
This is a “preproof” accepted article for Journal of Clinical and Translational Science.  

This version may be subject to change during the production process.  

10.1017/cts.2024.530 

This is an Open Access article, distributed under the terms of the Creative Commons Attribution- 

NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), 

which permits non-commercial re-use, distribution, and reproduction in any medium, provided 

the original work is unaltered and is properly cited. The written permission of Cambridge 

University Press must be obtained for commercial re-use or in order to create a derivative work. 

FAIR Enough: Building an Academic Data Ecosystem to Make Real-World Data Available 

for Translational Research 

Isabella Chu
1, Rebecca Miller

1, Ian Mathews
2, Ayin Vala

1, Lesley Sept
1, Ruth O’Hara

3,4, David 

H. Rehkopf
1,5,6,7,8,9

 

1
The Stanford Center for Population Health Sciences, Stanford School of Medicine, Stanford 

University, Palo Alto, CA 

2
Redivis, Inc, Oakland, CA 

3
Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, 

Stanford, CA 

4
Veterans Administration Palo Alto Health Care System, Sierra Pacific Mental Illness, Research, 

Education, and Clinical Center, Palo Alto, CA, US 

5
Department of Epidemiology and Population Health, Stanford School of Medicine, Stanford 

University, Stanford, CA 

6
Department of Medicine, Division of Primary Care and Population Health, Stanford School of 

Medicine, Stanford University, Stanford, CA 

7
Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford, CA 

8
Department of Health Policy, Stanford School of Medicine, Stanford University, Stanford, CA 

9
Department of Sociology, Stanford University, Stanford, CA 

Corresponding Author: David H. Rehkopf, ScD, MPH, Department of Epidemiology and 

Population Health, Stanford University School of Medicine, Phone: 650-725-0356, Email: 

drehkopf@stanford.edu, ORCID: 0000-0002-7597-6513 

  

https://doi.org/10.1017/cts.2024.530 Published online by Cambridge University Press

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:drehkopf@stanford.edu
https://doi.org/10.1017/cts.2024.530


Abstract 

The genesis of the Stanford Population Health Sciences Data Ecosystem was to facilitate the use 

of large datasets containing health records from hundreds of millions of individuals. This 

necessitated technical solutions optimized for an academic medical center to manage and share 

high-risk data at scale. Through collaboration with external and internal partners, we have built a 

Data Ecosystem to host, curate and share data with hundreds of users in a secure and compliant 

manner. This platform has enabled us to host unique data assets and serve the needs of 

researchers across Stanford University. The technology and approach were designed to be 

replicable and portable to other institutions. Through the experience of creating the Data 

Ecosystem we have found that the technical advances that we made in developing this are 

necessary but not sufficient. Challenges around making data findable, accessible, interoperable, 

and reusable (FAIR) remain. Our experience has demonstrated there is high demand for access to 

real-world data and that if the appropriate tools and structures are in place, translational research 

can be advanced considerably. Together, technological solutions, management structures and 

education to support researcher, data science and community collaborations offer more impactful 

processes over the longer-term for supporting translational research with real-world data. 
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The Stanford Center for Population Health Sciences (S-PHS) was founded in 2015, with the 

mission to “improve the health of populations by bringing together diverse disciplines and data 

to understand and address social, environmental, behavioral, and biological factors on both a 

domestic and global scale.”
1
 One of the central means to achieve that mission was to advance 

translational science through providing access to real-world data (RWD). We sought to create 

structures and processes that promote impactful translational science using RWD, while 

acknowledging all the complexities of the data and the new knowledge and skills needed to use 

RWD effectively. In this article we first briefly describe some of the primary benefits of RWD 

that motivated this effort, along with the major challenges of using RWD for translational 

research. We then describe the process of addressing the challenges through developing a data 

ecosystem for utilizing RWD in the academic setting. We set out to solve these problems not just 

for our own organization but to create a solution replicable and affordable for large research 

groups and other academic and non-profit organizations seeking to utilize high-value, high-risk 

data in a secure, scalable, and compliant manner. The platform developed at S-PHS, Redivis, has 

been adopted by Stanford University Libraries and several other university libraries and data 

centers. Thirdly, we discuss new directions of interest based on lessons learned and what we see 

as critical next steps for increasing the impact of RWD to solve pressing population health and 

health equity problems. We share what we have learned over the past eight years about how best 

to facilitate the use of these data for translational science, and what we think still needs to happen 

to maximize RWD impact for improving population health and reducing health inequities. We 

hope this past pathway and our observations on looking forward will be of interest to research 

groups and institutions that are interested in utilizing RWD to advance translational science. 

Rationale for a focus on real-world data 

Real-world data can be defined most generally as data that was collected for a purpose other than 

for research. As this data relates to health, this most notably includes data from wearable devices, 

billing data, and data from electronic health records. These data have several advantages over 

data used for traditional research studies. Many of these advantages are because these data 

typically include a much larger number of individuals than is possible to collect data from when 

a study is designed specifically for research purposes. Thus, there is greater statistical power in 

RWD to identify small but important impacts of exposures and treatments, both advantageous 

and adverse. They are a better fit to support a new generation of neural network models, like 
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transformer models, that fit massive numbers of nodes to data and require large sample sizes to 

produce meaningful findings. Real-world data with large numbers of individuals also are much 

better for precision health approaches to treatment
2
, given the ability to have stable findings 

within subgroups of the population. Similarly, although from a different motivation, real-world 

data also allow for more quantitative intersectional approaches to studying health, because there 

are enough individuals in subgroups of the population to estimate heterogeneity of treatment 

effects.
3
 Collecting data from this many individuals for a research project would be prohibitively 

expensive, as the costs of collecting the RWD are typically already paid for by the group for 

which the data was used for the intended non-research purpose. A further advantage of RWD is 

the multipurpose nature of types of data that make the study of a wide range of health topics 

feasible. When permitted, linkage with other datasets can enable tracking of patients across many 

years, something that can be done instantaneously and retrospectively, without waiting decades 

as is the case with the traditional prospective, longitudinal study design structures. Many RWD 

sets, although not all, contain more diverse populations that are closer to being representative of 

a target population since enrollment and inclusion in the data is often the default. Finally, RWD 

typically is continuously and constantly being updated, allowing more up to date insights into 

health risks and protective factors. This also makes RWD critical for adapting and improving 

patient care in real time in the context of learning health systems. 

Challenges of using real-world data  

Three major challenges of using RWD are: 1) the computational challenges of the large size of 

the data, 2) the need to keep proprietary data collected for another use private and secure, and 3) 

the fact that RWD have very different forms of bias and measurement error than data that is 

collected for research purposes. At many terabytes each, RWD typically exceed the capacity of 

any personal computer. Like almost all data for health, RWD has a risk of re-identification of 

individuals, so data must be kept secure. What is unique about RWD, however, is that there are 

often also proprietary risks of disclosure because the data was not collected by researchers 

themselves, but by another entity, often a private entity. Many datasets have specific stipulations 

on who may use the data and how, such as limiting what research questions may be asked, or on 

the affiliations and roles of researchers, such as requiring affiliation with the licensing 

organization or prohibiting the use of data for trainee projects. The selection and measurement 

errors in RWD have been well described, most notably that with claims data and EHR data 
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patients will typically only be observed when they have health problems, identifying the 

population that is at risk is often a challenge in open cohorts, and clinical definitions of health 

outcomes are often not included since that is not the purpose of many RWD types.
4
  

 Our approaches to addressing real-world data access and computation challenges 

To effectively meet the needs of researchers using RWD, we focused on bringing together the 

following: 

 Data that allow data use agreements that enable a large number of people to use and reuse 

the data for a wide range of projects; 

 Data administration and governance that is transparent, tractable and that protects the 

privacy and confidentiality of individuals in datasets and the researchers from violating 

policies, regulations or contractual obligations; 

 Data management and expertise to ensure data are curated in a way that is most useful for 

researchers; 

 Computational environments and software that are secure, powerful, flexible and 

scalable. 

Wilkinson et al. set a series of standards to ensure maximum utility of data—namely that they 

must be Findable, Accessible, Interoperable, and Reusable.
5
  We have reinterpreted these FAIR 

standards for high-risk data as follows: 

 Findable: Entities should issue a unique digital object identifier (DOI) for each iteration 

of a dataset. The data should be annotated, tagged and indexed in such a way that they are 

optimized for commonly used search engines. Specifically, metadata should be presented 

in a machine-readable format utilizing standard schemata and vocabularies. 

 Accessible: There should be a transparent, standardized process for obtaining data access 

and using data that is closely monitored and managed by a data custodian that meets all 

relevant regulatory and security requirements, including those specific to individual 

datasets and/or high-risk datasets. Meta-data must be retrievable by their identifier using 

a standardized communications and sufficient to enable prospective users can evaluate 

the data’s utility for their research questions in the instance data have a high barrier to 

access. 
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 Interoperable: Data and meta-data use a formal, accessible, shared, and broadly 

applicable language for knowledge representation, vocabularies that follow FAIR 

principles and include qualified references to other data. 

 Reusable: Data and meta-data should be well described and released with clear 

parameters around provenance and licensure and meet domain relevant standards. 

At the time of S-PHS’s inception, there were no products optimized or affordable to academic 

markets for achieving these objectives. S-PHS also needed to manage complex data access 

requirements and maintain visibility and direct control of S-PHS hosted data. S-PHS worked 

with a startup, Redivis
6
, to build a platform that could handle data discovery, access, curation, 

annotation, sharing, exploration and visualization. In parallel, the Stanford Research Computing 

Center built a secure, customizable, and scalable computational environment based in the Google 

Cloud Platform. Data curation, annotation, and administration were handled by S-PHS staff. 

Together, these three pillars of data management form the core essentials (Figure 1) of what is 

needed for the ability to use RWD by clinical researchers, epidemiologists and statisticians who 

do not have advanced large database data science skills. 

 

In the time between S-PHS’s initial investment and now, other platforms have emerged that 

provide some similar features. Many of these have been funded or are directly operated by the 

NIH. Examples include Vivli, N3C, and All of Us.
7–9

 A team from Harvard built Aetion which 

specializes in models for clinical research.
10,11

 These systems share several features in common 

with the S-PHS system. Scalability of the system is achieved with commercial cloud. In almost 

all cases, partnership with private entities was also used to build the system and, in many cases, 

for ongoing operation. For example, the All of Us Data and Research Center was achieved 

through a collaboration with Verily Life Sciences
12

 and the National COVID Cohort 

Collaborative (N3C) collaborated with Palantir.
13

 In the private sector, platforms such as 

Snowflake and TriNetX also make data available and owners of claims data such as IQVIA, 

Optum and MarketScan use proprietary, in house platforms. Similar to Redivis, these platforms 

offer a secure, scalable, customizable computational environment with tiered access depending 

on the researcher’s expertise and need. Many of these platforms have lowered barriers to access 

by making only de-identified data generally available to investigators, though Research 

Identifiable Files may be available to smaller groups of researchers.
12
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Perhaps the most important distinction of our data platform is that it was optimized for 

academic data centers and designed to be replicable: an affordable, off the shelf software
14

. A 

feature particularly important to academic use, is that it is implemented as a multi-tenant 

environment, which in practice means that researchers can discover and combine any dataset that 

they have access to across institutions that are utilizing this software. This has the potential to 

encourage sharing of high-risk data, since the data custodian can share the data without having to 

relinquish branding, credit, or control. 

Redivis is unique in its particularly robust permissioning system and the level of 

complexity that it supports. Most labs work with multiple datasets with varying risk levels and 

different access requirements. For example, a lab with eight researchers may have a study with 

four high-risk datasets, two of which require proof of project approval from data owners, three of 

which require IRB and all of which require proof of encryption to access. The Redivis system 

can manage this complexity and allow team members to share projects, data, and code in the 

project tool. It automatically restricts access to each dataset to the tier (view, meta-data, 1% 

sample, full dataset) for which the team member is authorized. This enables us to remain 

compliant without having to homogenize the risk profile or access requirements of datasets 

within a project and for teams to work together in an organic way. 

Incorporating FAIR principles into our technical infrastructure 

Findable 

The entry point to data is the S-PHS Data Portal (Figure 2) which enables data search within the 

platform using either natural language or common ontologies, manages access as described 

above, and enables investigators to explore data. In addition to managing data discovery and 

access, it has tools that enable researchers to explore of a wide array of dataset types across a 

federated system of data lakes and enclaves. It also indexes all documentation, tags, variables, 

and variable metadata across a dataset, allowing the system to return the dataset(s) relevant to a 

researcher’s line of inquiry. For example, if a medical diagnosis variable is annotated as 

containing ICD-X diagnosis codes, and the dataset includes observations for this variable of the 

value “I26” (pulmonary embolism), any searches for “pulmonary” will return this dataset and 

highlight the specific variable whose metadata matched the search term. 
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Moreover, we want to ensure that datasets hosted on the S-PHS Data Portal can be found via 

other discovery tools. To this end, all datasets are indexed by Google Dataset Search through the 

presence of well-formatted web crawler metadata, as well as by DataCite, through the issuance 

of DOIs and accompanying metadata. Both Google and DataCite use open and well-documented 

schema for their metadata, expanding the possibility for future tools to further leverage this 

metadata in aiding discovery. 

Redivis also enables researchers to discover and explore a wide variety of data types, 

including geospatial, and unstructured data. Built-in previews are available for several 

unstructured data types (images, text, PDF, HDF5, DICOM), and any arbitrary file type can be 

uploaded and stored. Redivis automatically captures and displays metadata for uploaded data, 

such as univariate statistics for tabular data, geospatial dispersion for GIS data, and file metadata 

and checksums for unstructured data. 

Accessible 

Access requirements are complex and often cumbersome. The system has allowed us to 

streamline and standardize these steps, eliminate duplicative effort for both the researcher and 

administrator and ensure compliance. For tabular data, the S-PHS Data Portal automatically pulls 

and visualizes meta-data. Meta-data can also be loaded into the portal as a separate file. The 

system allows an administrator to set the “least necessary” requirements so that a researcher can 

see as much up front information as possible to assess the suitability of the data for their 

question.  

At S-PHS’s inception, the task of tracking and verifying that data access requirements 

were complete and current was managed in a tabular database (REDCap).
15,16

 Although excellent 

for data collection, this type of software was not designed to manage data access. Because this 

approach was tedious, time-consuming, and often required duplicate efforts for both the data 

administrator and the researcher, data access was one of the first tasks S-PHS sought to 

automate. The system tracks which requirements an investigator has already completed so that 

application for an additional dataset only requires completing any new requirements specific to 

that dataset. Requirements for access are made transparent to investigators, and the system is 

designed to be user-friendly to minimize friction for investigators and administrators. 

Data access is managed with a customizable, tiered, granular permissioning system that 

allows data custodians to set specific requirements for different tiers of data visibility and access 
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(Figure 3). These tiers are overview, which includes detailed descriptions of data provenance and 

methods for collection and other narrative information; metadata view which includes variable 

descriptions and characteristics; data sample access, for example, for national datasets with tens 

of millions of records, data owners may elect to make a 1 or 5% sample available prior to 

releasing the full dataset; and full data access. It is also possible to directly upload a dataset and 

share it with individual collaborators. For especially sensitive datasets, data custodians can hide 

them from search and specify which individuals will be able to discover the data. All of these 

tiers and settings may be combined as needed to comply with security regulations or contractual 

requirements. It is also straightforward to make low risk datasets publicly available.  

 

The S-PHS Data Portal meta-data view enables researchers to assess the utility of a dataset for 

their research question, and includes information such as variable names, descriptions, summary 

statistics, join fields, and other population-level information (Figure 4). Searches can be 

performed on metadata such as tags, variable names, timeframe, size of dataset, and any other 

information included in the meta-data. Once a dataset is identified, researchers can view a more 

detailed description of the data provenance, methodology, a list of all variables, visualize key 

summary statistics (e.g., count, missingness, range, mean, median, histogram, and box-plot) for 

each variable, and learn which data access requirements are necessary to gain access to the 

dataset. 

 

Once researchers have completed all data access requirements necessary for the 1% or 5% 

sample or the full dataset, they can use graphical and SQL interface tools (Figure 5) to identify 

their analytic cohort. They can select tables, variables and records of interest and reshape, clean, 

and prepare the data for research. Because the Redivis is a software layer built on the Google 

Cloud Platform, all computations on both Redivis and Nero are performed through the Google 

Cloud Platform and interfaced through a user’s browser.
17

 All projects on Redivis can be shared 

with collaborators and—similarly to collaborative work tools such as Google Docs—multiple 

users can communicate within a project. 

Once an investigator has selected the appropriate files, variables and records using a GUI 

or SQL tools within Redivis, data can be ported to any of several secure computational 

environments, which have a wide range of analytic tools. 
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Interoperable: built for collaboration 

A collaborator accessing a dataset from another institution can authenticate using their 

institutional ID if they have an account and the hosting institution permits view or access of data 

from external collaborators. Redivis authenticates users with InCommon
18,19

 which is an access 

and identity management service specializing in academic and government organization 

authentications. Because it is built on the Google Cloud Platform, it is also possible to compute 

on data hosted in two different institutions’ instances without moving the data, provided that all 

data access requirements have been met. This addresses a major barrier to data sharing: 

institutions and investigators often do not want to let high-value data out of their direct control, 

and in many cases are not permitted to do so, preventing computation from other institutions. 

Other organizations, such as TriNetX
20

 and Google Data Commons
21

, also used federated data 

lakes, but the S-PHS approach is somewhat different in that other platforms tend to have binary 

data access (all or nothing), only offer this capability for one type of data (such as EHRs or 

claims), and are more likely to make only low to moderate-risk data available. 

Prior to loading on the portal, data undergo curation for research use. A dedicated data 

management team at S-PHS coordinates all data transfers from data proprietors and is 

responsible for removal of person-readable identifiers, appending encrypted linkage keys, 

cleaning, curation, and all linkages which require access to explicit identifiers. This team also 

coordinates de-identification, conversion into common data models such as OMOP, and other 

curation, annotation, and documentation activities in a dedicated, secure computational 

environment. For data managers and custodians, there are tools for data ingestion and curation, 

data annotation, and other data management tasks. It automatically tracks contributors to a 

dataset and ties those contributions (including ORCID) to the DOI metadata. This means that 

when a paper cites a dataset, we can link back to the people that curated and contributed to the 

dataset. This will enable S-PHS to pull a list of all papers derived from particular datasets (any 

dataset that a data manager or researcher has contributed to), which could in turn provide credit 

to contributors of data and career advancement-related to data sharing. 
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Re-usable: computational environments  

Once the files, variables, and records for an analytic cohort have been selected, the cohort can be 

moved to any of several secure computational environments depending upon the needs of the 

research team and the data’s risk profile. The Redivis platform offers the ability for investigators 

to initialize Jupyter Notebooks in R, Python, and Stata. To accommodate larger data derivatives, 

as well as the growing prevalence of computationally intensive AI and ML methodologies, 

Redivis notebooks allows investigators to customize their notebook computational environment 

to the needs of their data and analysis, while billing investigators directly for these computational 

resources. 

In addition to the Redivis native Jupyter notebook, Stanford has three high-performance 

computational environments for high-risk data: a secure, on-premise cluster of Windows servers 

(i.e. the S-PHS Windows Servers); Carina, which is an on-premise cluster of secure Linux 

servers; and Nero, which is based in the Google Cloud Platform. Administrators can specify the 

IP addresses of permissible environments for analyses, and all computational environments are 

designed for the highest risk data.  

The secure computational environments present a suite of analytical tools, including (but 

not limited to) Jupyter, R, Python, SAS, Stata, and MATLAB, all of which are accessible 

through a Jupyter Lab interface and the command-line. Jupyter Lab allows researchers to switch 

between preferred analytic tools, annotate data, and document data curation steps in a notebook 

format, which can easily be shared with other investigators or subsequent data users, providing 

practical versatility. 

Finally, we have several resources available to users including Slack channels, a 

centralized ticketing system for resolving technical issues (e.g. requests for additional software 

packages or other system updates), in-person and online office hours. For the most frequently 

used datasets, S-PHS also hosts research consortia for researchers to meet others working on 

similar data or topics, ask detailed data or methodology questions, and present proposed or 

current projects.  
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Collaborating with partners to translate real-world data into real-world impact 

S-PHS partnerships have played a central role in ensuring RWD is translated into real-world 

evidence used to reduce inequities in the development, approval, and adoption of effective 

medical and public health interventions—a capacity we believe is critical for centers offering 

access to data. An important component of reducing disparities is engaging the communities 

which have contributed their data, particularly communities which have historically been 

excluded from data sources. With all RWD we work with, it is strictly forbidden to contract 

patients whose information is in the data. This, however, does not mean that community 

perspectives and interests can’t be part of projects from their inception. To do this, S-PHS works 

with the Stanford Office of Community Engagement to advise study teams on how to engage 

communities around their topics of study. A number of our projects engage with key groups who 

are working to implement health promoting policies and practices for patients and communities. 

In collaboration with the American Board of Family Medicine, S-PHS data is being used to track 

racial and ethnic differences in long-COVID. S-PHS and the San Joaquin Valley Public Health 

Consortium, comprising eleven local public health jurisdictions dedicated to advancing health 

equity, jointly assessed the impact of COVID-19 on preventive screening rates in low-income, 

rural areas of California’s Central Valley. S-PHS used claims data to obtain historic information 

for the area, and EHR data from primary care—which are updated much more frequency than 

claims datasets—to conduct a timely assessment. We are also conducting community engaged 

work on the effects of structural racism on health and have a project studying the impact of cash 

transfers on persistent poverty. Learnings from these projects will be used to inform retrospective 

analyses on structural racism and persistent poverty using datasets hosted by S-PHS. These and 

other partnerships have enabled S-PHS to implement many of the Diversity, Inclusion, and 

Equity recommendations developed during the 2020 NCATS meeting.
22

 

Critical further new areas needed for working with real-world data 

As we look to the future, we are considering multiple new approaches for how RWD can be used 

to support translational science, with a focus on addressing several different barriers that we have 

encountered while supporting over 1000 projects over the last eight years. These include how to 

best harmonize across datasets with differing infrastructure and format, developing synthetic 

data, providing more numerous geographic overlays to data, supporting training across intuitions 

in the use of RWD, and supporting RWD analysis with interdisciplinary research teams.  
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Creating data structures that allow for harmonizing data from across platforms as well as 

more easily allow for replication of analyses across data is increasingly a focus of our work. Our 

current focus in this area is working to convert data to Observational Medical Outcomes 

Partnership (OMOP) data model, in line with the choice of many large collaborative studies.
23

 

This has so far resulted in great efficiencies for our work, but we have also realized that OMOP 

conversion is a process, not a destination. Subject matter experts using our data have continued 

to provide feedback on how best to capture different variables in the data, and the OMOP 

framework is well adapted for being updated to reflect expert opinion and changes that occur in 

coding in different EHR platforms. 

One area of new work for us that we think is particularly promising is the development of 

synthetic data for our most used datasets. Synthetic data refers to fake data that is generated 

based on real data. The goal is to retain the properties of the original data as much as possible, 

such that the original and synthetic data are indistinguishable in terms of distributions of 

variables relationships between variables. In the context of healthcare data, the synthetic copy of 

the data is not subject to HIPAA/GDPR rules as it does not include real personal information. 

This provides the potential to simplify the process of sharing and collaborating with RWD while 

preserving patient privacy. There are useful new approaches to creating synthetic data that 

capitalize on recent advancements in deep learning methods to achieve synthetic copies of 

complex data with high fidelity to the original data source. Because the software that constructs 

these datasets is computationally intensive, they must be run on a commercial cloud or similar 

computational environment, especially if the original data are large. We are mindful of the 

limitations of the underlying data, and high-fidelity synthetic data are likely to recreate these 

biases as the benchmark for high-fidelity synthetic data is that they perform similarly to the 

original data in models. While the optimal approach is reducing selection and measurement error 

in the collection of the data itself, we can also implement approaches to reducing some of these 

sources of error in synthetic data. Strategies for addressing these issues include incorporating 

sampling weights and other adjustments into synthetic populations and adding guidance on 

addressing these limitations in data documentation.  

A further area of development is to focus on datasets that have geographic information to 

address the fact that RWD rarely includes original data collection on social and environmental 

determinants of health. If some level of geographic information is included in RWD, geographic 
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overlays can be done which greatly expands the types of determinants of health that can be 

studied. Even levels of geography as large as the state can be beneficial, for example, for looking 

at the impacts of state differences in Medicaid expansion on health outcomes. Smaller levels of 

geography (e.g. ZIP code or census tract) allow for examining neighborhood effects on health 

and contaminants in the physical environment. Because data on health policies, social context 

and environmental exposures is also often difficult to find and also takes time to curate, focusing 

on providing these measures and crosswalk files for overlay can make including these factors in 

translational research projects much easier for researchers. We recently, for example, have 

calculated several area level deprivation measures at multiple levels of geography for capturing 

the local social environment of patients, and have made these available to researchers on our 

platform. We are also working to use geographic overlay data on the demographics of small 

areas to reweight RWD to reflect the underlying population. 

There are many efficiencies that can be gained by supporting cross-institution 

collaborations on training in the use of RWD. There are currently few established curricula on 

the use of RWD at academic medical centers, yet there is a growing need for this unique focus in 

instruction. Rather than developing coursework that is institution based, we believe it will be 

important to partner to develop courses with an entirely or primarily remote based structure, to 

allow more efficient instruction across institutions. Both asynchronous online coursework as well 

as in-person short courses that bring people together across institutions will help build critical 

capacity in the skillsets needed to do translational research with RWD. 

We are also increasingly focused on supporting interdisciplinary teams of staff and 

faculty to support RWD projects. Up until now, the traditional model has been that of a subject 

matter expert working with a statistician to analyze RWD to answer a particular research 

question. What we have found is that there is also an important role for a team member with 

deep knowledge of the data itself, which often can rapidly increase the speed and quality of 

translational research using RWD that can occur. In addition to these three types of expertise, we 

want to move towards a team that also includes individuals with expertise in study design, 

community and patient engagement, and health equity. Key to successfully implementing these 

teams to support the use of RWD includes educating researchers about the value of these teams, 

increasing capacity of individuals with expertise in these areas, and connecting researchers to an 

assembled team at the inception of a project.  
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Our experiences over the past eight years have shown us how much demand there is for 

access to real-world data, and that if the appropriate tools and structures are in place successful 

use of that data can be achieved. While the technological solutions and management structures to 

support researcher, data science and community collaborations take time to develop and 

implement, the longer-term gains for translational science have proven to be substantial. 
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Figure 1: Three pillars of making real-world data useful 
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Figure 2: Landing page of the S-PHS Data Portal 
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Figure 3: Tiered access on the S-PHS Data Portal 
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Figure 4: Meta-data view on the S-PHS Data Portal 
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Figure 5: Project tool for data curation and cohort selection 
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