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Abstract
In this contribution, we present a modelling and simulation framework for parametrised lithium-ion battery cells.
We first derive a continuum model for a rather general intercalation battery cell on the basis of non-equilibrium
thermodynamics. In order to efficiently evaluate the resulting parameterised non-linear system of partial differential
equations, the reduced basis method is employed. The reduced basis method is a model order reduction technique
on the basis of an incremental hierarchical approximate proper orthogonal decomposition approach and empirical
operator interpolation. The modelling framework is particularly well suited to investigate and quantify degradation
effects of battery cells. Several numerical experiments are given to demonstrate the scope and efficiency of the
modelling framework.

1. Introduction
Lithium-ion batteries (LIBs) are a key component of our modern society, with applications ranging
from medical devices via consumer electronics to electric vehicles and aerospace industry. The further
development of LIBs is based on various aspects, namely safety, cost, storage capacity and degradation
stability. This research and development are assisted by mathematical models, which are capable of sim-
ulating the complex behavior of LIBs on various degrees of spatial and temporal resolution [9, 19, 40,
43, 50, 56, 59, 60, 61, 74, 75]. Mathematical models based on continuum thermodynamics allow, for
example, the simulation of charging and discharging processes (cycling), yielding the cell voltage E as
function of the capacity Q (or status of charge y) and the cycling rate Ch.1 These quantities are typically
determined in galvanostatic electrochemical measurements, enabling a comparison between theoretical
predictions and experimental data [50]. Such models can then be used to investigate and quantify degra-
dation effects of LIBs [30], which are experimentally studied with periodic charging and discharging
over N cycles. Experimental measurements seek to determine the dependency of the cell voltage E as
function of cycling rate Ch, cycle number n and status of charge, i.e. E = E(y; Ch, n), to systematically
quantify different ageing aspects. This requires in general a huge batch of cells and massive amounts
of measuring times, e.g. cycling a cell at Ch = 1 for 1000 cycles requires at least 80 days of continuous
electrochemical measurements. Variations of materials or material combinations subsequently increase
measuring times exponentially.

Model-based simulations can help to reduce this lab time by reducing the number of batch cells,
cycle numbers and material combinations. Further, numerical simulations provide a methodology to

1Ch indicates the rate at which a battery is charged or discharged, i.e. for Ch = 1
h the battery is charged within h hour(s).
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systematically deduce informations on a specific ageing effect from electrochemical data. While experi-
mentally the superposition of various degradation effects is always observed, mathematical models allow
to predict electrochemical data for single and multiple degradation phenomena. Such ageing effects can
be represented in continuum models with different approaches [3, 71, 39], either by full spatial and
temporal resolution of a specific effect, e.g. cracking due to intercalation stress, or by cycle number
n dependent parameters, which is the focus of this work. This approach requires an evolution equa-
tion for some parameters with respect to the cycle number n, which can itself either be upscaled from
some microscopic model or determined from experimental snapshots. However, for some prescribed
cycle number dependent parameters, e.g. for the solid-state diffusion coefficient of lithium in the inter-
calation material (modelling the degradation of the intercalation particles) or the intercalation reaction
rate (quantifying an increasing surface resistivity), the electrochemical data E = E(y; Ch, n) of a battery
cell can be numerically computed and provides a fingerprint of the underlying proposed degradation
effect (forward problem).2 Overall this requires repeated numerical computations of the underlying ther-
modynamic model and thus efficient numerical strategies. Modern mathematical tools allow to reduce
the computational time of coupled non-linear partial differential equations significantly by setting up
a reduced basis (RB) method. The combination of (continuum) mathematical modelling, parametrised
degradation functions, numerical simulations and reduced basis methods yield a versatile toolbox for
the investigation of battery ageing on the basis of electrochemical data.

1.1. Outline

The aim of the paper is to (i) derive a thermodynamically consistent homogenised battery model frame-
work (Section 2), (ii) reduce the computation time using model order reduction techniques (Section 3)
and (iii) provide some numerical examples of phenomenological degradation where reduced basis
methods are useful (Section 4).

The mathematical model framework for a rather general intercalation battery is derived on the basis
of non-equilibrium thermodynamics [16] in Section 2. Our scope is (a) to be fully thermodynamically
consistent, (b) provide consistent boundary conditions and (c) to be material independent. The latter
aspect allows the applicability of our model framework to various intercalation materials types and cell
chemistries. The model considers three porous phases, namely a porous intercalation anode, a porous
separator phase and a porous intercalation cathode. Each porous phase consists of an electrolyte phase,
an active phase and a conductive additive phase. The electrolyte phase is based on a rigorously validated
material model [52], accounting for solvation effects [23], incompressibility constraints, diffusion and
conductivity. The active intercalation phase of the electrodes accounts for intercalation of (exemplarily)
lithium in terms of a specific chemical potential function and solid-state diffusion with a concentration
dependent diffusion coefficient [50]. The conductive additive phase accounts for the electron transport.
All three phases are coupled through a reaction boundary condition, where a special emphasis is put on
thermodynamic consistency [25, 48]. Subsequent spatial homogenisation techniques [1, 15, 43] for the
porous structure yield an effective, non-linear coupled partial differential equation (PDE) system for the
lithium concentration in each phase, the lithium-ion concentration in the electrolyte and the electrostatic
potential in each phase.

Building on this, we present a reduced basis method for recurring numerical simulations of the param-
eterised PDE model in Section 3, which occur in the simulation repeated battery cycling under laboratory
conditions. As a first step, we discretise the resulting fully nonlinear system of PDEs by the finite element
method in space and the backward Euler method in time. The computational studies to identify critical
parameters for estimating the ageing process of batteries require many evaluations of the finite element

2Note that the backward problem, which is beyond the scope of this work, i.e. the determination of the cycle number dependency
or evolution equation of various parameters and their specific weighting on the basis of experimental electrochemical data, requires
most efficient numerical tools for the forward problem, which has to be solved repeatedly in numerical strategies for inverse
problems.
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system with different parameter settings and thus involve a large amount of time and experimental effort.
Therefore, we employ the RB method in order to further reduce the parameterised discretised battery
model to obtain a reduced order model (ROM) that is cheap to evaluate. For an introduction and overview
on recent developments in model order reduction, we refer to the monographs and collections [6, 7, 41,
73]. For time-dependent problems, the proper orthogonal decomposition (POD)-Greedy method [37]
defines the Gold-Standard for systems, where rigorous and cheap to evaluate a posteriori error esti-
mates are available. As this is not the case for the non-linear battery model at hand, we employ the
hierarchical approximate proper orthogonal decomposition (HAPOD) [42] in this contribution. As RB
methods rely on so called efficient offline/online splitting, they need to be combined with supplementary
interpolation methods in case of non-affine parameter dependence or non-linear differential equations.
The empirical interpolation method (EIM) [2] and its various generalisations are key technologies with
this respect. In this contribution, we apply the empirical operator interpolation as introduced in [28, 58]
to the full battery finite element operator. Several related model order reduction approaches have already
been applied for battery simulation, as, e.g. in [12, 44, 55], where the authors apply model reduction
techniques for Newman-type LIB models [19]. Further results on model order reduction in the context
of battery models, including resolved electrode geometry and Butler–Volmer kinetics can be found in
[31, 68, 69, 70, 82] and [84]. In addition, there are several solvers for Newman-type battery models, as
e.g. [8, 46, 78].

We provide finally in section Section 4 some numerical examples of phenomenological degradation
models, where the RB method yields the desired reduction of computation time. These phenomenolog-
ical degradation models are expressed in terms of cycle number n dependent parameters, e.g. diffusion
coefficients or exchange current densities, which can be linked to specific underlying degradation mech-
anisms. However, this is not the scope of this work, but rather showing the qualitative impact of the
parameter variation on the electrochemical data, i.e. E = E(y; Ch, n), and its efficient and fast compu-
tation with RB methods. Our work is summarised in Section 5, and an overview of all variables and
parameters is given Section 6 and Appendix B, respectively.

2. Derivation of the porous electrode model
In this section, we derive a continuum mathematical model for a porous battery cell. After setting up
domains and proper definitions in Section 2.1, we state the chemical potential functions for all phases in
Section 2.1.3 and briefly discuss their derivation as well as some consequence of the electro-neutrality
condition. In Section 2.1.2, we state then the corresponding transport equations for each phase in the
porous electrode, where Section 2.1.3 puts a special emphasis on the intercalation reaction boundary
condition and its formulation on basis of non-equilibrium surface thermodynamics. Section 2.1.4 covers
then the full PDE system of an unhomogenised porous electrode, setting the basis for spatial homogeni-
sation in Section 2.2. Introducing proper scalings in Section 2.2.2 yields a general homogenised equation
framework in Section 2.2.3 for a porous multi-phase electrode. Section 2.2.4 then covers the full
homogenised battery model, where proper scalings are introduced on the basis of the 1−C current
density. An overview of all parameters is given in Section 2.3.1.

2.1. Domains, definitions and initial scaling

We seek to model a porous electrochemical unit cell, consisting of a porous anode �An ⊂R
3, a porous

separator �Sep ⊂R
3 and a porous cathode �Cat ⊂R

3, which are packed between two metallic deflec-
tors �DefAn and �DefCat that yield the overall electrical connections (see Figure 1). The base area of
the deflectors is denoted by �. The intercalation electrodes �j, j = An, Cat consist themself of three
phases, namely the active particle phase �j

A, the conductive additive phase �j
C and the electrolyte phase

�
j
E, with �j = ⋃

i∈{A,C,E} �
j
i. The union of the active phase and the conductive additive is frequently

called solid phase �j
S = ⋃

�
j
A ∪�j

C. The porous separator consists of an electrolyte phase �Sep
E and
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Figure 1. Sketch of the porous electrochemical unit cell. During discharge, lithium ions flow from the
anode to the cathode, while electrons drive an external electrical consumer.

an polymeric additive �Sep
P , with �Sep =�

Sep
E ∪�Sep

P . The whole electrolyte phase is further denoted by
�E = ⋃

j∈{An,Sep,Cat} �
j
E, the active phase as�A = ⋃

j∈{An,Cat} �
j
E and the solid phase�S = ⋃

j∈{An,Cat} �
j
S. The

interface�A,E =�A ∩�E captures the actual surface�A of the active particle as well as the electrochem-
ical double layer (�SCL

A ,�SCL
E ) forming at the interface, i.e. �A,E =�SCL

A ∪�A ∪�SCL
E . The domains �E

and �A are thus electro-neutral, and we refer to [25, 48, 63] for details on the derivation. A similar
argument holds for the interface�CE =�C ∩�E. The interface between the deflectors and a single phase
of the porous electrode is denoted by �i

jD =�i
j ∪�Defi , i = An, Cat, j = A, C, E, for example, m denotes

�Cat
CD the surface through which electrical current from the conductive phase of the electrode flows to the

respective deflector.
In each phase of each domain, we have balance equations, which are coupled through respective

boundary conditions modelling the intercalation reaction. We seek to employ periodic homogenisation
to derive a homogenised PDE model for the electrochemical unit cell�=�Cat ∪�Sep ∪�An. In order to
do so, we require a specific scaling with respect to the two essential length scales arising in the problem,
(i) the length scale L of the macroscopic width W of the unit cell, i.e. �=� × [0, W] with � ⊂R

2

being the area of the deflectors and (ii) the length scale � of the intercalation particle radii rA. This yields
a small parameter ε= L

�
with respect to which we can perform a multi-scale asymptotic expansion and

thus a periodic homogenisation.

2.1.1. Variables, chemical potentials and parameter (equilibrium)
The active particle �A is a mixture of electrons e−, intercalated cations C and lattice ions M+ and the
electrolyte a mixture of solvated cations C+, solvated anions A− and solvent molecules S. The respective
species densities are denoted with nα(x, t), x ∈�i. Further, we denote with

μα = ∂ψ

∂nα
, i = A, E, α = EA, EC, ES, AC, Ae, AM, (2.1)

the chemical potential of the constituents, which are derived from a free energy density [16, 62] ψ =
ψA +ψE with ψA = ψ̂A

(
nAe , nAC , nAM

)
of the active particle and ψE = ψ̂

(
nES , nEA , nEC

)
of the electrolyte

phase [27, 48, 52, 62].
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Electrolyte
For the electrolyte, we consider exclusively the material model [23, 24, 52] of an incompressible liquid
electrolyte accounting for solvation effects, i.e.

μα =ψα,ref + kBT ln(yα)+ vα · p α= ES, EA, EC, (2.2)

with mole fraction

yα = nα
nE,tot

,
∑
α

yα = 1, (2.3)

molar concentration nα, total molar concentration of the mixture (with respect to the number of mixing
particles [52])

nE,tot = nES + nEA + nEC , (2.4)

partial molar volume vα of the specific constituent within the mixture, pressure p and reference molar
free energy ψα,ref of the pure substance in the mixture, temperature T and Boltzmann constant kB .

A major aspect of the material model is the solvation effect, where each ion binds κα solvent molecules
due to microscopic electrostatic interactions. These aspects are crucial for various aspects of the ther-
modynamic model and we refer to [21, 23, 49, 52] for its details as well as experimental validation.
The bound solvent molecules do not contribute to the entropy of mixing [23], whereby nES in equation
(2.4) denotes the number density of free3 solvent molecules in the mixture. In turn, the partial molar
volume vα of the ionic constituents are increased roughly by κα · vES compared to the the volume of the
bare central ion. Consider a single ion with a bare molar mass and molar volume of mα,bare and vα,bare,
respectively. The corresponding solvated ion binds κα solvent molecules with mass and volume mES and
vES , whereby the mass of the solvated ion is mα = mα,bare + καmES . A quite similar relation also holds
for the volume of the ion, however, since the volume is not necessarily conserved upon solvation, for
instance due to packing density aspects, such a relation is approximative, i.e. vα ≈ vα,bare + καvES . From
a thermodynamic point of view, it is convenient and meaningful to assume

vEC

vES

= mEC

mES

and
vEA

vES

= mEA

mES

, (2.5)

whereby the incompressibility constraint [23, 24, 52] implies also a conservation of mass, i.e.∑
α

vαnα = 1 ⇔
∑
α

mαnα = ρ = mES

vES ,ref

= const. (2.6)

If the molar volume (and mass) of the solvent molecules are far larger than the bare ion,4 i.e. vES 
 vα,bare,
we may approximate further

vEC = κE · vES and vEA = κE · vES , (2.7)

whereby the volume of the solvated ion is mainly determined by the solvation shell and the solvation
number is similar [52] for anion and cation (κEA = κEC =: κE). The molar volume of the solvent is related
to the mole density nES ,ref of the pure solvent as

vES = (nES ,ref)
−1 (2.8)

3Consider a total number of NES ,tot solvent molecules, NEA anions and NEC cations with respective solvation numbers. Within
the mixture, each ion binds κα solvent molecules whereby the number of free solvent molecules in the mixture is NES = NES ,tot −
κEA NEA − κEC NEC .

4For instance with dimethyl carbonate (DMC) [18] as solvent with molar mass mES = 90.08 g/mol and lithium as electrolyte
cation (mEC ,bare = 6.9 g/mol), we have mEC

mES
= 0.07 + κEC which can be well approximated as mEC

mES
≈ κEC . Note, however, that this

assumption only simplifies the equation system a bit and is not a necessary assumption.
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and the solvation numbers κα can be determined from differential capacity measurements [52]. Note
that the incompressibility constraint equation (2.6) is also used to determine the number densities nα in
terms of the mole fractions yα, i.e.

nα = yα
n

equation (2.6)= yα∑
β

vβyβ
. (2.9)

Finally, the electrostatic potential is an additional variable in the electrolyte phase and denoted as
ϕE(x, t).

Active Phase
As an example, we discuss an electrode active phase, which is applied to the anode and cathode phase
in Section 2.1.4. For the active particle phase �A, we consider exemplarily a classical lattice mixture
model [4, 10, 11, 20, 22, 34, 51, 53], which we term in the following ideal electrode material. Note
that the whole modelling as well as the numerical procedure can directly be adapted to other chemical
potential functions μAC =μAC (yA). The chemical potential of intercalated lithium is stated as

μAC = gAC + kBT fA(yA), with fA(yA) := ln
(

yA

1+yA

)
+ γA · (2yA−1), (2.10)

with mole fraction

yA = nAC

nA,lat

(2.11)

of intercalated cations in the active phase and partial molar Gibbs energy gAC = const. The number
density nA,lat of lattice sites is constant, which corresponds to an incompressible lattice, and the enthalpy
parameter γA >−2.5. Note that γA <−2.5 entails a phase separation [53]. The electrostatic potential in
the solid phase is denoted as ϕS(x, t).

Electro-neutrality
The electro-neutrality condition of �A, �E and �C can be obtained by an asymptotic expansion of the
balance equations in the electrochemical double layer at the respective surface�. We only briefly recap-
ture the central conclusions and refer to [25, 26, 48, 50, 52, 63] for details on the modelling, validation
and the asymptotic derivation. Most importantly, electro-neutrality implies (i) that the double layer is
in thermodynamic equilibrium, (ii) that there exists a potential jump through the interface �AE and (iii)
that for monovalent electrolytes the cation mole fraction (or number density) is equal to the anion mole
fraction, i.e.

yEC = yEA =: yE. (2.12)

The total number density nE,tot = nES + nEC + nEA and the electrolyte concentration nEC can be written as
a function of yE using equation (2.6) as follows:

nE,tot = nES · 1

1 + 2(κE − 1)yE
= nE,tot(yE) (2.13)

nEC = nES

yE

1 + 2(κE − 1)yE
= nEC (yE). (2.14)

2.1.2. Transport equation relations
In the electrolyte �E, we have two balance equations determining the concentration nEC (x, t) (or mole
fraction yE(x, t)) and the electrostatic potential ϕE(x, t) in the electrolyte [32, 33, 57, 64, 65, 66,], i.e.

∂nEC

∂t
= −divJEC with JEC = −DE · nE,tot �

tf
E · ∇yE + tEC

e0

JEq (2.15)

0 = −divJEq with JEq = −SE · nE,tot �
tf
E ∇yE −�EnEC∇ϕE (2.16)
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effective electrolyte thermodynamic potential5

fE(yE) := ln(yE)− κEln((1 − 2 · yE)) (2.17)

and (dimensionless) thermodynamic factor [24]

�tf
E (yE) = yE

∂fE

∂yE
= 1 + 2κE

yE

1 − 2yE
, (2.18)

and electrolyte diffusion coefficient DE, transference number tEC , molar electrolyte conductivity�E, elec-
trolytic chemical conductivity SE, charge number zα and elementary charge e0. In general, three of the
transport parameters are independent and SE, tEC and �E are connected via

kBT

e0

(2tC − 1) = SE

�E
. (2.19)

The flux representations of (2.15) and (2.16) can be deduced on the basis of general Maxwell–Stefan
type diffusional fluxes [32, 33, 45, 57, 64] or Nernst–Planck-type flux relations with cross-diffusional
terms [16, 56]. For a three-component mixture (ES, EA, EC), the Onsager reciprocal relations [16] state
that two independent fluxes are present, i.e.

JEA = MAA∇μ̃EA + MAC∇μ̃EC (2.20)

JEC = MCA∇μ̃EA + MCC∇μ̃EC (2.21)

with μ̃α =μα − mα

mES

μES + e0zαϕ, α = EA, EC, (2.22)

with mobilities Mαβ , satisfying MAC = MCA. Hence, three transport parameters are independent, i.e.
(MAA, MAC, MCC). Rewriting the fluxes JEA and JEC , together with the charge flux

JEq = e0zEC JEC + e0zEAJEA , (2.23)

in the representations of (2.15) and (2.16), yields the definitions of (DE, tE, SE,�E) in terms of the
mobilities (MAA, MAC, MCC), which are given in Appendix A, as well as and the condition

kBT

e0

(2tEC − 1) = SE

�E
. (2.24)

We emphasise, however, that for simple Nernst–Planck-fluxes [24, 76], i.e.

Jα = DNP
α

nα
kBT

(
∇μα − mα

mES

∇μES + e0zαnα∇ϕE

)
α = EA, EC, (2.25)

with constant diffusion coefficients DNP
α

, only two transport parameters are independent and the transport
parameters of of (2.15) and (2.16) compute as

DE = 2DNP
EC

· DNP
EA

DNP
EA

+ DNP
EC

= const. tEC = DNP
EC

DNP
EA

+ DNP
EC

= const. (2.26)

�E = e2
0

kBT

(
DNP

EA
+ DNP

EC

) = const. SE = e0

(
DNP

EC
− DNP

EA

) = const. (2.27)

For the numerical simulations of Section 3, we assume constant values for the transport parameters
(tEC , SE, DE,�E), which is sufficient to show the general methodology of our framework approach. Note,

5Note that this arises from the fact that the diffusional flux of cations is JEC ∝ ∇(
μEC − mEC

mES
μES

)
[24, 27, 50] and since mEC

mES
=

mEC ,bare
mES

+ κE =≈ κE (for small bare ions and large solvent molecules) the linear combination μEC − mEC
mES

μES =ψEC − κEψES +
kBT fE(yE) with fE = ln(yE)− κln(1 − 2 · yE).
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however, that (tEC , SE, DE,�E) can in general be depend on the electrolyte concentration nEC , which
can be easily incorporated our framework.

In the active particle �A, we have two balance equations determining the concentration nAC (x, t) (or
mole fraction yA) of intercalated lithium and the electrostatic potential ϕS(x, t) in the solid phase�S, i.e.
the balance equation for intercalated lithium AC and the balance equation for electrons6 Ae in the entire
solid phase,

∂nAC

∂t
= −divJAC with JAC = −DA · nA,lat �

tf
A · ∇yA, x ∈�A (2.28)

0 = −divJAq with JAq = −σS(x)∇ϕS, x ∈�S (2.29)

and (dimensionless) thermodynamic factor

�tf
A = yA

∂fA

∂yA
= 1 + yA

1 − yA
+ 2γAyA = �tf

A (yA). (2.30)

The (solid state) diffusion coefficient DA is further assumed to be

DA = DA,ref · (1 − yA), DA,ref = const., (2.31)

where the term (1 − yA) accounts for a reduced (solid state) diffusivity due to crowding [50]. Note that
the electrical conductivity σS is different in the active phase �A and the conductive phase �C, which
form �S =�A ∪�C. We account for this as

σS(x) =
{
σA, if x ∈�A

σC, if x ∈�C
. (2.32)

In principle, σA can be dependent on the amount of intercalated ions, i.e. σA = σA(yA), but for the sake of
this work we assume σA = const. and σC = const.

A remark on the diffusion equation for intercalated lithium
We emphasise that the balance equation (2.28) for intercalated lithium is naturally [50] a non-linear
diffusion equation, which arises from the non-linear chemical potential function μA(yA). For the sake
of thermodynamic consistency of the entire model framework, it is necessary that the lithium flux in
the solid phase is strictly represented as JAC = MA(yA)∇μA(yA), where the mobility is MA is typically
considered as MA = DA(yA) · nA

kBT
(Einstein relation [16]).

For the very special case fA = ln
(

yA
1−yA

)
, i.e. an ideal lattice gas, one obtains�tf

A = 1
1−yA

and thus together
with equation (2.31) a simple, linear diffusion equation

∂yA

∂t
= −DA,refdiv

(∇yA
)

for x ∈�A, (2.33)

as stated, for example, by Newman [19, 66]. We emphasise, however, that this entails for the OCP (c.f. the
next Section 2.1.3 for a more detailed definition) of the active material, which is EOCP = 1

e0
(μLi −μA(yA))

[50], also simple relation EOCP = E0 − kBT
e0

ln
(

yA
1−yA

)
with E0 = const. This is, however, in contrast to the

OCP relation of [66], in our notation EOCP = E0 − kBT
e0

(
ln

(
yA

1−yA

)
+ βyA + ζ

)
(β and ζ are considered as

parameters in [66]).

6Note that the solid phase is considered as ideal conductor [52] whereby charge neutrality between the electrons Ae and the
ionic lattice ions AM is permanently given, i.e. qA = e0(zAe nAe + zAM nAM ) = 0. Further, the lattice ions are immobile, i.e. JAM = 0
whereby ∂qA

∂t = −e0zAe divJAe = 0. The electron flux JAe is only related to ∇ϕS since the electron density nAe = const. in an ideal
conductor [52], yielding the balance equation (2.29) (Ohm’s law).
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2.1.3. Reaction rate and affinity
At the the interface �AE the intercalation reaction

Li+
∣∣
E + e−∣∣

A � Li
∣∣
A + κE · S

∣∣
E (2.34)

occurs, which is modelled on the basis of (surface) non-equilibrium thermodynamics [50]. Hence, the
(surface) reaction rate R

s
can in general be written with α ∈ [0, 1] as [17, 21, 25, 48, 77]

R
s
= L

s
· g

(
1

kBT
λ
s

)
with g(z) := (

eα·z − e−(1−α)·z )
, (2.35)

where

λ
s

AE = e0ϕ̂S|AE − e0ϕ̂E|AE + kBT · (f j
A(yA|AE)− fE(yE|AE)

)
(2.36)

denotes the surface affinity of the reaction (2.34), which is pulled back through the double layer to
the respective points (in an asymptotic sense) outside of the double layer. The quantity ϕ̂E := ϕE − ELi+ ,E

denotes the electrolyte potential vs. metallic Li and ϕ̂j
S := ϕ

j
S − Ej

Li+ ,A the electrode j potential vs. metallic
Li [50]. Note again that yA|AE denotes the evaluation of yA at the interface�A,E and that the surface affinity
(2.36) is dependent on the chemical potential (or the mole fraction) evaluated at the interface. The non-
negative function L

s
in (2.35) ensures a non-negative entropy production r

s
σ ,R due to reactions on the

surface, i.e. r
s
σ ,R = λ

s
· R

s
> 0. For the sake of this work, we assume L

s
= const. and refer to [50] for a

detailed discussion on concentration dependency.

A remark on the various formulations of the Butler–Volmer equation.
The reaction rate (2.35) is frequently called Butler–Volmer-type relation; however, various formula-
tions in terms of the precise functional dependency on the thermodynamic state variables are present in
the literature [19, 27, 38, 48, 50, 56, 66, 77, 81]. The experimentally derived Butler–Volmer equation
[38] states a relation between the global current I and the deviation of the (macroscopic) cell potential
E to the (macroscopic) equilibrium voltage EOCP, frequently called open circuit potential (OCP) [66],
i.e. I = I0 ·

(
e−α e0

kBT (E−EOCP) − e−(1−α)
e0

kBT (E−EOCP)
)
. For intercalation materials, this OCP is concentration

dependent, i.e. EOCP = EOCP(yA), which arises from the chemical potential function μA(yA) since in a half
cell vs. metallic lithium EOCP = 1

e0
(μLi −μA(yA)) [50]. The experimental Butler–Volmer equation can

be deduced from the reaction rate model (2.35) by assuming that all processes, except the intercalation
reaction rate, are in thermodynamic equilibrium [50]. However, in the general non-equilibrium setting
of intercalation materials, the specific dependency of the reaction rate R

s
on (local) concentrations and

electrostatic potentials is more difficile. Since the reaction rate couples the adjacent diffusion equations,
i.e. ion transport in the electrolyte and intercalated lithium diffusion in the active phase, their concen-
tration dependency also impacts the overall behaviour. From a thermodynamic point of view, it is most
importantly that the very same chemical potential function μA is employed in the surface reaction rate
and in the adjacent diffusion equations.

As shown in the remark of Section 2.1.2, the linear diffusion equation for intercalated lithium the
active phase corresponds to an ideal lattice gas, which states μA = gAC + kBT ln

(
yA

1−yA

)
, used for example

in [19]. However, in the corresponding reaction boundary conditions of [19] (Butler–Volmer equation),
the chemical potential function (in our notation) μA = gAC + frackBT e0

(
ln

(
yA

1−yA

)
+ βyA + ζ

)
, where β

and ζ are fit parameters [66], is used and thus reflects the non-ideal OCP behaviour on a solid lattice.
This is accompanied with a concentration-dependent exchange current density, which is L

s
in our formu-

lation (2.35). Albeit good results on experimental validation, this model is not within our framework as
different chemical potential functionsμA(yA) for lithium diffusion in the solid phase and the intercalation
reaction at the boundary are used. Reference [50] addresses this aspect more in detail and we emphasise

https://doi.org/10.1017/S0956792522000353 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000353


European Journal of Applied Mathematics 563

again that the goal of the presented framework is overall thermodynamic consistency for rather general
chemical potential functions μA(yA).

2.1.4. Balance equations
Applying the above modelling procedure for j = An, Cat yields the following equation system,

∂nj
AC

∂t
= −divJj

AC
with Jj

AC
= −Dj

A · nj
A,lat �

j
A · ∇yj

A x ∈�j
A, (2.37)

0 = −divJj
Sq

with Jj
Sq

= −σ j
S(x)∇ϕj

S x ∈�j
S, (2.38)

∂nEC

∂t
= −divJEC with JEC = −DE · nE,tot �E · ∇yE + tEC

e0

JEq x ∈�E, (2.39)

0 = −divJEq with JEq = −SE · nE,tot �E∇yE −�EnEC∇ϕE x ∈�E, (2.40)

where (2.37) is the balance of intercalated lithium within the active phase, (2.38) the charge balance
in the solid phase and (2.38)2 the electron flux, (2.39) the balance of lithium ions in the electrolyte
phase and (2.40) the charge balance in the electrolyte, where (2.40)2 is the flux of the charge qE in
the electrolyte. Note that σ j

S(x) incorporates the fact that the conductivity is far larger in the conductive
additive phase �j

C then in the active particle phase �j
A. The index j is necessary because anode and

cathode are in general different materials, hence having different parameters and material functions, but
(2.37) yields a compact typeface.

The boundary conditions at the interface �
j
AE =�

j
A ∩�j

E, where the intercalation reaction
Li+ + e− � Li occurs, read

Jj
AC

· n = −L
s

j · g

(
1

kBT
λ
s

j

AE

)
on � j

AE, (2.41)

Jj
Sq

· n = −e0L
s

j · g

(
1

kBT
λ
s

j

AE

)
on � j

AE, (2.42)

JEC · n = L
s

j · g

(
1

kBT
λ
s

j

AE

)
on � j

AE, (2.43)

JEq · n = e0L
s

j · g

(
1

kBT
λ
s

j

AE

)
on � j

AE, (2.44)

where by convention n is pointing from �
j
A into �j

E. Note this formulation of the boundary conditions
neglects double-layer charging, i.e. currents arising from temporal variations of the boundary layer
charge [43, 48, 50, 63], which are rather small compared to the intercalation current [50]. At the interface
�

j
CE =�

j
C ∩�j

E we have homogenous Neumann boundary conditions, i.e.

Jj
AC

· n = Jj
Sq

· n = JEC · n = JEq · n = 0 on � j
CE. (2.45)

Further we have global boundary conditions for the electric current density i leaving the anode
(discharge, i> 0) or entering the anode (charge, i< 0), i.e.

JCat
Sq

· n = −i on �Cat
CD , (2.46)

as well as a reference value for the electrostatic potential, which reads

ϕAn
S = 0 on �An

CD . (2.47)

2.2. Homogenisation

In this section, the coupled transport equation system (2.37)–(2.47) is spatially homogenised with
asymptotic expansion methods [1, 15, 40, 43, 59, 74]. This is exemplarily done for a single porous
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Figure 2. Sketch of the homogenisation procedure. The porous electrode is simplified as a network of
interconnected active phase spheres, yielding a unit cell ω containing one electrode particle.

electrode consisting of spherical particles. Based on an induced scaling the equation system is (i) non-
dimensionalised in Section 2.2.2, (ii) homogenised Section 2.2.3, and finally re-dimensionalised in
Section 2.2.4. This yields a one to one assignment of the equation system (2.37)–(2.47) to the derived
homogenised equations (2.101)–(2.104) and the global boundary conditions. The intermediate part
Sections 2.2.1–2.2.3 can be skipped for a better reading flow.

2.2.1. Introduction
An important feature of the coupled transport equation system (2.37)–(2.40) is the circumstance that
the solid-state diffusion Dj

A is far smaller than the electrolyte diffusivity DE. This accompanies, however,
with smaller diffusion pathways on the length scale � of the intercalation particles. The diffusivity of
Li in LiCoO_2 is, for instance, about DA ≈ 10−12 / cm

s [83], while the diffusivity of Li+ in DMC is in
the order of DE ≈ 10−5 / cm

s [47]. The macro-length scale is L ≈ 1/μm [19], while the micro-scale is
�≈ 1 / nm (see Figure 2). Hence, the length scale ration �

L
= ε≈ 10−3 and Dj

A ≈ ε2DE. This motivates
the re-scaling

Dj
A = ε2 · Dj,ε

A j = An, Cat, (2.48)

which is subsequently exploited in the homogenisation procedure.

2.2.2. Non-dimensionalisation
For the sake of the homogenisation as well as parameter studies and numerical implementations, it is
necessary to non-dimensionalise the overall equation system. This is performed in several steps, start-
ing from an initial non-dimensionalisation for the homogenisation, briefly sketched here. Consider the
dimensional equation system

∂w

∂t
= divD∇w x ∈�E (2.49)

D∇w · n = R x ∈�AE. (2.50)

For the sake of the homogenisation, it is convenient to introduce the scaling

w = u · n D̃ = T

L 2
· D (2.51)

t = τ · T R̃ = T

n

1

�
· R (2.52)

x = ξ · L ε= �

L
, (2.53)
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which yields
∂u

∂τ
= divξ D̃∇ξu ξ ∈ �̃E, (2.54)

D̃∇ξu · n = εR̃ ξ ∈ �̃AE. (2.55)

2.2.3. General homogenisation framework
For a single electrode, dropping the super-index j and denoting in this subsection x as non-dimensional
space variable, we have a coupled equation system of the form7

∂uE

∂τ
= div

(
D̃EhE(uE)∇uE

) ∈�E, (2.56)

∂uA

∂τ
= div

(
ε2D̃AhA(uA)∇uA

) ∈�A, (2.57)

∂uS

∂τ
= div

(
D̃ε

ShS(uS, x)∇uS
) ∈�S, (2.58)

hE(uE)D̃E∇uE · n = εR̃E

(
uE

∣∣+
�AE

, uA
∣∣−
�AE

, uS
∣∣−
�AE

)
on �AE, (2.59)

hA(uA)ε2D̃A∇uA · n = εR̃A

(
uE

∣∣+
�AE

, uA
∣∣−
�AE

, uS
∣∣−
�AE

)
on �AE, (2.60)

hS(uS, x)D̃S∇uS · n = εR̃S

(
uE

∣∣+
�AE

, uA
∣∣−
�AE

, uS
∣∣−
�AE

)
on �AE, (2.61)

hE(uE)D̃E∇uE · n = hA(uA)ε2D̃A∇uA · n = hS(uS, x)D̃S∇uS · n = 0 on �CE, (2.62)

where ui, i = A, E, S, denotes the respective phase variable, (D̃ε
i , R̃ε

i ) the ε-dependent non-equilibrium
parameter and hi capture the non-linearities w.r.t. ui. For the solid-phase �S, the x dependency of
hS

(
uS, x

ε

)
accounts for different conductivities in �C ⊂�S and �A ⊂�S, e.g.

hS(uS, x) = hu
S(uS) · hx

S

(x
ε

)
with hx

S =
{

hx,A
S , if x ∈�A

hx,C
S , if x ∈�C

. (2.63)

Note that we abbreviate

ui

∣∣+
�AE

=: uE|+ and ui

∣∣−
�AE

=: ui|−. (2.64)

We consider a multi-scale expansion (i = A, E, S)

ui(x, t) =
∞∑

k=0

εkuk
i (x, y, t) with y = x

ε
, (2.65)

whereby

∇ = ∇x + ε−1∇y (2.66)

div = divx + ε−1divy. (2.67)

7Actually in the electrolyte phase we have two coupled equations, but for simplicity we sketch in the derivation here only a
single (non-linear) equation.
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For non-linear functions h = h(u), we consider the ε−Taylor expansion

h(u) =
∞∑

k=0

1

k!
dkh

duk
(u − u0) = h(u0) + εu1h′(u0) +O(

ε2
)

(2.68)

and for g = g
(
u+

E , u−
A , u−

S

)
a multi-dimensional Taylor expansions, i.e.

g
(
uE|+, uA|−, u−

S

) = g
(
u0

E|+, u0
A|−, u0

S|−
) +

∑
i=E,A,S

ε · ∂ui g
∣∣

u0
E|+ ,u0

A|− ,u0
S|− · u1

i |± +O(
ε2

)
. (2.69)

We abbreviate

h0 := h(u0) , h1 := u1 · h′(u0), and g0 := g
(
u0

E|+, u0
A|−, u0

S|−
)

(2.70)

g1 := u1
E∂uE g

(
u0

E|+, u0
A|−, u0

S|−
) + u1

A∂uA g
(
u0

E|+, u0
A|−, u0

S|−
) + u1

S∂uS g
(
u0

E|+, u0
A|−, u0

S|−
)

(2.71)

and expand thus

hi = h0
i + εh1

i g = g0 + εg1. (2.72)

Insertion of the multi-scale expansion yields a sequence of PDEs in the orders of ε.

Order ε−2:
For i = E, S we have

divyD̃ih
0
i ∇yu

0
i = 0 in ωi (2.73)

with

D̃ih
0
i ∇yu

0
i · n = 0 on σAE. (2.74)

This yields u0
i = u0

i (x, t) by the maximum principle.

Order ε−1:
For i = E, S, we have due to u0

i = u0
i (x, t) we have

divyD̃ih
0
i ∇yu

1
i = 0 in ωi (2.75)

with (
D̃ih

0
i ∇xu

0
i + D̃ih

0
i ∇yu

1
i

) · n = 0 on σAE. (2.76)

This yields

u1
i (x, y, t) = −∇xu

0
i · χi(y), (2.77)

where χ E = (
χ 1

E , χ 2
E , χ 3

E

)
satisfies the cell problem (k = 1, 2, 3)

(CPE)

⎧⎪⎪⎨
⎪⎪⎩

divy∇yχ
k
E = 0 y ∈ωE, i = E, S

∇χ k
E · n = nk on σAE

χ k
E is periodic

(2.78)

and χ S = (χ 1
S , χ 2

S , χ 3
S ) satisfies the cell problem (k = 1, 2, 3)

(CPS)

⎧⎪⎪⎨
⎪⎪⎩

divy

(
hx

S(y) · (ek − ∇yχ
k
S

)) = 0 y ∈ωS

hx
S(y) · (ek − ∇yχ

k
S

) · n = 0 on σAE

χ k
S is periodic.

(2.79)

Note that nk denotes the kth component of the corresponding normal vector n on the surface σAE.
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Order ε0

Since u0
E = u0

E(x, t) we have for i = E, S

divxD̃ih
0
i ∇xu

0
i + divxD̃ih

0
i ∇yu

1
i + divyD̃ih

0
i ∇xu

1
i + divyD̃ih

1
i ∇yu

1
i = ∂u0

i

∂τ
(2.80)

and

divyD̃Ah0
A∇yu

0
A = ∂u0

A

∂τ
(2.81)

with (
D̃Eh0

E∇xu
1
E + D̃Eh1

E∇xu
0
E + D̃Eh1

E∇yu
1
E

)
· n = R̃0

E (2.82)(
D̃Sh0

S∇xu
1
S + D̃Sh1

S∇xu
0
S + D̃Sh1

S∇yu
1
S

)
· n = R̃0

S (2.83)(
D̃Ah0

A∇yu
0
A

)
· n = R̃0

A. (2.84)

Equation (2.80) leads (by an integration over ωE and integration by parts) for i = E to
∂u0

E

∂τ
= divx

(
D̃Eh0

EπE · ∇xu
0
E

) + aAE

ψE
· 1

area{σAE}
∫
σAE

R̃0
E

(
u0

E, u0
S, u0

A|∂ωA

)
dA(y) (2.85)

with

π E := 1

vol{ωE}
∫
ωE

(Id − ∇yχ E)dV(y) = Id − 1

vol{ωE}
∫
ωE

∇yχ EdV(y) (2.86)

ψE =
∫
ωE

1 dV∫
ω

1 dV
= vol{ωE}

vol{ω} (2.87)

aAE =
∫
σAE

1 dA∫
ω

1 dV
= area{σAE}

vol{ω} . (2.88)

Note that u0
A = u0

A(x, y, t) and that u0
A|∂ωA denotes an evaluation of u0

A at the boundary of the micro-domain
ωA. Equation (2.80) leads (by an integration over ωS) for i = S to

∂u0
S

∂τ
= divx

(
D̃0

Sh0
Sπ S · ∇xu

0
S

) + aAE

ψS

1

area{σAE}
∫
σAE

R̃0
S

(
u0

E, u0
S, u0

A|∂ωA

)
dA(y) (2.89)

with

π S := 1

vol{ωS}
∫
ωS

hS,3(y)(Id − ∇yχ S)dV(y) (2.90)

ψS =

∫
ωS

1 dV∫
ω

1 dV
= vol{ωS}

vol{ω} (2.91)

Hence we obtain for the equation system (2.56)–(2.62) via periodic homogenisation the coupled micro-
macro balance equation system

∂u0
E(x, t)

∂τ
= divx

(
D̃Eh0

Eπ E · ∇xu
0
E

) + aAE

ψE

1

area{σAE}
∫
σAE

R̃0
E(u0

E, u0
S, u0

A|∂ωA )dA(y) (2.92)

∂u0
S(x, t)

∂τ
= divx

(
D̃0

Sh0
Sπ S · ∇xu

0
S

) + aAE

ψS

1

area{σAE}
∫
σAE

R̃0
S(u0

E, u0
S, uA|∂ωA )dA(y) (2.93)

∂u0
A(x, y, t)

∂τ
= divyD̃Ah0

A∇yu
0
A (2.94)
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with (
D̃Ah0

A∇yu
0
A

)
· n = R̃0

A. (2.95)

Spherical particles
In the following, we assume on the macro-scale a 1D approximation x ∈ [0, 1] as well as spherical
particles ωA, i.e. ω= [−0.5, 0.5]3 (vol{ω} = 1), ωA = Br̃A (0), r̃A < 0.5, ωE =ω\ωA, yielding

ψE
∂u0

E(x, t)

∂τ
= ∂x

(
ψED̃Eh0

Eπ E · ∂xu
0
E

)+θAER̃0
E

(
u0

E, u0
S, u0

A(x, r̃A, t)
)

, x ∈ [0, 1] (2.96)

ψS
∂u0

S(x, t)

∂τ
= ∂x

(
ψSD̃0

Sh0
Sπ S · ∂xu

0
S

)+θAER̃0
S

(
u0

E, u0
S, u0

A(x, r̃A, t)
)

, x ∈ [0, 1] (2.97)

∂u0
A(x, r, t)

∂τ
= 1

r2
∂r

(
r2D̃Ah0

A∂ru
0
A

)
, x ∈ [0, 1], r ∈ (0, r̃A) (2.98)

with (
D̃Ah0

A∂ru
0
A

)∣∣∣
r=rA

= R̃0
A

(
u0

E(x, t), u0
S(x, t), u0

A(x, r̃A, t)
)

(2.99)

and

θAE = area{σAE}
vol{ω} = 4π r̃2

A − area{σA,C}. (2.100)

For spherical particles, various possibilities regarding their micro-structural packing arise, most
prominent (i) simple cubic, (ii) body-centered cubic and (iii) face-centered cubic, see Figure 3. For
a given micro-structure (or periodic unit cell ω), the porous media parameters (ψE, π E, θAE) and (π S,ψS)
can (numerically) be computed by solving the cell problems (2.78) and (2.79), respectively. Treating
the particle radii rA as a parameter yields then the diffusion corrector π E as function of the porosity ψE

[54] (solid lines in Figure 3). Quite commonly, the (scalar) tortuosity corrector τE is introduced via an
effective diffusion coefficient [14, 29, 66, 80], which is in our notation τE = (πE)−1 [54]. The Bruggeman
approximation states that τE =ψ−α

E [54], where α is to be determined (Bruggeman fit, dashed lines in
Figure 3).

Note that for equally sized spherical particles the actual micro-structure is exclusively encoded in
the porous media parameters (ψE, π E, θAE, π S,ψS) of the homogenised equation system (2.96)–(2.98).
We refer to [54] for more complex micro-structure geometries as well as their meshing and numerical
solution of (2.78) and proceed for the sake of this work with a simple cubic micro-structure.

2.2.4. Homogenised battery model
Applying this homogenisation scheme to the equation system (2.37)–(2.40) and its boundary conditions
(2.41)–(2.45), dropping the leading order index 0 and reinserting the scalings of Sections 2.2.1 and 2.2.2
yields the following equation system (j = An, Cat):

∂nj
AC

∂t
= − 1

r2
∂rJ

j
AC

(r, x) ∈ [0, rj
A] × Ij,

with Jj
AC

= −Dj
A · nj

A,lat �
j
A · r2 ∂ry

j
A (2.101)

0 = −∂xJ
j
Sq

− e0θAE
1

�
L
s

j · g x ∈ Ij,

with Jj
Sq

= −ψSπ
σ

Sσ
j
C∂xϕ

j
S (2.102)
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(a)

(b) (c)

Figure 3. Porous media parameters for simple cubic, body-centered cubic and face centered cubic
micro-structures (Figure 15 of [54], reprinted with permission of Elsevier).

ψE
∂nEC

∂t
= −∂xJE + θAE

1

�
L
s

j · g x ∈ I,

with JEC = −ψEπ EDE · nE,tot �E · ∂xyE + tEC

e0

JEq (2.103)

0 = −∂xJEq + e0θAE
1

�
L
s

j · g x ∈ I,

with JEq = −ψEπ ESE · nE,tot �E∇yE −ψEπ E�EnEC∇ϕE, (2.104)

where

IAn = [
0, WAn] , ISep = [

WAn, WAn+WSep] , ICat = [
WAn+WSep, W

]
, (2.105)

W = WAn + WSep + WCat, I = IAn ∪ ISep ∪ ICat = [0, W], (2.106)

g = g
(
yE(x, t), ϕE(x, t), ϕS(x, t), yA(x, rj

A, t)
)

, (2.107)

and boundary conditions

Jj
A

∣∣∣
r=rA

= −r2
AL

s

j · g, Jj
A

∣∣∣
r=0

= 0, JCat
Sq

∣∣∣
x=W

= −i, ϕAn
S

∣∣∣
x=0

= 0. (2.108)
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Note that tEC = const. allows us to rewrite (2.103) with (2.104) as

ψE
∂nEC

∂t
= −∂xJE + θAE

1

�
(1 − tEC )L

s

j · g x ∈ I,

with JEC = −ψEπ EDE · nE,tot �E · ∂xyE, (2.109)

which is further used.

Cell Voltage, Capacity, C-Rate
To introduce proper scalings an non-dimensionalisations, some definitions of important (global)
quantities are required. For a LIB, the following quantities are of most importance:

(1). the cell voltage

E := ϕAn
S |x=0 − ϕCat

S |x=W [V] , (2.110)

(2). the basic (electrode) capacity (j = An, Cat)

Qj,0 :=
∫

Ij

4π

�3

∫ rj
A

0

e0nj
A,latr

2 drdx = Wjψ j
Aqj

A = const.
[
Ah m2

]
, (2.111)

with qj
A := e0nA,lat,

(3). the present (electrode) capacity (j = An, Cat)

Qj(t) :=
∫

Ij

4π

�3

∫ rj
A

0

e0nj
AC

r2 drdx
[
Ah m2

]
, (2.112)

(4). the (electrode) status of charge

ȳj
A(t) := Qj

Qj,0
= 1

Wj

∫
Ij

3

r3
A

∫ rj
A

0

yj
A · r2 drdx [1] , (2.113)

(5). and the 1-C current density

iC := QCat,0

1[h]

[
Am2

]
, (2.114)

which yields for the current density the scaling

i = Ch · iC, (2.115)

where Ch ∈R is the C-Rate.

Note that

QCat(t)−QCat,0 =
∫

ICat

e04π

(�Cat)3

∫ rCat
A

0

∫ t

0

r2∂tn
Cat
AC

dt dr dx =
∫ t

0

i dt. (2.116)

For a constant current discharge (i = const.), we obtain thus

ȳCat
A (t) − ȳCat

A (t = 0) = Ch

1[h]
· t, (2.117)

which introduces the time re-scaling τ = Ch
1[h]

· t.
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Scalings
Summarised, we use the scalings

t = 1[h]

Ch

τ , τ ∈ [0, 1] iC = QCat,0

1[h]
= WCatψCat

A qCat
A

1[h]
(2.118)

nE,tot = ñE,totnE,ref x = ξW , ξ ∈ [0, 1] (2.119)

nj
AC

= nj
A,laty

j
A, yj

A ∈ [0, 1] ϕ = kBT

e0

ϕ̃ (2.120)

r = rAν , ν ∈ [0, 1] cE = ∂nEC (yE)

∂yE

1

nE,ref

(2.121)

nEC = ñE,tot nE,ref yE , yE ∈ [0, 1] ηE,j
n := nj

A,lat

nj
E,ref

(2.122)

ηj
x = Wj

W
(2.123)

r̃j
A := �j

rj
A

ηCat
W := ψCat

A · WCat

W
(2.124)

σ̃ j
S := 1[h]

W2

kBT
(e0)2

nj
A,lat

· σ j
S �̃E =:

1[h]

W2

kBT

e2
0

�E (2.125)

D̃E := 1[h]

W2
DE S̃E := (2tC − 1)�̃E (2.126)

L̃
s

j := 1

nj
A,lat

(
1[h]

) 1

�j
L
s

j D̃j
A,ref := 1[h]

(�j)2
· Dj

A,ref (2.127)

and definitions

�Cat = [
0, ηCat

x

]
,�Sep = [

ηCat
x , ηCat

x +ηSep
x

]
,�An = [

ηCat
x +ηSep

x , 1
]

,�El =�Cat ∪�An (2.128)

�Cat
A = [

0, ηCat
x

] × [0, 1],�An
A = [

ηCat
x + ηSep

x , 1
] × [0, 1] �A =�Cat

A ∪�An
A (2.129)

as well as

yA :=
⎧⎨
⎩

yCat
A (ξ , r) ∈�Cat

A

yAn
A (ξ , r) ∈�An

A

σ̂S :=
⎧⎨
⎩
ψCat

S πCat
S,σ σ̃

Cat
C ξ ∈�Cat

ψAn
S πAn

S,σ σ̃
An
C ξ ∈�An (2.130)

ϕS :=
⎧⎨
⎩
ϕCat

S ξ ∈�Cat

ϕAn
S ξ ∈�An D̂A :=

⎧⎨
⎩

D̃Cat
A,ref (1 − yA)�Cat

A (yA) · ν2 (ξ , r) ∈�Cat
A

D̃An
A,ref (1 − yA)�An

A (yA) · ν2 (ξ , r) ∈�An
A

(2.131)

ψE :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ψCat

E ξ ∈�Cat

ψ
Sep
E ξ ∈�Sep

ψAn
E ξ ∈�An

D̂E :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ψCat

E πCat
E D̃E · ñE,tot(yE) �E(yE) ξ ∈�Cat

ψ
Sep
E π

Sep
E D̃E · ñE,tot(yE) �E(yE) ξ ∈�Sep

ψAn
E πAn

E D̃E · ñE,tot(yE) �E(yE) ξ ∈�An

(2.132)
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ψS :=
⎧⎨
⎩
ψCat

S ξ ∈�Cat

ψAn
S ξ ∈�An ŜE :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ψCat

E πCat
E · S̃E · ñE,tot(yE) �E(yE) ξ ∈�Cat

ψ
Sep
E π

Sep
E · S̃E · ñE,tot(yE) �E(yE) ξ ∈�Sep

ψAn
E πAn

E · S̃E · ñE,tot(yE) �E(yE) ξ ∈�An

(2.133)

ηE
n :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ηE,Cat

n ξ ∈�Cat

0 ξ ∈�Sep

ηE,An
n ξ ∈�An

σ̂E :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ψCat

E πCat
E �̃E · ñE,tot(yE) yE ξ ∈�Cat

ψ
Sep
E π

Sep
E �̃E · ñE,tot(yE) yE ξ ∈�Sep

ψAn
E πAn

E �̃E · ñE,tot(yE) yE ξ ∈�An

(2.134)

θ :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
θCat

AE ξ ∈�Cat

0 ξ ∈�Sep

θAn
AE ξ ∈�An

R :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L̃
s

Cat
g
(
λ̃
s

Cat
)

ξ ∈�Cat

0 ξ ∈�Sep

L̃Ang
(
λ̃
s

An
)

ξ ∈�An

(2.135)

r̃A :=
⎧⎨
⎩

r̃Cat
A ξ ∈�Cat

r̃An
A ξ ∈�An (2.136)

which yields

ν2r̃2
ACh

∂yA

∂τ
= −∂ν J̃AC with J̃AC=−D̂A ∂νyA (ν, ξ ) ∈�A (2.137)

0 = −∂ξ J̃Sq − θ · R with J̃Sq=−σ̂S∂ξ ϕ̃S ξ ∈�El, (2.138)

ψEChcE
∂yE

∂τ
= −∂ξ J̃EC + ηE

n

(
1−tEC

)
θ · R with J̃EC=−D̂E(yE)∂ξyE ξ ∈ [0, 1], (2.139)

0 = −∂ξ J̃Eq + ηE
nθ · R with J̃Eq=−ŜE(yE)∂ξyE − σ̂E∂ξ ϕ̃E ξ ∈ [0, 1]. (2.140)

The boundary conditions read

J̃AC

∣∣∣
ν=1

= −r̃AR, J̃AC

∣∣∣
ν=0

= 0, (2.141)

σ̂ Cat
C ∂ξ ϕ̃

Cat
S

∣∣∣
ξ=1

= Chη
Cat
W , ϕ̃An

S

∣∣∣
ξ=0

= 0, (2.142)

with additional homogenous Neumann boundary conditions for all unspecified boundaries.

A remark on the sign of the current density
For the reaction Li + + e– � Li + κS, we have λ := μLi|A + κμS|E −μLi+|E −μe−|A whereby λ> 0
entails r = L · g(λ)> 0. Since JA = −D̂A∇yA we have at the boundary

JA · n = (+1)r, (2.143)
where (+1) is the stoichiometric coefficient of the product Li.

2.3. Initial values and potential

The initial values, also used for the Newton solver, are defined as
yA(ξ , r, τ = 0) = y0

A yE(ξ , τ = 0) = y0
E (2.144)

ϕ̃E(ξ , τ = 0) = ϕ̃0
E ϕ̃S(ξ , τ = 0) = ϕ̃0

S , (2.145)
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with

y0
A :=

⎧⎨
⎩

yCat,0
A (ξ , r) ∈�Cat

A

yAn,0
A (ξ , r) ∈�An

A

, y0
E := nEC

nES − 2 · κE · nEC

, (2.146)

ϕ̃0
S :=

⎧⎨
⎩

f An
A

(
yAn,0

A

) − f Cat
A

(
yCat,0

A

))
ξ ∈�Cat

0 ξ ∈�An , ϕ̃0
E := f An

A

(
yAn,0

A

) − fE
(
y0

E

)
. (2.147)

2.3.1. Parameters
All parameters and their values for the subsequent numerical calculations are summarised in
Appendix B.

3. Discretisation and model order reduction of the battery model
The modelling approach discussed in the previous section formulates the multi-scale battery model
as a homogeneous medium in which electrolyte and the solid electrode materials exist at every point.
This homogenisation approach results in a so-called macroscopic model where the details of the micro-
structure are taken into account. In this macroscopic model, the intercalation of Li-ions in the electrode
particles is incorporated through a coupled diffusion equation in radial direction of the particles in each
macroscopic quadrature point. In this way, we get a pseudo-2D model (i.e. 1D + 1D model) for the full
battery cell. The model is given by a system of nonlinear PDEs for the homogenised electric potentials
(ϕ̃E, ϕ̃S) and the mole fraction of Li+-ions (yE, yA) in the electrolyte and in the positive and negative elec-
trode materials, respectively. The equation for the mole fraction in the electrode materials is calculated
in the additional pseudo dimension, namely in the particle radius ν. The overall PDE system can be
written in the following abstract form:

−α(·, yA)
∂yA

∂τ
− ∇ν · [−β(·, yA)∇νyA] = 0,

− ∇ξ · [−γ ( · )∇ξ ϕ̃S] −R1(·, ϕ̃E, ϕ̃S, yE, yA|ν=1)= 0,

−δ(·, yE)
∂yE

∂τ
− ∇ξ · [−κ(·, yE) ∇ξyE] +R2(·, ϕ̃E, ϕ̃S, yE, yA|ν=1)= 0,

− ∇ξ · [−ω(·, yE) ∇ξyE − ρ(·, yE) ∇ξ ϕ̃E] +R3(·, ϕ̃E, ϕ̃S, yE, yA|ν=1)= 0.

The linear and nonlinear coefficient functions α, β, γ , δ, κ ,ω and ρ correspond to the representa-
tion from the equations (2.137)–(2.140) and depend on the domain for which the system is defined
(anode, cathode and separator). Ri, i = {1, 2, 3, 4} represents the reaction rate functions (2.135) in
addition to the previous constants. The system is completed by the boundary conditions as well as
interface conditions (2.141)–(2.142). Note that there are corresponding Neumann boundary conditions
β(·, yA)∇νyA · n = −R4(·, ϕ̃E, ϕ̃S, yE, yA) at the boundary of the electrode particles, i.e. at ν = 1, which
couples the microscopic equation with the macroscopic equations.

In Section 3.1, we briefly introduce the discretisation of the above battery PDE system by the
finite element method in space and the backward Euler method in time. Numerical simulations such
as high-fidelity approximations techniques like the finite element method can become prohibitively
expensive when we expect them to deal quickly and efficient with the repetitive solution of PDEs. In
Section 3.2,we present the reduced basis method that replaces the high-fidelity problem by a reduced
order model (ROM) of much lower numerical complexity. To achieve a offline–online decomposition, the
discrete empirical interpolation method (DEIM) is performed on the full finite element model operator
in Section 3.3.
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3.1. Discretisation

For the battery model in the abstract form above, let �1D denote a computational one-dimensional
domain in the macroscopic direction and�ν =�ξ

ν
the transverse/radial directions in the electrode parti-

cles associated with each ξ ∈�1D. Let P ⊂R
P, P � 1 denote the parameter space. We define the solution

space V = V1 ⊕ V2 with V1 = H1(�ν), V2 = (H1(�1D))3 and V ′, the dual space of V . For a correspond-
ing variational weak formulation, we obtain, after a semi-discretisation in time t by the implicit Euler
method, that the battery model can be formulated as the following nonlinear system:

Find ut+1 = [
ut+1

1 , ut+1
2 , ut+1

3 , ut+1
4

]� ∈ V: Gμ(ut+1,ψ) = fμ(ut,ψ) ∀ ψ ∈ V , (3.1)

where the operator Gμ(·, ·) : V × V →R represents the non-linear time-discrete PDE system. The index
μ ∈ P indicates the dependence of the problem on certain parameters, such as the charge rate, the
diffusion coefficient or the reaction rate. fμ(ut, ·) ∈ V ′ contains the solid potential Neumann boundary
conditions.

For the discretisation in space, the finite element method is used [79], i.e. we project (3.1) to a finite
dimensional, continuous and piecewise polynomial space Vh ⊂ V . We hence obtain for each time step a
fully discrete non-linear system of the form:

Find ut+1
h = [

ut+1
1h

, ut+1
2h

, ut+1
3h

, ut+1
4h

]� ∈ Vh : Gμ

(
ut+1

h ,ψi

) = fμ
(
ut

h,ψi

) ∀ i = 1, . . . n, (3.2)

where ψi, i = 1, . . . , n denotes the standard Lagrange basis of the finite element space Vh = ⊕4
i=1 Vih .

Henceforth, the operator Gμ can be called the finite element operator which operates on Vh × Vh. The
developed discretisation does not depend on the specific choice of the parameters to be varied.

3.2. Reduced basis method

The computational studies of the battery model require many evaluations of the finite element system
(3.2) with different parameter settings and therefore involve a large amount of time and experimental
effort. Hence, we apply the reduced basis method to further reduce the parameterised discretised battery
model to obtain a reduced order model that is cheap to evaluate, as e.g. detailed in [73]. Due to the
parametrisation of the battery model, the finite element solution space is restricted to a solution manifold
that contains the solutions relevant for the considered application. The reduced basis method is based on
the idea of performing a Galerkin projection of the discrete equations onto low-dimensional subspaces
Ṽ ⊂ Vh that approximates this solution manifold in order to accelerate the repeated solution of (3.2) for
varying parameters μ. Under this projection, the reduced problem is given by

Find ũt+1 = [
ũt+1

1 , ũt+1
2 , ũt+1

3 , ũt+1
4

]� ∈ Ṽ : Gμ

(
ũt+1, ψ̃i

)
= fμ(ũt, ψ̃i) ∀ i = 1, . . .m, (3.3)

where m � n and ψ̃i, i = 1, . . . , m, represents the basis of the reduced (basis) space Ṽ . The basic idea of
the reduced basis method is to perform a so-called offline/online decomposition. In the preceding offline
phase, high-dimensional computations are performed for a chosen set of parameters to construct the
reduced space such that a small error between the high-dimensional and the reduced approximation can
be certified for each valid parameter value. After projecting onto this reduced space, the resulting low-
dimensional problem (ROM) can be solved for any suitable parameter value in a following online phase.
Various methods for constructing the reduced space for time-dependent problems have been considered
in the literature, such as the POD-Greedy [37]. The POD-Greedy method produces approximation spaces
with quasi-optimal l∞ -in-μ, l2 -in-time reduction error [36].

As the POD-Greedy method relies on the usage of rigorous and efficient to evaluate a posteriori
error estimators, which are not available for the non-linear battery model at hand, in our numerical
experiments, the reduced space is generated by the POD method. The basic idea of POD method is that
a pre-selected set of solutions trajectories of the problem (3.2), called snapshots, are transformed into
a new set of uncorrelated variables, called POD modes. The first few modes contain the most relevant
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features from the battery system and form the reduced basis. In our case, we apply the POD method
separately to the respective solution components, cf. [69]. More precisely, let P = {μ1, . . . ,μns} be a set
of ns parameter samples and {uh(μ1), . . . , uh(μns )} the corresponding snapshot set. At each time step,
the snapshot of the set is calculated using the following prescription of Newton’s method:

DuFμ

(
ut+1,k

h ,ψi

)
δuh = −Fμ

(
ut+1,k

h ,ψi

) ∀ i = 1, . . . , n,

ut+1,k+1
h (μ) = ut+1,k

h (μ) + δuh,

where DuFμ(z,ψi) is the Fréchet derivative of Fμ(u, ·) = Gμ(u, ·) − fμ(ut
h, ·) with respect to u at z ∈ Vh. We

separate the snapshots into the respective components, u1h , . . . , u4h and generate the reduced basis sepa-
rately. We define the corresponding snapshot matrices Si ∈R

Nιh ·|t|×ns with i = 1, 2, 3, 4 and ι ∈ {�1D,�ν}
as

Si =
[
u1

i , . . . , uns
i

]
,

where the vectors uj
i ∈R

Nιh ·|t|, 1 � j � ns, denote the degrees of freedom of the functions uih (μj)|t ∈
Vih . The singular value decomposition of Si is given through Si = Ui�iZT

i , where Ui ∈R
Nιh ·|t|×Nιh·|t| and

Zi ∈R
ns×ns represent orthogonal matrices, and �i = diag

(
σ 1

i , . . . , σ zi
i

) ∈R
Nιh ·|t|×ns with σ 1

i � σ 2
i � · · ·�

σ
zi
i , zi � min

(
N ι

h · |t|, ns
)

contain the singular values. The left singular vectors

Ui =
[
ζ 1

i | . . . |ζ Nιh·|t|
i

]
span the reduced space Ṽi using only the singular vectors whose singular values are above a fixed
threshold value ε. Due to the fundamental properties of POD, the projection error consist of the l2-
sum of the corresponding truncated singular values, and Ṽi, i = 1, 2, 3, 4, are l2 -in-space, l2 -in-time
best-approximation spaces for the considered training set of snapshots. The overall reduced space is

defined as Ṽ :=
4⊕

i=1

Ṽi.

3.3. Empirical interpolation and hierarchical approximate POD

The model reduction approach described in Section 3.2 still suffers from a huge offline cost, due to the
global POD construction of the reduced basis and from an inefficient online computational cost, as the
reduced model (3.3) cannot be decomposed efficiently into high- and low-dimensional computations due
to the presence of non-linearities in the system. In order to obtain a more efficient ROM with reduced
computational cost in the offline phase and a full so called offline–online decomposition, we replace
the global POD reduced basis construction by an incremental hierarchical approximate POD (HAPOD)
[42] and construct an affine approximation of the non-linear differential operator Gμ by an empirical
operator interpolation [13, 28].

In detail, the offline–online decomposition consists of precomputing parameter- and solution-
independent terms, a so called collateral basis that allows to interpolate evaluations of the operator
Gμ. The construction of the collateral basis and associated interpolation functionals is done once in the
offline phase to allow a fast evaluation of the interpolated operator IM(Gμ) during the online phase. In
detail, the empirical operator interpolation generates a separable approximation by interpolating at M
selected degrees of freedom of Vh. The approximation of the operator is of the following form:

Gμ(ũ, ·) ≈ IM(Gμ(ũ, ·)) =
M∑

q=1

θ q
μ
(ũ)Gq, (3.4)

where {Gq}M
q=1 is the collateral basis, i.e. a basis for a subspace of

MG = {
Gμ(uh, ·)|μ ∈ P

}
,
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Figure 4. Sketch of the tree structure of the incremental HAPOD, introduced in [42].

and θ q
μ

are interpolation coefficients recalculated for each μ and ũ during the online phase. The collat-
eral basis is obtained by applying the POD method to the set of snapshots obtained as images under
the operator, i.e. Gμ(uh, ·). The set of snapshots thereby includes the Newton stages in addition to the
corresponding solution trajectory of Gμ(uh, ·). Moreover, in analogy to the construction of the reduced
basis described above, also the collateral basis is constructed separately for each solution component.
Hence, we define for i = 1, 2, 3, 4:

[
G1

i , . . . , GMi
i

] = POD
([

G1
μ1

(ui), . . . , Gs1
μ1

(ui), G1
μ2

(ui), . . . , Gsns
μns

(ui)
]

, εPOD

)
,

where the vectors Gk
μj

(ui) ∈R
Nιh , 1 � j � ns, 1 � k � sj, represent the degrees of freedom of the functions

Gμj

(
uk

ih
(μj)

)
and εPOD the error tolerance for the POD. We define

[
G1, . . . , GM

] = [
G1

1, . . . , GM4
4

]
with

M = ∑4
i=1 Mi.

To calculate the interpolation coefficients θ q
μ
(ũ), q = 1, . . . , M for given μ and ũ, the interpolation

constraints are imposed at M interpolation points. The interpolation points are selected iteratively from
the indices of basis {Gq}M

q=1 using a greedy procedure. This procedure determines each new interpolation
point by the minimisation of the interpolation error over the snapshots set measured in the maximum
norm. For more details, we refer to [2, 13].

By replacing the operator Gμ in (3.3) by the fast-to-evaluate interpolated operator IM(Gμ), we obtain
the completely offline–online decomposable reduced problem

Find ũt+1 ∈ Ṽ : IM

(
Gμ

(
ũt+1, ψ̃i

))
= fμ(ũt, ψ̃i) ∀ i = 1, . . .m, (3.5)

which can be solved efficiently for varying parameters μ.
For large-scale time-dependent applications such as our battery model, computing the POD algorithm

can be expensive. Especially if we include the evaluations of Gμ at all Newton levels of the selected solu-
tion trajectories in the operator snapshot set. The hierarchical approximate POD (HAPOD) algorithm is
an efficient approach, which approximates the standard POD algorithm based on tree hierarchies, where
the task of computing a POD for a given large snapshot set S is replaced by multiple small PODs [42].
More specifically, we use the special case of incremental HAPOD. In this case, the tree structure is such
that each node of this tree represents either a leaf or has exactly one leaf and one non-leaf as children,
cf. Figure 4. In detail, first the vectors of the given snapshot set are assigned to the leaves of the tree
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β1, · · · , βB. Starting with two leaves β1, β2, a POD of each local snapshot data is computed. The result-
ing modes scaled by their singular values are the input to the parent node α1, which is again used to
calculate a POD. This newly generated input and the local snapshot data assigned to leaf β3 are the input
of the parent node α2. The final HAPOD modes ρ are reached, when the last leaf βB has entered. For the
calculation of the collateral basis, we e.g. define for i = 1, 2, 3, 4:[

G1
i , . . . , GMi

i

] = HAPOD
([

G1
μ1

(ui), . . . , Gs1
μ1

(ui), G1
μ2

(ui), . . . , Gsns
μns

(ui)
]

, εPOD,ω
)

,

where εPOD is the desired approximation error tolerance for the resulting HAPOD space. Depending on
ω, one might get more modes than needed for a POD with the same tolerance. The local tolerances in
the HAPOD algorithm are computed from εPOD and ω ∈ (0, 1). More details can be found in [42].

4. Numerical results
In order to create a test environment for our modelling framework, we develop an experimental imple-
mentation of the ageing effects of the battery model from Section 2. We investigate the efficiency of
the reduced order simulations by evaluating electrochemical characteristics over the cyclisation n =
1, . . . , 1000 for different ageing models. The electrochemical characteristics are the voltage-capacity
spectrum E(ȳA, n; Ch) and the status of charge ȳCat

A at a specific voltage value Emin (see equations (2.102)–
(2.109)). We assume that the ageing effects are modeled by given functions dependent on the cycle
number n for the reaction rate L̂(n) and diffusion coefficient D̂A(n). These functions are used to investigate
the qualitative behaviour of the ageing effects. In this context, we assume that the parameter dependence
can be interpreted as follows; The parameter dependence of the reaction rate L̂ should investigate the
degradation of the solid electrolyte interphase. This might illustrates the increase in reaction resistance
due to cyclisation. Furthermore, we want to investigate the degradation of the porous electrodes, which
can be interpreted by a decrease in the diffusion coefficient D̂A. This effect can be caused by micro-cracks
within a particle. To efficiently analyze this forward modelling of ageing effects, we consider three sce-
narios. In the first scenario, we consider the unaged battery and calculate the voltage against the state of
charge for varying charge rates Ch. In the next case, we set Ch = 1 and examine the ageing effects of D̂A

and L̂ by alternately choosing one of the parameters fixed. In the last case, we vary all parameters D̂A, L̂
and Ch.

It should be noted that the degradation experiments are intended to serve as a proof of concept.
The next step would be to compare the battery model with real data. However, that is not the focus.
The focus of this work is to present the battery modelling framework and provide a proof of concept
through forward modelling of the ageing effects. Therefore, in a very general setting, our work provides
the methodology to systematically investigate degradation mechanisms on the basis of cycle number
dependent parameters.

4.1. Implementation aspects

Let us first introduce the settings used in the numerical experiments. We implement a (pseudo) 2D
grid, where the bottom of the grid corresponds to the 1D grid on which the macroscopic equations are
computed (see Figure 5). The length of the bottom Lcat + Lsep + Lano is divided into N�1D

h = 300 grid
points. Here, each of the cathode, separator and anode is discretised into 100 grid points. The pseudo-
dimension for the microscopic equation, which goes vertically at each bottom grid point, consists of
N�ν

h grid points. In the simulations N�ν
h = 100 is chosen. All in all, this results in 30,900 degrees of

freedom (dofs) for the overall system. The Neumann boundary condition of the microscopic equation
couples the equation to the macroscopic equations and is defined for ν = 1. To ensure that the bottom
grid corresponds to ν = 1 a transformation of the microscopic equation with ν̃ = (1 − ν) is performed. In
addition, as an essential step for the stability of the model, a variable transformation of the microscopic
variable yA of the following form is applied:
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Figure 5. Sketch of the pseudo 2D grid. The blue line shows the computational domain of the macro-
scopic equations, while the red lines illustrate the computational domain for the microscopic equation.

yA(g) = eg

1 + eg
, g(yA) = ln

(
yA

1 − yA

)
.

The time discretisation is performed by an implicit Euler method on a T = 1 time interval with a time step
size of�t = 10−2. The nonlinear battery system is solved by a Newton method to a relative error accuracy
of 10−5 and a termination condition of minξ∈�Cat ϕ̃S(ξ ) � Emin with the voltage value Emin = −0.2. To
generate the reduced space Ṽ , we compute a snapshot set Strain on training sets of equidistant parameters.
For the experiments 1 and 3, we choose |Ptrain| = 15 and for experiment 2 we choose |Ptrain| = 10.

The analytical solution of a partial differential equation is called an exact solution. In many appli-
cations, an analytical solution is not available, especially for the battery problem at hand. The finite
element method is an approximation approach. We call the high-dimensional finite element solution the
truth (full order) solution. The reduced basis method reduces the number of unknowns compared to
the finite element model by Galerkin projection. The solution of this reduced model is called reduced
solution. Note that the focus is on approximating the truth solution, assuming that the discretisation
error between the truth and the respective exact solution is negligible. In this work, we do not consider
the discretisation error. Our focus is on the error between the reduced and the truth solution and the
corresponding speed up due to the model order reduction. As a measure for the model reduction error,
we determine the relative l2 -in-space, l2 - in-time error averaged over a set of random test parameters
Ptest given by

1

|Ptest|
∑
μ∈Ptest

||uh(μ) − ũ(μ)||2

||ũ(μ)||2

. (4.1)

For the truth solution, we want to ensure that we have achieved grid convergence up to a certain error ε.
Thus, we assume that the high-dimensional discretisation adopts a resolution of ||un − um||2 < ε� 10−5

with 30,900 grid points for un and 31,512 grid points
(
N�1D

h = 303, N�ν
h = 101

)
for um.
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The empirical operator interpolation approximates the full discrete and nonlinear model operator.
If we do not interpolate the nonlinearities of the model operator sufficiently well, then the system is
unstable. We detect the instabilities by the model reduction error and then increase the dimension of the
empirical interpolation accordingly. More precisely, we determine the basis using the HAPOD method.
As a result, we get a set of basis vectors. From this set we take the first basis vectors, check the corre-
sponding system for instabilities and increase the number of basis vectors until we achieve stability and
the desired model reduction error. In this way we determined the dimension of the empirical interpo-
lation in the experiments. For a principal algorithmic approach, we refer to [5, 28]. We proceed in the
same way for the reduced basis.

The programming language is Python. All simulations of the high-dimensional model are computed
with the finite element sofware NGSolve [67]. NGSolve provides the ability to construct the complex
grid structure and define the battery model for each subdomain. For the implementation of the reduced
basis method, the NGSolve code has integrated into the model order reduction library pyMOR [72]. We
include the evaluations of Gμ on all Newton stages of the selected solution trajectories in the operator
snapshot set to compute the collateral basis. This leads to a stabilization of the reduced model. In order
to speed up the computation of the collateral basis for the empirical interpolation data via POD, the
HAPOD algorithm is used instead of the standard POD algorithm. For the generation of the reduced
basis, we use the HAPOD algorithm as well. We choose ε = 4e − 8 and ω= 0.9 in both cases. For
illustration purposes, the reduced space and empirical interpolation are calculated for a training set
|Ptrain| = 5 for the variation of Ch. In this case, the calculation without using HAPOD takes 107.32 min,
while only 7.31 min CPU-time were needed using HAPOD. This corresponds to a speedup of 14.68 in
the offline phase. All tests were performed on the same computer and software basis.

4.2. Experiment 1

In this subsection, we consider the variation of the charge rate Ch with Ch ∈ [0.01, 4] for an unaged
battery. In this case, we choose L̂ = 0.5 and D̂A = 0.5. For the reduced order model the number of
basis functions for the four variables are set to #u1 = 3, #u2 = 3, #u3 = 5 and #u4 = 4. For the empiri-
cal operator interpolation, the number of interpolation points is #G(u1) = 19, #G(u2) = 15, #G(u3) = 60
and #G(u4) = 8. These numbers are obtained by calculating the relative model reduction error (4.1) with
successive increase of the basis size up to an accuracy of order 10−5 (see Table 1). To ensure the sta-
bility of the reduced model for empirical operator interpolation, the number of interpolation points (or
collateral basis) must be chosen large enough. Especially the number of interpolation points for G(u3)
are crucial here, since to achieve stability we need a much higher number of interpolation points than
for G(u1), G(u2) and G(u4).

The voltage-capacity spectrum is shown in Figure 6(a)), where we achieve a model reduction error of
less than 10−4 for a simulation time of 2.58 min. Therefore, we obtain a speed up of 15.41. In addition,
during the computation of the voltage-capacitance spectrum, the four components of the solution of the
battery model are determined and stored. As an example, two solution plots at a fixed time t = 0.2 for the
charge rate Ch ∈ {0.1, 4} are illustrated in Figure 6(b)–(e). At a low charge rate, we almost reach the OCP,
which can be observed by the fact that nearly constant functions are obtained. For larger charge rates,
we observe higher gradients in macroscopic and microscopic directions due to transport limitations.
Table 1 presents the average simulation times and the corresponding relative model reduction errors for
the computation of a single battery solution trajectory for different reduced basis sizes.

4.3. Experiment 2

In the following, the evaluation of the degradation simulations of the solid electrolyte interphase and
the porous electrodes are presented. To investigate the qualitative behavior of these ageing effects, we
consider the decrease in value of the parameters L̂ and D̂A equally in anode and cathode over n with
n = 0, . . . , N cycles and set Ch = 1. A cycle consists of a discharge process, assuming that the battery is
charged in such a way that the chosen initial conditions apply at the beginning of each cycle. In addition,

https://doi.org/10.1017/S0956792522000353 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000353


580 M. Landstorfer et al.

Figure 6. (a) Voltage-capacity spectrum compared to the open circuit potential. Solution plots of the
four components, (b)-(c) with Ch = 0.1 and (d)-(e) with Ch = 4 for t = 0.2.

we assume that the evolution of the parameters L̂(n) and D̂A(n) as a function of the number of cycles n
satisfies an ordinary differential equation

dF(n)

dn
= aF F(n), (4.2)

with the unknown parameter aF(β) such that:

F(0) = F0, (4.3)
F(N) = βF0, β < 1.

It follows that F(n) = F0 elog (β)n/N and aF(β) = log (β)
N

(see Figure 7). F0 is the corresponding initial param-
eter value. In our case, D̂A,0 = L̂0 = 0.5. Under this assumption, we impose that the ageing mechanism
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Table 1. Relative model reduction error (4.1) and reduced simulation times for a battery simulation
trajectory with L̂ = 0.5, D̂A = 0.5 and Ptest = 10. The number of the reduced basis consists of the four
variables, e.g. 11 = #u1 + #u2 + #u3 + #u4 = 2 + 2 + 4 + 3. When the reduced basis is increased,
each variable is added one basis. The number of interpolation point is 102. The average time for
the solution trajectory of the high-dimensional model is 363.48 s

Reduced basis size 11 15 19 23
Relative error 2.39 × 10−4 3.23 × 10−5 1.62 × 10−5 1.19 × 10−5

Time (s) 25.85 26.51 26.94 27.38
Speed up 14.11 13.66 13.55 13.06

Figure 7. Various evolutions of the parameter functions satisfying the ordinary differential equation
(4.2) with F0 = 0.5 and N = 1000.

in one cycle depends on the value of the degradation of the previous cycle. (This assumption is based
on the fact that under laboratory conditions, the cell is always discharged in the same way.)

The characteristic spectrum of cell voltage E for the degradation of reaction rate L̂ for D̂A = 0.5 is
shown in Figure 8(a), (c) for two different choices of β. Furthermore, the capacity ȳCat

A at the specific
voltage value Emin = −0.2 over the number of cycles N = 1000 with a variation of β is illustrated in
Figure 8(e). The same scenario is shown for the degradation of the diffusion coefficient D̂A for L̂ = 0.5 in
Figure 8(b),(d),(f). As expected, the graphs show when the parameters degrade faster and more severely,
the cell voltage and capacity decrease more rapidly. However, the variation of L̂ has a larger effect in
terms of absolute capacity loss.

For the implementation of the reduced order model (ROM) with dependence on the param-
eters μ= [D̂A,L̂], the number of basis functions for the four variables is set to #u1 = 3, #u2 =
3, #u3 = 5 and #u4 = 3. For the empirical operator interpolation, the number of interpolation points is
#G(u1) = 9, #G(u2) = 9, #G(u3) = 15 and #G(u4) = 9. As in Experiment 1, these numbers are obtained
by calculating the relative model reduction error (4.1), taking into account an accuracy of order 10−6

with successive increase of the basis size. To ensure the stability of the reduced model for empirical
operator interpolation, the number of interpolation points must be increased for larger reduced basis
space dimensions.

In Table 2, we observe a rapid decay of the model reduction error, which stagnates already for rela-
tively small reduced basis space dimensions. In this manner, we obtain relative reduction errors as small
as 10−5 with battery simulation times of less than 10 s. Note that the different conditions between exper-
iment 1 and experiment 2 that leads to a significant reduction in time is that we have 102 interpolation
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Figure 8. (a)-(d) Evolution of the capacity-dependent voltage E of D̂A(n) and L̂(n) compared to the
open circuit potential for β = 0.1 or β = 0.4. (e)-(f) Effect of the different degradation models of D̂A(n)
and L̂(n) on the capacity at voltage Emin over the number of cycles n at Ch = 1.

points in experiment 1 and only 42 interpolation points in experiment 2. Thus, the approximation of
the battery operator via empirical operator interpolation in experiment 2 has significantly fewer com-
putational operations, which is significant in terms of time. When calculating the voltage spectra, we
achieve an average relative reduction error of about 10−3 and an average speed up of 24.37. Calculating
the capacity at the voltage value Emin over the number of cycles requires about 118.92 h for the full
model. By using the reduced model, we obtain approximations in about 2.53 h with a relative error of
10−5. It is a speed up of 46.83.
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Table 2. Relative model reduction error (4.1) and reduced simulation times for a battery simu-
lation trajectory with Ch = 1 and Ptest = 10. The number of the reduced basis consists of the four
variables, e.g. 10 = #u1 + #u2 + #u3 + #u4 = 2 + 2 + 4 + 2. In each column, a basis is added
to each variable. The number ob interpolation points amounts to 42. The average time for the
solution trajectory of the high-dimensional model is 356.49 s

Reduced basis size 10 14 18 22
Relative error 1.65 × 10−5 6.43 × 10−6 3.89 × 10−6 1.30 × 10−6

Time (s) 8.63 8.42 8.66 8.83
Speed up 41.27 42.38 41.07 40.26

Table 3. Relative model reduction error (4.1) and reduced simulation times for a battery simula-
tion trajectory withPtest = 10. The number of the reduced basis consists of the four variables, e.g.
13 = #u1 + #u2 + #u3 + #u4 = 3 + 3 + 4 + 3. When the reduced basis is increased, each vari-
able is added one basis. The number ob interpolation points amounts is 172. The average time
for the solution trajectory of the high-dimensional model is 357.31 s

Reduced basis size 13 17 21 25
Relative error 2.25 × 10−5 1.40 × 10−5 1.31 × 10−5 1.20 × 10−5

Time (s) 37.34 37.68 39.51 39.49
Speed up 9.82 9.36 9.05 8.92

4.4. Experiment 3

In the previous section, degradation simulations of the solid electrolyte interphase and the porous elec-
trodes were considered by decreasing the value of the parameters L̂ and D̂A over N cycles. We assumed
that the value of the parameter depends on the value of the parameter in the previous cycle. Thereby,
the charge rate Ch was set constant to 1 for each simulation. In this experiment, a variation of the charge
rate is a matter of interest as well. This implies that the ROM depends on the following parameter vector
μ= [Ch, D̂A, L̂]. Furthermore, as in Experiment 2, we assume that the evolution of the parameters D̂A

and L̂ as a function of the number of cycles n satisfies the ordinary differential equation that additionally
depends on the charge rate Ch

dF(n)

dn
= aF F(n) Ch, (4.4)

with the unknown parameter aF(β) such that:

F(0) = F0,

F(N) = βF0, for β < 1 at Ch = 1. (4.5)

It follows that F(n) = F0 eCh log(β)n/N and aF(β) = log (β)
N

(see Figure 9). Here we set β = 0.6 and F0 again
represents the corresponding initial parameter value. Note that for Ch = 1 the situation is the same as in
Experiment 2.

In this experiment, we set the number of the basis functions for the four variables to #u1 = 4,
#u2 = 4, #u3 = 5, #u4 = 4 and the number of interpolation points to #G(u1) = 22, #G(u2) = 20, #G(u3) =
110, #G(u4) = 20, compare Table 3, taking into account an accuracy of order 10−5. Note, as in the first
experiment, that the number of interpolation points, in particular the number of interpolation points for
G(u3), must be chosen large enough to ensure the stability of the reduced model.

Comparing the run times from the calculation of the spectrum of the cell voltage (see
Figure 10(a)–(b)) for the full and reduced models, we obtain a speed up of about 7.97 with a relative
reduction error of about 10−5. In addition, the degradation of the capacity at the voltage Emin over N
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Figure 9. Various degradation models that satisfy the ordinary differential equation (4.4) with
F0 = 0.5, β = 0.6 and N = 1000.

Figure 10. (a)-(b) The spectrum of cell voltage E for the degradation of D̂A(n) and L̂(n) compared to
the open circuit potential for Ch = 2. (c)-(d) The effect of the different degradation models of D̂A(n) and
L̂(n) on the capacity at voltage Emin over the number of cycles n with β = 0.6.
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cycles is shown in Figure 10(c)–(d). This resulted in a speed up of about 23.43 with a relative reduction
error of order 10−3.

5. Conclusion
We developed a mathematical model framework for an intercalation battery, consisting of multi-phase
porous electrodes, on the basis of non-equilibrium thermodynamics. The framework is very flexible
and applicable to a wide range of materials, either for the active intercalation phases or the (liquid)
electrolyte, by a stringent formulation of the entire PDE problem in terms of general chemical poten-
tial functions. Special emphasis is put on thermodynamic consistency of the transport equations and
their respective reaction boundary conditions by employing the very same chemical potential function
entirely throughout the model. Periodic homogenisation theory is applied to derive a general set of
PDEs for the porous battery cell, where a special scaling of the micro-scale diffusion coefficient leads
to a coupled micro-macro scale problem. Spherical symmetry of the intercalation particles is further
employed, as well as a 1D approximation of the macro-scale yields an effective 1D + 1D non-linear
PDE system. The (dis-)charge current, effectively characterised by the C-rate Ch, enters the PDE sys-
tem as boundary condition for the electron flux. This allows, on the basis of numerical simulations,
the computation of the time- and space-dependent thermodynamic state variables, i.e. the electrolyte
potential ϕE(x, t), solid potential ϕS(x, t), electrolyte concentration yE(x, t) and active phase concentration
yA(x, r, t). Subsequently, this yields important characteristics of an intercalation battery, i.e. the cell volt-
age E as function of the status of charge ȳA, parametrically dependent on the C-rate Ch. Further, battery
degradation is considered in terms of cycle number n dependent parameters, where exemplarily some
degradation models in terms of simple evolution equations were stated. In order to simulate degradation
effects, repeated numerical computations of the PDE system are required. For efficient numerical simu-
lations, model reduction techniques were applied to the electrochemical battery model, i.e. the reduced
basis method combined with an empirical operator interpolation. We demonstrated the efficient appli-
cability of these method with numerical studies on several ageing scenarios. For degradation effects that
impact the diffusion coefficient in the active phase or the intercalation reaction rate, we obtained capac-
ity curves over the number of cycles with a speedup of about 46, compared to full numerical simulations
of the same implementation. A speedup factor of about 23 was achieved by additionally investigating
the effect of different choices of the charge rate. Numerical relative accuracy of order 10−3 (at least) was
ensured within our simulations.

6. List of symbols (j = An, Cat)

�An porous anode �Sep porous separator
�Cat porous cathode �

j
A active particle phase of j

�
j
C conductive additive phase of j �

j
E electrolyte phase of j

�E whole electrolyte phase �A whole active phase
�S whole solid phase � electrochemical unit cell
L macroscopic length scale of the

unit cell
W macroscopic width of the unit cell

� area of the deflectors � microscopic length scale of the
intercalation particle

rA intercalation particle radii A active particle
E electrolyte EA solvated anions in electrolyte
EC solvated cations in electrolyte ES solvent molecules in electrolyte
AC intercalated cations in active

particle
Ae electrons in active particle
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AM lattice ions in active particle nα number density of species α
μα chemical potential of the

constituents α
(fA, fE) concentration dependent part of the

effective chemical potential
ψ mixture-free energy density ψα,ref molar-free energy density
gAC molar Gibbs energy kB Boltzmann constant
T temperature p pressure
yα mole fraction of α nα molar concentration of α
nE,tot total molar concentration of

mixing particles in the
electrolyte

vα partial molar volume of α

nES ,ref mole density of the pure solvent mα molar mass of α
κE solvation number ϕE electrostatic potential in the

electrolyte phase
γ

j
A enthalpy parameter yA mole fraction of intercalated cations

nA,lat number density of lattice sites ϕS electrostatic potential in the solid
phase

yE mole fraction of electrolyte e0 elementary charge
tEC transference number DE electrolyte diffusion coefficient
SE electrolyte chemical conductivity �E electrolyte molar conductivity
zα charge number of α DA (solid-state) diffusion coefficient
nA� molar density of the active phase

lattice
σS electrical conductivity

R
s

reaction rate i electric current density
E cell voltage Qi,0 basic/initial (electrode) capacity
Qi present (electrode) capacity during

cycling
qA charge density of the active phase

lattice
ȳj

A (electrode) status of charge iC 1-C current density
x macro-scale ξ non-dimensional macro-scale
t time τ non-dimensional time
r micro-scale ν non-dimensional micro-scale
�1D computational 1D domain �ν computational transverse/radial

direction
Gμ time-discrete battery operator V solution space
Vh finite element space Ṽ reduced (basis) space
P parameter space μ parameter dependence
S snapshot matrix IM operator interpolation
εPOD threshold value for the POD
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Appendix A: Electrolyte transport equations
For a binary, completely dissociated electrolyte with cross diffusion, the Onsager reciprocal relations
[16] state that two independent fluxes are present, i.e.

JEA = MAA∇μ̃EA + MAC∇μ̃EC (A1)

JEC = MCA∇μ̃EA + MCC∇μ̃EC (A2)

with μ̃α =μα − mα

mES

μES + e0zαϕ, α = EA, EC, (A3)

with mobilities Mαβ , satisfying MAC = MCA. Hence, three transport parameters are independent, i.e.
(MAA, MAC, MCC). Rewriting the fluxes JEA and JEC with JEq = e0zEC JEC + e0zEAJEA in the representations
of (2.15) and (2.16), i.e.

JEC = −DE · nE,tot �
tf
E · ∇yE + tEC

e0

JEq (A4)

JEq = −SE · nE,tot �
tf∇yE −�EnE∇ϕE (A5)

yields the definitions

�E = e2
0

nEC

(MAA + MCC − 2MAC) , tEC = MCC − MAC

MCC + MAA − 2MAC

, (A6)

DE = 2(MAAMCC − MAC

MCC + MAA − 2MAC

, SE = e0

kBT

nEC

(MCC − MAA). (A7)

as well as the condition
kBT

e0

(2tEC − 1) = SE

�E
. (A8)
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Note that for simple Nernst–Planck-fluxes [24, 76], i.e.

Jα = DNP
α

nα
kBT

(
∇μα − mα

m0

∇μES + e0zαnα∇ϕE

)
α = EA, EC, (A9)

with constant diffusion coefficients DNP
α

for the anion and DNP
EC

for the cation, we obtain (in the
electroneutral electrolyte)

DE = 2DNP
EC

· DNP
EA

DNP
EA

+ DNP
EC

tEC = DNP
EC

DNP
EA

+ DNP
EC

(A10)

�E = e2
0

kBT
(DNP

EA
+ DNP

EC
) SE = e0(DNP

EC
− DNP

EA
), (A11)

whereby only two of the transport parameters (tEC , SE, DE,�E) are independent and all of them are
constant.

Appendix B: Parameters
The following table sufmmarises all parameters and their values of the model in Section 2.

Description Symbol and Value Units

Electrolyte

Pure solvent molar concentration1 nES ,ref = 11.9103
[
mol L−1

]
Reference electrolyte concentration nEC ,ref = 1

[
mol L−1

]
Solvent molar volume vES = 1

nES ,ref

[
mol−1 L

]
Solvation number (estimation) κEA = κEC = 4 [1]
Ion molar volume vEA = vEC = κEC · vES [1]
Molar conductivity (estimation) �̃E = 10 [1]
Transference number (estimation2) tEC = 0.5 [1]
Chemical diffusion coefficient (estimation) D̃E = 5 [1]

Cathode (ideal electrode)

Molar lattice concentration3 nCat
A,lat = 37.3114

[
mol L−1

]
Initial value yCat,0

A = 0.01 [1]
Enthalpy parameter (estimation) γ Cat

A = 1 [1]
Electronic conductivity (estimation) σ̃ Cat

S = 10 [1]
Li diffusion coefficient (estimation) D̃Cat

A,ref = 1 [1]

Anode (ideal electrode)

Molar lattice concentration nAn
A� = 37.3114

[
mol L−1

]
Initial value yAn,0

A = 0.99 [1]
Enthalpy parameter (estimation) γ An

A = 1 [1]
Electronic conductivity (estimation) σ̃An

S = 10 [1]
Li diffusion coefficient (estimation) D̃An

A,ref = 1 [1]
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Cathode Intercalation Reaction

Half-cell reaction energy vs. metallic Li ECat
A,Li+ = 3.95 [V]

Exchange current density L̃Cat = 1 [1]

Anode Intercalation Reaction

Half-Cell Reaction energy vs. metallic Li EAn
A,Li+ = 0.2 [V]

Exchange current density L̃An = 1 [1]

Geometry

Cathode thickness WCat = 100 [μm]
Separator thickness WSep = 100 [μm]
Anode thickness WAn = 100 [μm]
Micro-geometry (data from [54])
Micro-unit cell width �Cat = 10 [nm]
Cathode particle radius r̃Cat

A = 0.4 [1]
Cathode electrolyte phase fraction ψCat

E = 0.72713951 [1]
Cathode electrolyte porosity tensor πCat

E = 0.86842790 [1]
Cathode solid-phase fraction ψCat

S = 0.27286022 [1]
Cathode solid porosity tensor πCat

S = 0.09819225 [1]
Cathode interfacial area factor θCat

AE = 1.96328590 [1]

Separator electrolyte phase fraction ψ
Sep
E = 0.72713951 [1]

Separator electrolyte porosity tensor π
Sep
E = 0.86842790 [1]

Anode unit cell width �An = 10 ∈ 100 [nm]
Anode particle radius r̃Cat

A = 0.4 [1]
Anode electrolyte phase fraction ψAn

E = 0.72713951 [1]
Anode electrolyte porosity tensor πAn

E = 0.86842790 [1]
Anode solid-phase fraction ψAn

S = 0.27286022 [1]
Anode solid porosity tensor πAn

S = 0.09819225 [1]
Anode interfacial area factor θAn

AE = 1.96328590 [1]

1This value corresponds to the molar density of dimethyl carbonate [18].
2Note that tEC = 0.5 corresponds to DNP

EC
= DNP

AC
for Nernst–Planck fluxes, see Appendix A.

3This value corresponds to the lattice density of graphite LixC6 [35].
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