for the forecasting
of complex spatiotemporal dynamics. Neural Networks 126, 191–217.

WERBOS, P.J. 1990 Backpropagation through time: what it does and how to do it. Proc. IEEE 78 (10),
1550–1560.

YU, J., YAN, C. & GUO, M. 2019 Non-intrusive reduced-order modeling for fluid problems: a brief review.
Proc. Inst. Mech. Engrs 233 (16), 5896–5912.

ZEILER, M.D., KRISHNAN, D., TAYLOR, G.W. & FERGUS, R. 2010 Deconvolutional networks. In 2010
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2528–2535. IEEE.

975 A2-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

71
6

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://arxiv.org/abs/2308.03095
https://arxiv.org/abs/1904.09237
https://arxiv.org/abs/1412.6806
https://doi.org/10.1017/jfm.2023.716

	1 Introduction
	2 Kolmogorov flow
	2.1 Lyapunov exponents and attractor dimension

	3 Convolutional autoencoder echo state network (CAE-ESN)
	3.1 Convolutional autoencoder
	3.2 Echo state networks
	3.2.1 Validation

	4 Spatial reconstruction
	4.1 Reconstruction error
	4.2 Autoencoder principal directions and POD modes

	5 Time-accurate prediction
	5.1 Quasiperiodic case
	5.2 Turbulent case

	6 Statistical prediction
	6.1 Quasiperiodic case
	6.2 Turbulent case

	7 Predicting higher-dimensional turbulence: the minimal flow unit
	8 Conclusions
	A Appendix A. Tutorial codes
	B Appendix B. Characterisation of the Kolmogorov flow
	C Appendix C. Autoencoder layers
	D Appendix D. ESN hyperparameters
	References

