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Many applications in magnetic confinement fusion require the efficient calculation
of surface integrals with singular integrands. The singularity subtraction approaches
typically used to handle such singularities are complicated to implement and low-order
accurate. In contrast, we demonstrate that the Kapur–Rokhlin quadrature scheme
is well-suited for the logarithmically singular integrals encountered for a toroidally
axisymmetric confinement system, is easy to implement and is high-order accurate. As
an illustration, we show how to apply this quadrature scheme for the efficient and accurate
calculation of the normal component of the magnetic field due to the plasma current on
the plasma boundary, via the virtual-casing principle.
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1. Introduction

Integral formulations and integral equations are effective and popular tools for
magnetostatic and magnetohydrodynamic problems in magnetic confinement fusion
(Shafranov & Zakharov 1972; Zakharov 1973; Freidberg, Grossmann & Haas 1976;
Hirshman, van Rij & Merkel 1986; Hirshman & Neilson 1986; Merkel 1986; Chance
1997; Lazerson, Sakakibara & Suzuki 2013; Ludwig et al. 2006; Ludwig, Rodrigues
& Bizarro 2013; Drevlak et al. 2018; O’Neil & Cerfon 2018; Malhotra et al. 2019a;
Pustovitov & Chukashev 2021). They have intuitive physical interpretations (Shafranov
& Zakharov 1972; Zakharov 1973; Hirshman & Neilson 1986; Lazerson et al. 2013;
Hanson 2015; Pustovitov & Chukashev 2021), provide geometric flexibility (Merkel 1986;
Hirshman et al. 1986; Chance 1997; O’Neil & Cerfon 2018; Malhotra et al. 2019a) and
often reduce the dimension of the unknown quantities one solves for, thus reducing
the number of unknowns (Merkel 1986; Hirshman et al. 1986; Chance 1997; O’Neil &
Cerfon 2018; Malhotra et al. 2019a). However, there typically is a price to pay for these
advantages. Integral formulations often involve singular integrands, which are subtle to
handle numerically (Freidberg et al. 1976; Merkel 1986; Atkinson 1997; Chance 1997;
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Ludwig et al. 2006, 2013; Klöckner et al. 2013; Kress 2014; Landreman & Boozer 2016;
Ricketson et al. 2016; Malhotra et al. 2019a). The numerical difficulty of integrating these
singular integrands depends on the nature of the singularity, the distribution of sources and
the relative location of the evaluation points (often known as target points or observation
points) with respect to the sources. In this article, we focus on the common situation in
which we are trying to evaluate layer potentials at the source locations. This is, for example,
the standard situation when applying Green’s identity (Freidberg et al. 1976; Hirshman
et al. 1986; Merkel 1986; Pustovitov 2008; Lee et al. 2015; Malhotra et al. 2019b).

In the fusion community, the numerical difficulty due to the singularity of the integrand
is usually addressed via the method of singularity subtraction (Freidberg et al. 1976;
Merkel 1986; Chance 1997; Ludwig et al. 2006, 2013). The method is robust, but leads
to a quadrature scheme with low-order convergence. Furthermore, it is complicated to
implement, and the chances of making mistakes in the derivation of the quadrature scheme
or its numerical implementation are high. The purpose of our work is to demonstrate that
for the singular layer potential integrals encountered in axisymmetric confinement devices,
which can be reduced to line integrals of singular periodic functions, the Kapur–Rokhlin
quadrature scheme (Kapur & Rokhlin 1997) is as simple to implement as the trapezoidal
rule and is a scheme with high-order convergence, leading to low error for few quadrature
points. For non-axisymmetric applications, we recently presented an efficient high-order
quadrature scheme based on a different approach (Malhotra et al. 2019b), and alternative
schemes may also provide good performance (Bruno & Garza 2020; Wu & Martinsson
2021). However, for axisymmetric cases, none of these schemes reduce to as simple and
efficient a method as the Kapur–Rokhlin approach we present here.

As discussed previously, there are many situations in the study of axisymmetric
magnetic confinement fusion devices for which the simplicity and accuracy of the
Kapur–Roklin scheme could be demonstrated. For this article, we choose to focus on
the evaluation of single-layer and double-layer potentials, which are the layer potentials
appearing in Green’s identity, and which we define precisely in § 2. Our first numerical
test is a numerical verification of an identity for the double-layer potential. Our second
numerical test focuses on the single-layer potential, which we evaluate for an application
of the virtual-casing principle, to calculate the normal component of the magnetic field
due to the plasma current at points on the plasma boundary (Shafranov & Zakharov 1972;
Zakharov 1973; Hanson 2015).

The structure of this article is as follows. We introduce our mathematical notation,
layer potential representations and Kapur–Rokhlin quadrature for singular integrals in § 2.
In § 3, we give a brief summary of the virtual-casing principle, discuss the mathematical
difficulties associated with the numerical evaluation of the virtual-casing integral
and describe our method for addressing these difficulties in toroidally axisymmetric
geometries. We prove in § 4 that the integrands we consider in this article are
logarithmically singular, and can therefore be integrated to high accuracy with the
Kapur–Rokhlin quadrature scheme, which we present in § 5. We demonstrate the accuracy
and high order of convergence of the scheme for an application of the virtual-casing
principle and for the evaluation of a double-layer potential in § 6, and summarise our work
in § 7.

2. Mathematical background
2.1. Description of toroidal volumes and surfaces

Throughout our discussion of toroidal geometries, we make use of the standard,
right-handed cylindrical coordinates (r, φ, z). At a point with toroidal angle φ, we write
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Fast quadrature in axisymmetry 3

the orthonormal unit vectors as er(φ), eφ(φ) and ez. With this notation, we emphasise the
fact that the radial and azimuthal unit vectors depend on the toroidal angle.

In this article, we focus on axisymmetric geometries, which means that we only consider
surfaces and volumes of revolution. We take the z-axis as the axis of revolution and define
a simple closed curve γ in the (r, z) plane. By rotating this curve about the z-axis through
the toroidal angle φ ∈ [0, 2π], we obtain a closed surface of revolution Γ . Its interior
Ω is the corresponding volume of revolution. We refer to γ as the generating curve of
Γ . It is parameterised by a single variable t, which we assume has period L. We denote
the components of γ in the (r, z) plane by (r(t), z(t)), and we identify a point y ∈ Γ by
its toroidal revolution angle φ and its generating curve parameter t. Correspondingly, we
often write y = y(φ, t) to stress this parameterisation. Moreover, we assume that γ is a C1

curve which does not intersect the z-axis, in the sense that the derivatives r′(t) and z′(t) are
continuous on [0,L] and there exists Rmin > 0 for which r(t) � Rmin on [0,L]. Finally, we
assume that γ is oriented so that the vector n(y(φ, t)) = (∂y/∂φ)× (∂y/∂t)/J (t) is the
unit outward normal toΩ at y. The quantity J (t) = ‖(∂y/∂φ)× (∂y/∂t)‖ is the Jacobian
of the parameterisation.

2.2. Single-layer and double-layer potentials for axisymmetric geometries
Layer potentials are fundamental tools in representing solutions to the partial differential
equations that arise in magnetostatic and magnetohydrodynamic calculations for magnetic
confinement fusion (Merkel 1986; Chance 1997; Ludwig et al. 2006, 2013; Landreman &
Boozer 2016; Drevlak et al. 2018). Given a surface Γ and a free-space Green’s function
(x, y) �→ G(x, y) for a partial differential equation, the single-layer operator S and the
double-layer operator D are defined by (Guenther & Lee 1996)

[Sσ ](x) =
∫∫

Γ

G(x, y)σ (y) dΓ (y) and [Dσ ](x) =
∫∫

Γ

∂G(x, y)
∂n(y)

σ (y) dΓ (y),

(2.1a,b)

respectively. In the double-layer representation, the quantity ∂G(x, y)/∂n(y) = n(y) ·
∇yG(x, y) is the derivative of the Green’s function in the outward normal direction at y.
The function σ is called the density function in this representation. Functions expressible
as single-layer and double-layer potentials automatically satisfy the partial differential
equation associated with the Green’s function everywhere except the boundary Γ .

The case of Laplace’s equation in three dimensions is particularly prevalent
in magnetostatic and magnetohydrodynamic settings (Merkel 1986; Chance 1997;
Landreman & Boozer 2016; Drevlak et al. 2018). Here, the Green’s function is

G(x, y) = 1
4π ‖x − y‖ , (2.2)

and functions expressible as Sσ or Dσ are harmonic on R
3 \ Γ . Assuming the density σ

is also axisymmetric in the sense that ∂σ/∂φ = 0, one can analytically compute the part
of the surface integral over the revolution angle φ ∈ [0, 2π]. The resulting single-layer and
double-layer integrals then are one-dimensional line integrals, and the resulting Green’s
function in the integrand can be expressed in terms of complete elliptic integrals (Ludwig
et al. 2006, 2013; Jardin 2010). We provide an explicit expression in § 4.1, as we treat in
detail the application of our method to the calculation of the virtual-casing principle. At
this point, we just highlight the fact that the singularity in the Green’s function when
x = y requires the use of specialised quadrature when the target x is located on the
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surface Γ , or regularisation methods (Freidberg et al. 1976; Merkel 1986; Chance 1997;
Landreman & Boozer 2016; Drevlak et al. 2018; Malhotra et al. 2019b). The purpose of
this article is to show that for applications in axisymmetric geometries, the Kapur–Rokhlin
quadrature scheme is simpler to implement than the known regularisation methods used
in the magnetic confinement community, and leads to high-order convergence.

2.3. Kapur–Rokhlin quadrature
The Kapur–Rokhlin quadrature rules (Kapur & Rokhlin 1997) are a collection of
high-order schemes for computing ∫ b

0
f (t) dt (2.3)

when f has an integrable singularity at the origin of the form log t or tλ for λ > −1. We
focus on the specific Kapur–Rokhlin scheme for a logarithmic singularity of the form
f (t) = p(t) log t + q(t), where p and q need not have known formulae, but are assumed
sufficiently smooth.

2.3.1. A Kapur–Rokhlin quadrature scheme for non-periodic functions
The Kapur–Rokhlin quadrature rules are corrections to the trapezoidal rule. For

the standard trapezoidal rule with equal spacing h = b/M, the quadrature nodes for
a non-singular integrand would be ti = ih for i = 0, . . . ,M. However, we omit the
quadrature node t0 = 0 because the integrand f is singular there. This yields the punctured
trapezoidal rule ∫ b

0
f (t) dt ≈ h

[
M−1∑
i=1

fi + 1
2

fM

]
, (2.4)

where we have written the shorthand fi = f (ti). The punctured trapezoidal rule is low-order
accurate when f is singular. For example, when f is logarithmically singular at the origin,
the punctured trapezoidal rule error typically decays, according to Martinsson (2019), as
O(|h log h|).

The Kapur–Rokhlin corrections place additional quadrature nodes outside the
integration domain [0, b]. Specifically, the corrections depend on a convergence rate
parameter n and a smoothness parameter m. One chooses m � 3 an odd integer subject
to the constraint that p and q are m times continuously differentiable on a wider interval
[−nh, b + mh]. Under these conditions, the Kapur–Rokhlin scheme sets constants γj for
j = ±1, . . . ,±n and βl for l = 1, . . . , (m − 1)/2 and defines the quadrature rule

TM
m,n( f ) = h

[
M−1∑
i=1

fi + 1
2

fM

]
+ h

(m−1)/2∑
l=1

βl( fM−l − fM+l)+ h
∑

1�|j|�n

γjfj (2.5)

for M � n + (m − 1)/2. The error obeys the asymptotic rate∣∣∣∣TM
m,n( f )−

∫ b

0
f (t) dt

∣∣∣∣ = O(hn) (2.6)

as h → 0. The endpoint correction coefficients {γj} and {βl} are derived by analysing the
Euler–Maclaurin formula for quadrature error and solving a linear system for correction
coefficients to obtain high-order accuracy. Figure 1 illustrates this quadrature scheme and
compares it with the punctured trapezoidal rule.
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(a)

(b)

FIGURE 1. Nodes and weights for the Kapur–Rokhlin and punctured trapezoidal quadrature
rules for estimating

∫ 1
0 f (t) dt with f (t) = cos(4πt) log |t| + t. We have used M = 10, n = 2,

and m = 9. Note that β4 ≈ −3 × 10−4, so the weight corrections corresponding to t6 = 0.6 and
t14 = 1.4 are not visually discernible.

2.3.2. A simplified quadrature for periodic functions
This subsection follows an argument nearly verbatim from Hao et al. (2014). We explain

how the Kapur–Rokhlin scheme we just presented simplifies when computing∫ b

−b
f (t) dt (2.7)

when f is 2b-periodic and logarithmically singular at the origin. We may express these
assumed properties of f through the form

f (t) = p(t) log
∣∣∣sin

πt
2b

∣∣∣ + q(t), (2.8)

for 2b-periodic functions p and q.
We sum two applications of the original Kapur–Rokhlin scheme: one for

I1 =
∫ b

0
f (t) dt (2.9)

and another for

I2 =
∫ 0

−b
f (t) dt =

∫ b

0
f (−t) dt. (2.10)
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We assume that p, q ∈ Cm[−b, b] and generate 2M − 1 equispaced quadrature nodes with
spacing h = b/M, defined by ti = ih for i = ±1, . . . ,±(M − 1),M. The corrected scheme
for I1 is

I1 = h

[
M−1∑
i=1

fi + 1
2

fM

]
+ h

(m−1)/2∑
l=1

βl( fM−l − fM+l)+ h
∑

1�|j|�n

γjfj + O(hn), (2.11)

and the scheme for I2 is

I2 = h

[
M−1∑
i=1

f−i + 1
2

f−M

]
+ h

(m−1)/2∑
l=1

βl( f−M+l − f−M−l)+ h
∑

1�|j|�n

γjf−j + O(hn). (2.12)

By periodicity, we may identify fi with fi+2M for all i. It follows that an nth-order quadrature
for I1 + I2 is

I1 + I2 = h

[ ∑
1�|i|�M−1

fi + fM

]
+ h

∑
1�|j|�n

γj( fj + f−j)+ O(hn)

=
M∑

j=−M+1
j�=0

wjfj + O(hn) (2.13)

with

wj =
{

h(1 + γj + γ−j), 1 � |j| � n,
h, otherwise.

(2.14)

We note that, by periodicity, the endpoint corrections corresponding to the constants βl
exactly cancel. Moreover, we no longer need to place additional quadrature nodes beyond
[−b, b] because periodicity identifies the new quadrature nodes with existing nodes.

Given a table of γj weights, this quadrature scheme is as easy to implement as the
trapezoidal rule and yields high-order convergence, with a quadrature error that is O(hn).
The necessary γj weights can be found in Kapur & Rokhlin (1997, table 6) for n = 2, 6, 10.
Figure 2 can be compared with figure 1 to view the simplifications for periodic integrands.

3. The virtual-casing principle for toroidally axisymmetric domains
3.1. Formulation of the virtual-casing principle

For axisymmetric confinement devices, the virtual-casing principle is most often used
to compute the poloidal flux or the poloidal magnetic field due to the toroidal current
flowing in the plasma (Shafranov & Zakharov 1972; Zakharov 1973; Hirshman & Neilson
1986; Zakharov & Pletzer 1999). A poloidal magnetic field Bpol at any point y(φ, t) ∈ Γ
can be expressed in terms of its poloidal flux function ψ(r, z) and the parameterisation
(φ, t) �→ y(φ, t) by (Freidberg 2014)

Bpol(y(φ, t)) = ∇ψ(r(t), z(t))× ∇φ

= ∇ψ(r(t), z(t))×
(

eφ(φ)
r(t)

)

= − 1
r(t)

∂ψ

∂z
(r(t), z(t))er(φ)+ 1

r(t)
∂ψ

∂r
(r(t), z(t))ez. (3.1)
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(a)

(b)

FIGURE 2. Nodes and weights for the Kapur–Rokhlin and punctured trapezoidal quadrature
rules for estimating

∫ t0+π

t0−π
f (t) dt. The function f (t) is the 2π-periodic integrand in (6.5) for one

of our later numerical tests with a logarithmic singularity at t0 = 1. We have used M = 10 and
n = 2.

Consider an axisymmetric plasma confined by external coils in equilibrium. The
poloidal field Bpol at any location is the sum of the poloidal field Bpol

ext due to the external
coils and of the poloidal field Bpol

V due to the plasma current. The field Bpol
V is given for all

x ∈ R
3 by the Biot–Savart law:

Bpol
V (x) = μ0

4π

∫∫∫
Ω

Jtor
V (y)eφ(y)× x − y

‖x − y‖3 dy, (3.2)

where μ0 is the permeability of free space and Jtor
V is the toroidal current density in the

plasma. Equation (3.2) is a volume integral, which is expensive to evaluate numerically.
The virtual-casing principle gives a formula for Bpol

V that depends only on the full field
Bpol at the plasma boundary, and only requires the evaluation of a surface integral (i.e. line
integral for axisymmetric domains) (Shafranov & Zakharov 1972; Zakharov 1973; Hanson
2015). In experimental settings, such a representation is useful because only the total
magnetic field Bpol may be directly measurable (Hutchinson 2002). In theoretical settings,
the total magnetic field may be computed by solving the Grad–Shafranov equation (Grad
& Rubin 1958; Shafranov 1958) numerically with a fixed-boundary solver. Specifically,
the virtual-casing principle states that if Γ is the flux surface bounding the plasma, then
Bpol

V can be written in terms of a field generated by the toroidal surface current J tor
S such
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that μ0J tor
S = −n × Bpol, according to Hanson (2015):

Bpol
V (x) = 1

4π

∫∫
Γ

[
(n(y)× Bpol(y))× (x − y)

‖x − y‖3

]
dΓ (y)+

⎧⎪⎨
⎪⎩

Bpol(x) x ∈ Ω
Bpol(x)/2 x ∈ Γ
0 x /∈ Ω̄.

(3.3)

For certain applications, one is only interested in the normal component of the poloidal
magnetic field (Merkel 1986; Hirshman et al. 1986; Merkel 1987; Landreman 2017; Zhu
et al. 2018). The previous equation then leads to the more compact form

n(x) · Bpol
V (x) = 1

4π
n(x) ·

∫∫
Γ

[
(n(y)× Bpol(y))× (x − y)

‖x − y‖3

]
dΓ (y) (3.4)

for x ∈ Γ .
The reduction of the integral necessary to compute the field or its normal component

from a volume integral to a surface integral is convenient from the point of view of the
limited number of values that need to be specified as inputs, and also from the point of view
of the computational cost of the integration (Lazerson et al. 2013). The surface integral
in (3.3) is significantly faster to evaluate than the volume integral (3.2), although certain
codes still choose to compute the latter (Hanson et al. 2009; Marx & Lütjens 2017).

For axisymmetric situations, one may further take advantage of the axisymmetry of Bpol

to integrate with respect to φ analytically, and reduce (3.3) and (3.4) to one-dimensional
integrals, which are even less computationally expensive. However, one encounters a
mathematical and computational difficulty if one does so, because the surface integrals
in (3.3) and (3.4) are in fact improper integrals, which must be understood in the Cauchy
principal value sense. This is what we discuss in the following section.

3.2. Numerical evaluation of the normal component of the virtual-casing magnetic field
in axisymmetric systems

3.2.1. Circumventing integrals in the principal value sense
Most applications in magnetic confinement fusion rely on version (3.4) of the

virtual-casing principle, in which one wants to compute the normal component of the
poloidal magnetic field Bpol

V at a boundary point x ∈ Γ . One could, in principle, calculate
this normal component by first computing all the components of Bpol

V by the virtual-casing
principle (3.3), and then computing n · Bpol

V by a straightforward inner product. In other
words, one first evaluates the double integral in (3.4), and then takes the dot product
with the normal vector n to the surface Γ at the point x of interest. This method has
the advantage that it produces all components of the poloidal magnetic field Bpol

V as
intermediary results. However, it also has the disadvantage that one must use a careful
principal value integration procedure to interpret the virtual-casing principle for x ∈ Γ ,
as discussed in Theorem A.3 and its proof in the Appendix. The high-order singularity
cancellation quadrature scheme we recently proposed for singular integrals on general
non-axisymmetric surfaces (Malhotra et al. 2019b) automatically yields the appropriate
principal value of the integral. However, it does so thanks to the intrinsic two-dimensional
nature of the integral. It does not reduce to a simple and efficient one-dimensional
quadrature scheme for the principal value of the integral, as is needed for axisymmetric
applications. Similarly, we are not aware of a version of the Kapur–Rokhlin quadrature
scheme designed to calculate the Cauchy principal value of the virtual-casing integral.

To address this difficulty, we consider an alternative method to compute the normal
poloidal field n · Bpol

V , based on calculating the vector potential AS produced by the surface
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current J tor
S , and then obtaining n · Bpol

V as the tangential derivative of the poloidal flux ψS
caused by the surface currents, which is easily expressed in terms of AS. This method is
also used, in a slightly different form, by the stellarator optimisation code ROSE (Drevlak
et al. 2018), but ROSE does not combine it with a high-order quadrature scheme. The
vector potential is defined by

AS(x) = μ0

4π

∫∫
Γ

J tor
S (y)

‖x − y‖ dΓ (y) (3.5)

and we recognise this expression as a vector of component-wise single-layer potentials for
Laplace’s equation in three dimensions, as introduced in § 2.2.

In contrast to the first approach, our method does not produce all components of Bpol
V .

On the other hand, it only requires weakly singular integrals, because it only requires
evaluations of single-layer potentials in (3.5), as we prove in § 4. In the next section, we
describe this alternative method for computing the normal magnetic field in detail.

3.2.2. Normal component of the magnetic field as a tangential derivative
As in the derivation of the virtual-casing principle (Shafranov & Zakharov 1972;

Zakharov 1973; Hanson 2015), one can interpret the plasma boundary Γ of the
axisymmetric plasma as a perfectly conducting shell which contributes to confining the
plasma via the poloidal magnetic field Bpol

S generated by the toroidal surface current
density J tor

S flowing in Γ . At equilibrium, the poloidal surface current field Bpol
S matches

the poloidal field Bpol
ext from the external confining coils. The decomposition Bpol = Bpol

V +
Bpol

S then immediately yields n · Bpol
V = −n · Bpol

S . Now, recall that we may represent Bpol
S

in axisymmetry via (3.1) to express its normal component at (r, φ, z) as

n · Bpol
S = n · (∇ψS × ∇φ) = −1

r
(n × eφ(φ)) · ∇ψS (3.6)

by the circular shift identity of the vector triple product. Let x correspond to the parameter
pair (φ0, t0) with x = (R, φ0,Z) = (r(t0), φ0, z(t0)). We define the tangent vector t at a
point x ∈ Γ as

t(x) = n(x)× eφ(φ0)

= (z′(t0)er(φ0)− r′(t0)ez)× eφ(φ0)√
r′(t0)2 + z′(t0)2

= r′(t0)er(φ0)+ z′(t0)ez√
r′(t0)2 + z′(t0)2

. (3.7)

It follows that

n(x) · Bpol
V (x) = 1

r(t0)
t(x) · ∇ψS(r(t0), z(t0))

= 1

r(t0)
√

r′(t0)2 + z′(t0)2

(
∂ψS

∂r
r′(t0)+ ∂ψS

∂z
z′(t0)

)

= 1
J (t0)

dψS(r(t0), z(t0))

dt0
, (3.8)

where J (t0) = r(t0)
√

r′(t0)2 + z′(t0)2 is the Jacobian of the parameterisation introduced
in § 2.1.
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Finally, the poloidal flux function and the vector potential are related at x by the relation
(Jardin 2010; Freidberg 2014)

ψS(R,Z) = Reφ(φ0) · AS(x). (3.9)

Given only point evaluations of AS at equispaced parameters {ti}, one can compute dψS/dt
with high-order accuracy at each ti by Fourier differentiation. This leads to our high-order
accurate approach to the virtual-casing principle in axisymmetric geometries. One
computes n · Bpol

V on Γ by evaluating a weakly singular integral with a high-order accurate
quadrature rule, and then Fourier differentiating. We show in § 5 that Kapur–Rokhlin
quadrature provides a simple way to obtain high-order accuracy for the weakly singular
integral. Before we do so, we prove in the next section that it indeed is a weakly singular
integral, whose properties satisfy the requirements to obtain high accuracy with the
Kapur–Rokhlin quadrature rule.

4. Analytical results for singular integrals
4.1. Vector potential singularity

By the virtual-casing principle, we haveμ0J tor
S = −n × Bpol, so we may equivalently write

the vector potential as

AS(x) = − 1
4π

∫∫
Γ

n(y)× Bpol(y)
‖x − y‖ dΓ (y), (4.1)

which satisfies Bpol
S = ∇ × AS. As mentioned earlier, we may view this expression

as a vector of component-wise single-layer potentials for Laplace’s equation in three
dimensions. Physically, it is clear that the only non-zero component of the vector
potential is in the eφ direction. Furthermore, Chance (1997, § V) shows that after
integrating in the toroidal angle φ, the one-dimensional integrands of both the single-layer
potential S[μ0J tor

S ] and the double-layer potential D[μ0J tor
S ] have integrable, logarithmic

singularities. Chance shows this in a modified coordinate system using the poloidal flux
function as a coordinate. Next, we verify these results for the virtual-casing principle in
standard cylindrical coordinates.

4.2. Analytic reduction to a line integral
We analytically simplify the integral in (4.1) by integrating over the toroidal angle. When
we do so, we introduce the complete elliptic integrals of the first and second kind, which
are defined as

K(k2) =
∫ π/2

0

dθ√
1 − k2 sin2 θ

and E(k2) =
∫ π/2

0

√
1 − k2 sin2 θ dθ, (4.2a,b)

respectively. Our main analytical result gives a formula for the vector potential of the
virtual-casing principle as a one-dimensional integral.
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THEOREM 4.1. Let Γ be a surface of revolution with a generating curve γ that satisfies
the assumptions of § 2.1. Consider the vector potential

AS(x) = − 1
4π

∫∫
Γ

n(y)× Bpol(y)
‖x − y‖ dΓ (y) (4.3)

for x = (R, φ0,Z) = (r(t0), φ0, z(t0)) in cylindrical coordinates. Define the quantities

α = α(t; x) = r(t)2 + R2 + (Z − z(t))2 and β = β(t; x) = 2Rr(t) (4.4a,b)

and set the modulus

k2 = k(t; x)2 = 2β
α + β

= 4Rr(t)
(R + r(t))2 + (Z − z(t))2

. (4.5)

Then the vector potential can be expressed as

AS(x) = −eφ(φ0)

∫ L

0
A(t; x) dt (4.6)

with the scalar-valued integrand

A(t; x) = 1
4π

(
4√
α + β

) [
∂ψ

∂z
r′(t)− ∂ψ

∂r
z′(t)

] (
2
k2

(
K(k2)− E(k2)

) − K(k2)

)
.

(4.7)

Proof. The unit outward normal vector of Γ at y is given (by our assumption on the
orientation of γ ) by

n(y(φ, t)) = ∂y
∂φ

× ∂y
∂t

/ ∥∥∥∥ ∂y
∂φ

× ∂y
∂t

∥∥∥∥
= z′(t)er(φ)− r′(t)ez√

r′(t)2 + z′(t)2
. (4.8)

From the representation (3.1) of Bpol in axisymmetry, it follows that

(n(y(φ, t))× Bpol(y(φ, t)))J (t) =
[
∂ψ

∂z
r′(t)− ∂ψ

∂r
z′(t)

]
eφ(φ). (4.9)

Next, we consider the difference

x − y(φ, t) = [Rer(φ0)+ Zez] − [r(t)er(φ)+ z(t)ez]

= (R cosφ0 − r(t) cosφ)ex + (R sinφ0 − r(t) sinφ)ey + (Z − z(t))ez, (4.10)

which we have expressed in both cylindrical and rectangular coordinates. Recall that the
unit vector ez is identical in both coordinate systems, and the remaining rectangular unit
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12 E. Toler, A.J. Cerfon and D. Malhotra

vectors ex and ey are related to standard cylindrical unit vectors by

er(φ) = cosφ ex + sinφ ey and eφ(φ) = − sinφ ex + cosφ ey. (4.11a,b)

From the representation in rectangular coordinates, we use the trigonometric identity
cos(φ0 − φ) = cosφ0 cosφ + sinφ0 sinφ and immediately obtain

‖x − y(θ, t)‖2 = R2 + r(t)2 + (Z − z(t))2 − 2Rr(t) cos(φ0 − φ) = α − β cos(φ0 − φ).
(4.12)

We have now shown that the surface integral (4.1) for the vector potential is equivalent to
the following double integral over a rectangle in the parameter domain:

AS(x) = − 1
4π

∫ L

0

[
∂ψ

∂z
r′(t)− ∂ψ

∂r
z′(t)

] ∫ 2π

0

eφ(φ)√
α(t)− β(t) cos(φ0 − φ)

dφ dt. (4.13)

We may analytically evaluate the inner integral using trigonometric identities and known
integral formulae. We use the identities{

sin(φ + φ0) = sinφ cosφ0 + cosφ sinφ0

cos(φ + φ0) = cosφ cosφ0 − sinφ sinφ0
(4.14)

to compute that∫ 2π

0

− sinφ ex + cosφ ey√
α − β cos(φ0 − φ)

dφ =
∫ 2π

0

− sin(φ + φ0) ex + cos(φ + φ0) ey√
α − β cosφ

dφ

= eφ(φ0)

∫ 2π

0

cosφ dφ√
α − β cosφ

− er(φ0)

∫ 2π

0

sinφ dφ√
α − β cosφ

= eφ(φ0)

∫ 2π

0

cosφ dφ√
α − β cosφ

. (4.15)

Here, we have used the fact that ∫ 2π

0

sinφ dφ√
α − β cosφ

= 0, (4.16)

which holds because it is the integral of an odd function over a single period.
Now, the remaining integral can be expressed in terms of the complete elliptic integrals,

through the identity∫ 2π

0

cosφ dφ√
α − β cosφ

= 2
∫ π/2

−π/2

cos(2φ + π) dφ√
α − β cos(2φ + π)

= 2
∫ π/2

−π/2

−(1 − 2 sin2 φ) dφ√
α + β(1 − 2 sin2 φ)

= −4√
α + β

∫ π/2

0

1 − 2 sin2 φ√
1 − k2 sin2 φ

dφ

= −4√
α + β

(
K(k2)− 2

k2
(K(k2)− E(k2))

)
. (4.17)

We obtain the last equality (4.17) from the definition of K and from a formula of
Gradshteyn & Ryzhik (2014, 2.584-4). The desired result now immediately follows. �
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The Kapur–Rokhlin quadrature rule that we analysed in § 2.3.2 applies to integrands
with a logarithmic singularity. With the result we just obtained, we can verify, by
analysing the behaviour of the complete elliptic integrals, that the integrand A is indeed
logarithmically singular as t → t0, in agreement with the results from Chance (1997, § V).
Specifically, as the modulus k tends to 1, the second-kind integral E is continuous and
bounded, and the first-kind elliptic integral K is logarithmically singular. The mapping
t �→ k(t; x)2 is continuous, so E(k(t; x)2) is continuous and K(k(t; x)2) is logarithmically
singular as t → t0. Readers interested in more detail regarding these results are referred to
Lemma A.2 in the Appendix.

5. A Kapur–Rokhlin scheme for the virtual-casing principle

We may compute the vector potential by (4.6) of Theorem 4.1 using the Kapur-Rokhlin
quadrature rule for periodic functions introduced in § 2.3.2. Let x ∈ Γ be given,
corresponding to parameters (φ0, t0). We reiterate that a univariate integral expression
for the vector potential is

AS(x) = −eφ(φ0)

∫ L

0
A(t; x) dt. (5.1)

The Kapur–Rokhlin quadrature of § 2.3.2 applies directly because the integration interval
[0,L] is identical, by periodicity, to the symmetric interval [t0 − L/2, t0 + L/2] and
because the integrand A(t; x) is logarithmically singular as t → t0.

Given M ∈ N, we generate 2M − 1 quadrature nodes ti = t0 + ih for i = ±1, . . . ,
±(M − 1),M with spacing h = L/(2M). We evaluate Ai = A(ti; x), and it follows that

∫ L

0
A(t; x) dt = h

[ ∑
1�|i|�M−1

Ai + AM

]
+ h

∑
1�|j|�n

γj(Aj + A−j)+ O(hn). (5.2)

As periodicity has removed our considerations about expanding the integration domain,
the parameter n can be taken as large as we like (as long as M � n to define the quadrature
rule). However, in practice this Kapur–Rokhlin scheme is known to be unstable for n larger
than about 10 because the weights γj are sign-indefinite and grow large in magnitude.

6. Numerical results

In this section, we illustrate the Kapur–Rokhlin quadrature schemes from §§ 2.3.2 and 5
in two different calculations. Throughout, we test the schemes for an axisymmetric plasma
boundary given by the level set ψ = 0 of the poloidal flux function given by

ψ(r, z) = κFB

2R3
0q0

[
1
4
(r2 − R2

0)
2 + 1

κ2
r2z2 − a2R2

0

]
. (6.1)

This flux function is a solution to the Grad–Shafranov equation with the Solov’ev profiles
μ0p(ψ) = −[FB(κ + 1/κ)/(R3

0q0)]ψ and F(ψ) = FB, where p(ψ) is the plasma pressure
profile, and F(ψ) = rBφ , with Bφ the toroidal magnetic field (Lütjens, Bondeson &
Sauter 1996; Lee & Cerfon 2015). The parameters R0 and q0 may be interpreted as the
major radius and safety factor at the magnetic axis, and κ and a as the elongation and
minor radius of the plasma boundary. All numerical tests in this article use the fusion
relevant values FB = R0 = q0 = 1 and κ = 1.7 and a = 1/3. The level set ψ = 0 may be
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14 E. Toler, A.J. Cerfon and D. Malhotra

parameterised by the functions (Lütjens et al. 1996; Lee & Cerfon 2015)

(r(t))2 = R2
0 + 2aR0 cos t and z(t) = κa

R0

r(t)
sin t (6.2a,b)

for t ∈ [0, 2π].

6.1. Double-layer identity
For our first numerical verification, we consider an identity associated with harmonic
functions. Consider the Green’s function G(x, y) = (4π ‖x − y‖)−1 for Laplace’s
equation in three dimensions. It satisfies the double-layer jump condition (Malhotra et al.
2019b) ∫∫

Γ

∂G(x, y)
∂n(y)

dΓ (y) = 1
4π

∫∫
Γ

n(y) · (x − y)
‖x − y‖3 dΓ (y) = −1

2
(6.3)

for x ∈ Γ . It follows that

1 + 1
2π

∫∫
Γ

n(y) · (x − y)
‖x − y‖3 dΓ (y) = 0, (6.4)

again for x ∈ Γ . Following identical methodology to the proof of Theorem 4.1, we
integrate out the toroidal angle analytically to obtain the one-dimensional integral identity

1 + 1
2π

∫ L

0

4r
(α + β)3/2

{
−2z′R

k2
K(k2)+

(
2z′R
k2

+ z′(R − r)− r′(Z − z)
1 − k2

)
E(k2)

}
dt = 0.

(6.5)

In this expression, we have suppressed the dependence of {r, z, r′, z′, α, β, k2} on t for
clarity. As usual, we have also used the identification x = (R, φ0,Z) = (r(t0), φ0, z(t0)).
The integrand is logarithmically singular because of the presence of the singular elliptic
integral K(k2), and because the other seemingly singular coefficient is actually bounded
when r′′(t0) and z′′(t0) exist (which is the case in our example), with

lim
t→t0

z′(t)(R − r(t))− r′(t)(Z − z(t))
1 − k(t)2

= 2R2

(
r′′(t0)z′(t0)− r′(t0)z′′(t0)

r′(t0)2 + z′(t0)2

)
. (6.6)

We conclude that the integral in (6.5) is of the Kapur–Rokhlin form from § 2.3.2.
Figure 3 illustrates the performance of the 10th-order periodic Kapur–Rokhlin

quadrature scheme for verifying the identity (6.5). We compare this method with
the alternating trapezoidal rule, which uses common quadrature weight h = π/M and
quadrature nodes t̃i = t0 + (i − 1

2)h for i = 0,±1, . . . ,±(M − 1),M that straddle the
singularity at t0. We find that the Kapur–Rokhlin scheme achieves the theoretical
10th-order accuracy, and that we obtain the full accuracy of the quadrature scheme using
about 175 quadrature nodes. Because the behaviour of the integrand is not generally
symmetric about t = t0, the alternating trapezoidal rule performs poorly. In order to avoid
unfairly representing the performance of singularity subtraction schemes currently used in
plasma physics applications, we have not attempted to code our own versions of them to
compare their accuracy and their convergence rate in this figure. However, we explain in
Malhotra et al. (2019b) why all these singularity subtraction schemes are expected have
low-order convergence, with second-order convergence expected for most of them.
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FIGURE 3. Error convergence for the double-layer identity (6.5) at t0 = 1.

6.2. Virtual-casing principle
For our second test, we evaluate the accuracy of our method for calculating the normal
component of the magnetic field due to the plasma current on the plasma boundary,
i.e. n · Bpol

V on Γ . The plasma equilibrium we consider is the Solov’ev equilibrium
described previously (Lütjens et al. 1996; Lee & Cerfon 2015). As we do not know
the analytic solution to this problem, we compare our implementation with an existing
high-order accurate implementation from Malhotra et al. (2019b). The method used in that
implementation is different from the approach presented here in several ways, making it
appropriate for our verification. Specifically, the code presented in Malhotra et al. (2019b)
views the plasma equilibrium as a fully three-dimensional equilibrium, and does not
assume axisymmetry. Furthermore, Malhotra et al. (2019b) obtain n · Bpol

V on Γ directly
via a direct evaluation of (3.3), as opposed to first computing the vector potential. Finally,
the Cauchy principal value of (3.3) is numerically evaluated via a partition of unity
scheme to handle the singulary of the integrand. We take the result from a high-resolution
calculation of Malhotra et al. (2019b) for this problem as the ground truth, against
which we test the accuracy of our approach as a function of the number of quadrature
points.

Figure 4 illustrates our results when using the 10th-order Kapur–Rokhlin scheme for
this problem. Again, we find that the Kapur–Rokhlin scheme achieves the theoretical
convergence rate, and that the accuracy has converged by about 400 quadrature nodes.
In both this example and the double-layer identity example, we observe that the
Kapur–Rokhlin scheme errors do not converge all the way to machine precision. This is
one known drawback of the Kapur–Rokhlin methods, driven partially by the instabilities
caused by the correction weights. Nonetheless, in contexts where full machine precision
is not necessary, this scheme provides high accuracy and is easy to implement by reading
the correction weights γj from a table of pre-computed values.

7. Conclusion

For axisymmetric confinement fusion systems, a direct implementation of the
Kapur–Rokhlin quadrature scheme yields high accuracy for the evaluation of the
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FIGURE 4. Comparison with existing code to compute the normal component of the magnetic
field.

layer potentials commonly encountered in magnetostatic and magnetohydrodynamic
calculations. Using the table of quadrature weights given in the original article by Kapur
& Rokhlin (1997), the scheme is as easy to implement as the trapezoidal rule, and, unlike
commonly used methods, does not require any manipulation of the singular integrands.
We demonstrated how to implement it for the evaluation of a double-layer potential and
for the virtual-casing principle, obtaining 10th-order convergence in both cases.

At the moment, our approach is restricted to singular integrals along smooth boundaries,
and cannot be applied to magnetic surfaces with one or several X-points. The development
of an efficient and accurate quadrature scheme for this importance case is the subject of
ongoing work, with results to be reported at a later date.
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Appendix A

In this appendix, we prove that the virtual-casing principle (3.3) is undefined by standard
integration when the evaluation point lies on the boundary. In order to prove this, we
require the following two lemmas concerning the asymptotic behaviour of the complete
elliptic integral K(k(t)2) for values t close to t0. Throughout, we identify the evaluation
point x ∈ Γ with the parameters (φ0, t0), so that x = (r(t0), φ0, z(t0)) = (R, φ0,Z).

https://doi.org/10.1017/S002237782300020X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782300020X


Fast quadrature in axisymmetry 17

LEMMA A.1. Assume r(t) and z(t) are L-periodic C1[0,L] parameterisation functions.
Define the modulus by

k(t)2 = 4Rr(t)
(R + r(t))2 + (Z − z(t))2

. (A1)

Let |t − t0| > 0 be sufficiently small. Then

k(t)2 =
(

1 + (t − t0)
2

(
r′(sr)

2 + z′(sz)
2

4R(R + (t − t0)r′(sr))

))−1

(A2)

and

1 − k(t)2 =
(

1 + (t − t0)
−2

(
4R(R + (t − t0)r′(sr))

r′(sr)2 + z′(sz)2

))−1

(A3)

for some sr, sz between t0 and t.

Proof. We use the Taylor expansions

r(t) = r(t0)+ (t − t0)r′(sr) = R + (t − t0)r′(sr)

z(t) = z(t0)+ (t − t0)z′(sz) = Z + (t − t0)z′(sz)

}
(A4)

for some sr, sz between t0 and t. Inserting this into the modulus, we obtain

k(t)2 = 4R(R + (t − t0)r′(sr))

4R(R + (t − t0)r′(sr))+ (t − t0)2r′(sr)2 + (t − t0)2z′(sz)2

=
(

4R(R + (t − t0)r′(sr))+ (t − t0)
2(r′(sr)

2 + z′(sz)
2)

4R(R + (t − t0)r′(sr))

)−1

. (A5)

Simplifying the fraction yields the desired expression for k(t)2. It is quick to verify the
expression for 1 − k(t)2 accordingly. �

LEMMA A.2. Assuming the same conditions as Lemma A.1, the complete elliptic integral
of the first kind obeys the asymptotic behaviour

K(k(t)2) = − log |t − t0| + O(1) as t → t0. (A6)

Proof. We first observe that k(t)2 → 1− as t → t0. In this regime, Gradshteyn & Ryzhik
(2014, 8.113-3) gives the asymptotic expansion

K(k2) = log
(

4√
1 − k2

)
+ o(1) as k2 → 1−. (A7)

From Lemma A.1, we also have the explicit representation of the dominant term

log
(

4√
1 − k2

)
= log 4 + 1

2
log

(
1 + |t − t0|−2

(
4R(R + (t − t0)r′(sr))

r′(sr)2 + z′(sz)2

))
. (A8)
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Finally, we use the identity log(1 + u) = log u + log(u−1 + 1) = log u + o(1) as u → ∞.
We conclude that

K(k(t)2) = log 4 + 1
2

log
(

|t − t0|−2

(
4R(R + (t − t0)r′(sr))

r′(sr)2 + z′(sz)2

))
+ o(1)

= log 4 − log |t − t0| + 1
2

log
(

4R(R + (t − t0)r′(sr))

r′(sr)2 + z′(sz)2

)
+ o(1) (A9)

as t → t0. Only the second term is singular as t → t0; the others are bounded, and this
completes the proof. �

We now have the necessary tools to prove that the integrand obtained by the
virtual-casing principle is not absolutely integrable on the parameter domain.

THEOREM A.3. Let Γ be a smooth surface of revolution, and let x ∈ Γ . Assume that there
exists a constant Rmin > 0 such that r(t) � Rmin for all t ∈ [0,L]. Then

∫∫
Γ

∥∥∥∥(n(y)× Bpol(y))× (x − y)
‖x − y‖3

∥∥∥∥ dΓ (y) = ∞. (A10)

Proof. Without loss of generality, we assume that the coordinate system is appropriately
rotated so that x has zero toroidal angle. That is, we assume x = (R, 0,Z) =
(r(t0), 0, z(t0)). In this form, we recall that er(0) = ex and eφ(0) = ey. The surface integral
can be rewritten in the parameter domain as

∫∫
Γ

∥∥∥∥(n(y)× Bpol(y))× (x − y)
‖x − y‖3

∥∥∥∥ dΓ (y) =
∫ L

0

∫ 2π

0
‖F (φ, t)‖ dφ dt, (A11)

where F is expressible from the parameterisation representations (4.9) and (4.12) as

F (φ, t) =

[
∂ψ

∂z
r′(t)− ∂ψ

∂r
z′(t)

]
eφ(φ)× [

(Rex + Zez)− (r(t)er(φ)+ z(t)ez)
]

(α(t)− β(t) cosφ)3/2

=

[
∂ψ

∂z
r′(t)− ∂ψ

∂r
z′(t)

]
(α(t)− β(t) cosφ)3/2

((Z − z(t))er(φ)+ (r(t)− R cosφ) ez) . (A12)

By Tonelli’s theorem, we may evaluate the integral of ‖F‖ in φ first, and show that the
remaining integral in t diverges. The integrands in φ can be transformed into expressions
with formulae known from Gradshteyn & Ryzhik (2014, 2.584-37 and 2.584-42), by a
process identical to how we obtained (4.17) in the proof of Theorem 4.1. The result is the
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univariate, vector-valued function

F 1(t) =
∫ 2π

0
F (φ, t) dφ

=
2

[
∂ψ

∂z
r′(t)− ∂ψ

∂r
z′(t)

]
r(t)

√
α + β

{
Z − z(t)

R

(
−K(k2)+ α

α − β
E(k2)

)
ex

+
(

K(k2)+ r(t)2 − R2 − (Z − z(t))2

α − β
E(k2)

)
ez

}
. (A13)

As before, we have introduced the quantities⎧⎪⎪⎨
⎪⎪⎩
α = α(t; x) = R2 + r(t)2 + (Z − z(t))2

β = β(t; x) = 2Rr(t)

k2 = k(t; x)2 = 2β
α + β

.

(A14)

By the immediate comparison
∫ 2π

0 ‖F (φ, t)‖ dφ � ‖F 1(t)‖, it is sufficient to prove our
claim by showing that ‖F 1(t)‖ is not integrable. We show that a singularity in one of the
components of F 1(t) must be at least as severe as |t − t0|−1 as t → 0, and this will prove
that ‖F (θ, t)‖ is not integrable.

First, we consider integrating ex · F 1(t) with the purely formal expression

∫ L

0

2(Z − z(t))
[
∂ψ

∂z
r′(t)− ∂ψ

∂r
z′(t)

]
Rr(t)

√
α + β

(
−K(k2)+ α

α − β
E(k2)

)
dt. (A15)

For any geometry where r(t) � Rmin > 0, and for generic functions ψ(r, z), the quantity

lim
t→t0

2
[
∂ψ

∂z
r′(t)− ∂ψ

∂r
z′(t)

]
Rr(t)

√
α + β

= 1
R3

[
∂ψ

∂z
r′(t)− ∂ψ

∂r
z′(t)

]
t=t0

(A16)

is finite. Moreover, it is also non-zero because for any valid parameterisation, the
derivatives r′(t) and z′(t) cannot concurrently vanish for any fixed t, including t = t0. Thus,
the behaviour of the singularity in the integrand ex · F 1(t) depends purely on what remains.

The first term (Z − z(t))K(k2) is clearly integrable, because |Z − z(t)| = O(|t − t0|)
and K(k(t)2) = − log |t − t0| + O(1) as t → t0 by Lemma A.2. For the second term, we
observe that the limit

lim
t→t0

αE(k(t)2) = 2R2E(1) = 2R2 (A17)

is again finite and non-zero, and so we are left to question: how severe is the singularity of

Z − z(t)
α − β

= Z − z(t)
(R − r(t))2 + (Z − z(t))2

(A18)

as t → t0? As the parameterisations r(t) and z(t) are continuously differentiable functions,
we may write Taylor expansions

r(t) = r(t0)+ (t − t0)r′(sr) = R + (t − t0)r′(sr) (A19)
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and
z(t) = z(t0)+ (t − t0)z′(sz) = Z + (t − t0)z′(sz) (A20)

for some values sr, sz between t0 and t, which depend on t and which tend to t0 as t → t0.
It immediately follows that, for fixed t, we have

Z − z(t)
(R − r(t))2 + (Z − z(t))2

= −(t − t0)z′(sz)

(t − t0)2(r′(sr)2 + z′(sz)2)
=

(
1

t − t0

)( −z′(sz)

r′(sr)2 + z′(sz)2

)
.

(A21)
As long as z′(t0) �= 0, we obtain the answer to our question. The integrand obeys the
asymptotic estimate

ex · F 1(t) ∼ 1
t − t0

as t → t0, (A22)

and we conclude that ‖F 1(t)‖, and hence ‖F (θ, t)‖, are not integrable.
When z′(t0) = 0, we consider the integral of the other component ez · F 1(t) and consider

whether

∫ L

0

2
[
∂ψ

∂z
r′(t)− ∂ψ

∂r
z′(t)

]
r(t)

√
α + β

(
K(k2)+ r(t)2 − R2 − (Z − z(t))2

α − β
E(k2)

)
dt (A23)

diverges. Using an argument verbatim to the first part of this proof, we conclude that its
behaviour is determined by the singularity of

r(t)2 − R2 − (Z − z(t))2

α − β
= r(t)2 − R2 − (Z − z(t))2

(R − r(t))2 + (Z − z(t))2
. (A24)

Using the same Taylor expansions, we obtain

r(t)2 − R2 − (Z − z(t))2

(R − r(t))2 + (Z − z(t))2
= 2R(t − t0)r′(sr)+ (t − t0)

2(r′(sr)
2 − z′(sz)

2)

(t − t0)2(r′(sr)2 + z′(sz)2)

=
(

1
t − t0

)
2Rr′(sr)

r′(sr)2 + z′(sz)2
+ r′(sr)

2 − z′(sz)
2

r′(sr)2 + z′(sz)2
. (A25)

With identical reasoning, and considering that r′ and z′ cannot simultaneously vanish, we
conclude once again that ‖F (θ, t)‖ is not integrable. �

As a result of Theorem A.3, we conclude that one must use a principal value procedure
in order to define all components of Bpol

V (x) by the virtual-casing principle (3.3) when
x ∈ Γ . One can prove that this is possible, i.e. that a limiting procedure yields a finite
result, but we omit the lengthy details here.
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